

# Determination of solid precipitation occurrence using ALADIN model outputs

Klára Čížková<sup>1,2,\*</sup>, Radim Tolasz<sup>1</sup>, Miroslav Řekpa<sup>1</sup>, Pavel Lipina<sup>1</sup>

\*klara.cizkova@chmi.cz

1: Czech Hydrometeorological Institute, 708 00 Ostrava, Czech Republic

2: Department of Geography, Masaryk University, 611 37 Brno, Czech Republic

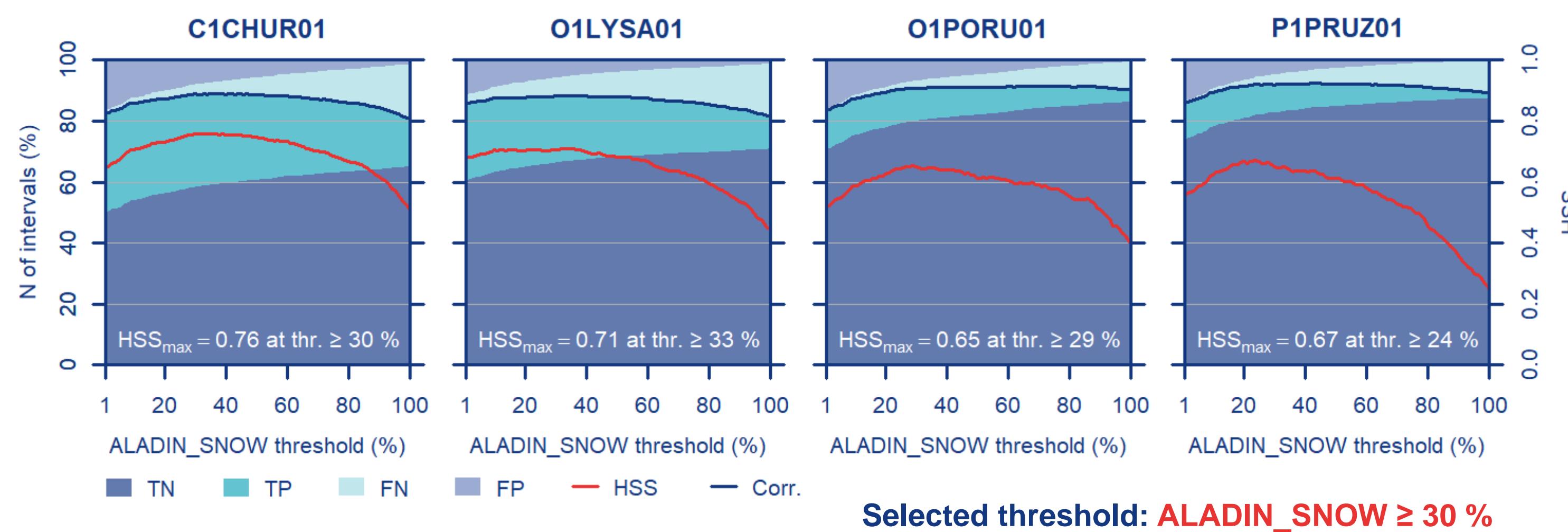
Český  
hydrometeorologický  
ústav

PERUN

## Motivation & Methods

- Declining number of human present weather observers → need for a different method of present weather evaluation
- Use of **ALADIN NWP model** outputs (e.g., Sokol et al., 2022) – **good spatial coverage** (2.3 km resolution), useful for weather damage reports etc.

### Calculation of ALADIN\_SNOW weighted probability


- Assumption: shorter lead times → better accuracy; model run every 6 hours (00, 06, 12, 18 UTC)
- Four model runs taken into account for every 1h forecast → lead time up to 24 h
- Weights** assigned to every forecast, **ALADIN\_SNOW** = **sum** of all weights in a 6h interval where forecasted amount of **solid precipitation** > 0 divided by 300 (highest possible total)

| Forecast time (h) | WEIGHTS       |    |    |     | EXAMPLE |       |       |       |
|-------------------|---------------|----|----|-----|---------|-------|-------|-------|
|                   | Model run (h) |    |    |     |         |       |       |       |
| -18               | -12           | -6 | 0  | -18 | -12     | -6    | 0     |       |
| +1                | 6             | 12 | 18 | 24  | TRUE    | TRUE  | TRUE  | FALSE |
| +2                | 5             | 11 | 17 | 23  | TRUE    | TRUE  | TRUE  | TRUE  |
| +3                | 4             | 10 | 16 | 22  | FALSE   | TRUE  | FALSE | FALSE |
| +4                | 3             | 9  | 15 | 21  | FALSE   | TRUE  | FALSE | FALSE |
| +5                | 2             | 8  | 14 | 20  | FALSE   | FALSE | FALSE | TRUE  |
| +6                | 1             | 7  | 13 | 19  | FALSE   | FALSE | TRUE  | FALSE |

ALADIN\_SNOW (ex.) =  $(5 + 6 + 9 + 10 + 11 + 12 + 13 + 17 + 18 + 20 + 23) / 300 = 41.3\%$

## Optimal threshold selection

Selected metrics calculated for various ALADIN\_SNOW thresholds from  $ALADIN\_SNOW \geq 1\%$  to  $ALADIN\_SNOW = 100\%$ , with a 1% step



## ALADIN\_SNOW outside the snow period

- In total, 71, 17, 1, and 7 intervals with at least one solid precipitation observation and 98, 0, 3, and 1 intervals with a solid precipitation prediction at C1CHUR01, O1LYSA01, O1PORU01, and P1PRUZ01, respectively.
- At C1CHUR01, 34 out of 71 intervals with a solid prec. observation were recorded in May, and 25 in October (transition period)
- Much worse skill than in snow period, model has no or almost no skill in months with less than ~ 2 % of days with a solid precipitation observation (rare cases)

### Solid precipitation in summer (JUN, JUL, AUG)

- Only 7 intervals with a solid precipitation observation in summer (2, 0, 3, 2 at C1CHUR01, O1LYSA01, O1PORU01, and P1PRUZ01, respectively)
- In 6 cases, the solid precipitation was **graupel**, in one case ice pellets, all cases linked to convection (thunderstorm at or near the station)
- No positive predictions**: model can't detect rare summer solid precipitation but **does not confuse solid precipitation and hail**

## Further steps

- Assess the performance of ALADIN\_SNOW using **all the CHMI stations** that provide a continuous record of present weather observations and air temperature measurements
  - Quality control** of the present weather observations may be needed
- Explore the possibility of using a **dynamical threshold** of ALADIN\_SNOW, e.g., its dependence on station altitude
- Evaluate the **spatial characteristics** of ALADIN\_SNOW performance using selected metrics, including its dependence on solid precipitation intensity, duration, and type, and on air temperature
- After the model performance assessment, calculate ALADIN\_SNOW for **all available grid points** so it is ready for practical use within the CHMI network, to supplement the present weather observation and other meteorological characteristics measured at the individual stations

| SNOW PERIOD |      |      |      |      |
|-------------|------|------|------|------|
| Corr. (%)   | POD  | FAR  | HSS  |      |
| C1CHUR01    | 88.9 | 0.91 | 0.21 | 0.76 |
| O1LYSA01    | 88.3 | 0.78 | 0.21 | 0.71 |
| O1PORU01    | 90.9 | 0.82 | 0.38 | 0.65 |
| P1PRUZ01    | 92.0 | 0.73 | 0.33 | 0.65 |

| OUTSIDE SNOW PERIOD |      |      |      |
|---------------------|------|------|------|
| Corr. (%)           | POD  | FAR  | HSS  |
| 98.2                | 0.62 | 0.55 | 0.52 |
| 99.4                | 0.00 | N/A  | 0.00 |
| 99.9                | 0.00 | 1.00 | 0.00 |
| 99.8                | 0.00 | 1.00 | 0.00 |

| DAILY RES. (SN. P.) |      |      |      |
|---------------------|------|------|------|
| Corr. (%)           | POD  | FAR  | HSS  |
| 89.3                | 0.93 | 0.14 | 0.78 |
| 87.9                | 0.81 | 0.09 | 0.71 |
| 88.7                | 0.87 | 0.28 | 0.71 |
| 90.1                | 0.86 | 0.25 | 0.73 |

## References

Sokol, Z., Brožková, R., Popová, J., Bobotová, G., abd Švábk, F.: Evaluation of ALADIN NWP model forecasts by IR10.8 μm and WV06.2 μm brightness temperatures measured by the geostationary satellite Meteosat Second Generation. *Atmos. Res.*, 265, 1–20, 2022, DOI: 10.1016/j.atmosres.2021.1.

## Acknowledgments

This research has been funded by the projects 'Long-term Concept of Research Organization Development 2023-2027', and by the Technology Agency of the Czech Republic (grant no. SS02030040, PERUN).

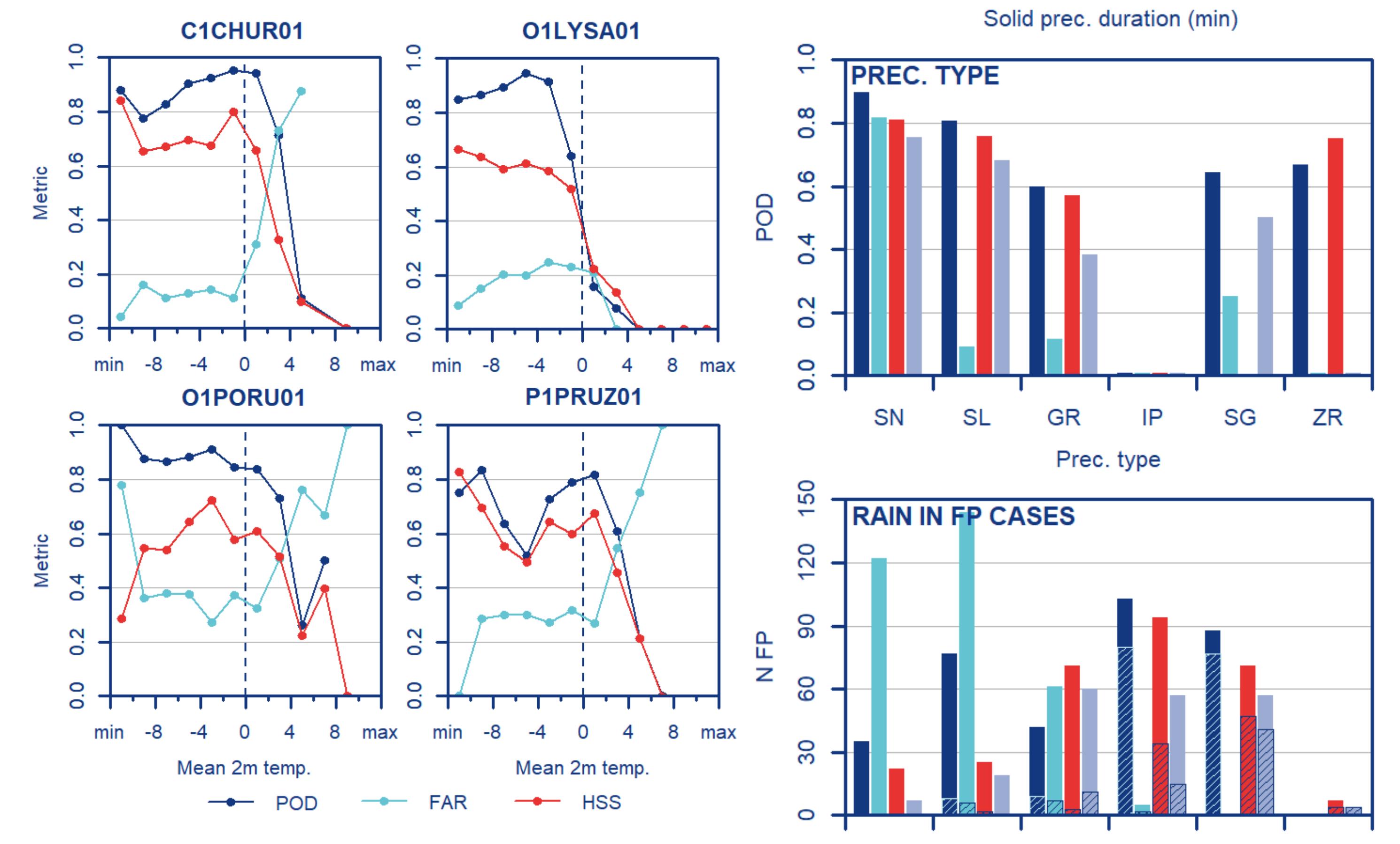
### Present weather observations

ALADIN\_SNOW validated against the solid precipitation present weather observations of trained professionals at **four CHMI stations** in August 2019 – July 2025:

- Churáňov (C1CHUR01): N 49.07, E 13.62, 1 118 m a.s.l.
- Lysá Hora (O1LYSA01): N 49.55, E 18.45, 1 322 m a.s.l.
- Ostrava Poruba (O1PORU01): N 49.83, E 18.16, 240 m a.s.l.
- Praha Ruzyně (P1PRUZ01): N 50.10, E 14.26, 364 m a.s.l.

**Solid precipitation** observations included snow (SN), sleet (SL), graupel (GR), ice pellets (IP), snow grains (SG), frozen rain (ZR)

### Validation metrics


At a given ALADIN\_SNOW threshold, every 6h interval was marked either as **TP** (True Positive, solid precipitation predicted and observed), **TN** (True Negative, solid precipitation neither predicted nor observed), **FP** (False Positive, solid precipitation predicted but not observed), and **FN** (False Negative, solid precipitation not predicted but observed), and the values of selected metrics were calculated:

- Percentage of Correct Predictions** **Corr. (%)** =  $100 / (TP + TN) / N$
- Probability of Detection** **POD** =  $TP / (TP + FN)$
- False Alarm Ratio** **FAR** =  $FP / (TP + FP)$
- Heidke Skill Score** **HSS** =  $2 \cdot (TP \cdot TN - FN \cdot FP) / [(TP + FN)(FN + TN) + (TN + FP)(TP + FP)]$

Most validation carried out for **snow period**, which was defined as **months with more than 10 % days with a solid precipitation record**.

## ALADIN\_SNOW performance in snow period

- Positive prediction:  $ALADIN\_SNOW \geq 30\%$  in 6h intervals
- Good performance** with mean percentage of correct predictions, **POD**, **FAR**, and **HSS** = 90.0, 0.81, 0.28, and 0.69, respectively.
- Generally **better performance** at **higher altitudes** (C1CHUR01, O1LYSA01)
- Increase in model skill with the increase in solid precipitation **intensity** and **duration**
- Best skill when precipitation type = **SN**, but reasonable even for **SL** and **GR**; worst for **IP** where **POD** = 0.0 at all stations
- Decline in model skill with an **increase in temperature** (sharp drop at above ~ 2 °C)
- At higher air temperatures, up to 88 % of **FP** values coincide with **liquid precipitation**, only up to 21 % when temp. < 0 °C
- Use of **daily resolution** only brings **small improvement** of model skill → not worth the loss of temporal resolution, will not be used in practice



Dependence of selected metrics on mean 2m air temperature at four CHMI stations in 2019–2025, the dashed line indicates mean temp. = 0 °C.

Dependence of **POD** on solid precipitation maximum intensity, total duration, and type within the 6h intervals, and the total number of **FP** cases at different air temperatures supplemented by the number of **FP** intervals in which liquid precipitation was recorded (hatched) at four CHMI stations in 2019–2025.

C1CHUR01 O1LYSA01 O1PORU01 P1PRUZ01

Dependence of **POD** on solid precipitation maximum intensity, total duration, and type within the 6h intervals, and the total number of **FP** cases at different air temperatures supplemented by the number of **FP** intervals in which liquid precipitation was recorded (hatched) at four CHMI stations in 2019–2025.

C1CHUR01 O1LYSA01 O1PORU01 P1PRUZ01