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1 Introduction

One main objective of the RegClim project is to predict the effects of a global
warming on regional scales for Norway. There are two common methods for
using GCM projections to forecast local climate changes: dynamical and sta-
tistical downscaling. We will in this technical report discuss the construction
of models for statistical downscaling based on a linear relationship between
a predictor and a predictand. Henceforth, we will refer to the predictands,
y, as the quantity predicted and the predictors, ¥, as the quantity used as
input data in the prediction model.

This report is intended as a documentation of the CCA downscaling mod-
els developed at the DNMI. A large number of tables and figures describing
the construction and testing of these models have therefore been included for
future reference.

We begin with a discussion of technical details concerning the construc-
tion of the statistical models. The first section defines linear algebra notations
employed here and is followed by sections where the equations used in Canon-
ical Correlation Analysis (CCA) are derived. These sections are not essential
for the understanding of the final results and may be skipped by those who
are not interested in the model details. The section on cross-validation dis-
cusses the model results, i.e. the relationship between the predictor fields
and the predictands. In this section, the model skill is evaluated. Where
possible, a physical explanation is given as to how the predictors may influ-
ence the predictands. The section on model stationarity describes studies
where the models have been constructed using the half of the data which
approximately corresponds to the periods with lowest temperatures in the
northern hemisphere, and subsequently used for prediction of the second half
which is associated with warmer temperatures. This analysis is a crude sen-
sitivity test to investigate if the assumption of constant relationship between
predictors and predictands holds for a warming scenario. If the statistical
downscaling models are to be used in the study of future climate change, it
is important that the statistical relationship found for the training period
also holds for the prediction period. The main findings are summarised in
the last section.
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2 CCA models

2.1 Predictors and Predictands

Linear downscaling assumes that local observations may be related to large
scale circulation patterns though a simple linear statistical relationship, such
as y = AZ (Zorita & von Storch, 1997; von Storch et al., 1993). In this
case, the predictands and predictors contain several observations and are
represented by vectors. We will use the matrix Y to refer to the time series
of y(t), where the vectors are given as the columns of Y. The two data fields
Y and X contain data which are sampled at p and ¢ locations respectively
over a time period with n measurements at each location:

Y = [glvg%"gnL
X - [fl,fg,..[gn]. (1)

At time ¢, the data fields can be written as §; = [yn, ¥s2, ..ysp| . There
are several techniques to find coupled patterns in climate data (Bretherton
et al., 1992), and we will discuss the CCA method here.

The predictors discussed here only represent a small subset of all possible
data sets. The discussion of models based on the few predictor data sets
described here is extensive, and we try to limit the scope of this report by
limiting the predictors to those quantities and levels which were available
from the ECHAM4/OPYC model results. Most of the predictor data sets
are described by Benestad (1998).

The predictands discussed here are temperature series from 24 stations
obtained from the DNMI climate data base (Hanssen-Bauer & Nordli, 1998).
We used monthly mean values of land surface temperature! from a number
of stations, where only stations with long time series were selected, shown in
figure 1. 4 stations were located in northern Norway (Vardg, Karasjok, Sihca-
jarvi and Tromsg), 3 sites were selected from mid Norway (Bodg, Skomveer
fyr and Glomfjord), whereas the remaining 18 time series were from the
southern part of Norway. There were 9 inland stations (Karasjok, Sihcajarvi,
Roros, Kjgremsgrendi, Oppstryn, Laerdal, Abjgrsbraten, Flisa and Nesbyen)
and 14 coastal stations. The period spanned by the predictands was 75 years,
from 1923 to 1978. The reason why predictand data more up to date were
not used in this study was that 1978 was the year that some of the stations
with a long temperature record, such as Skomveaer fyr, ended.

TPrecipitation and other quantities will be discussed in later reports.
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Figure 1: Map showing the location of the the stations (predictand locations)
referred to in this report.
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2.2 Classical CCA

CCA is a statistical method for finding spatially coherent patterns in different
data fields that have the largest possible temporal correlation ( Wilks, 1995;
Preisendorfer, 1988). The climate data can be thought of as a linear super-
position of spatially coherent patterns at any time, and the time evolution
of each pattern is described by an index (the extension coefficients) that de-
termine how much each pattern contributes to the climatic state. The CCA
yields two sets of weights that give the combinations of the corresponding
sets of patterns with the maximum temporal correlation. We want to find the
spatial patterns that give the maximum temporal cross-correlation between
Y and X. Thus we want to express the data fields as

Y =GUT,
X =HVT, (2)

where U and V, known as the Canonical variates, describe the time evo-
lution that have the greatest possible correlations?, and G and H are the spa-
tial patterns associated with these. One important property of the canonical
variates, U/ and V| is that each canonical variate is uncorrelated with all the
canonical variates in the opposite set with the exception of the corresponding
canonical variate ( Wilks, 1995, p.400). The rotation matrices L and R, also
referred to as the canonical correlation weights or canonical correlation vec-
tors, satisfy the following properties: LTL = I and RT R = I (Preisendorfer,
1988, p.299). Mathematically, the analysis can be posed as a maximization
problem, which can be expressed in the form of an eigenvalue equation. The
temporal correlations are given as:

UTV = LMR" = C. (3)

The correlation matrix M contains the correlation coefficients on its di-
agonal and all off-diagonal elements are zero when the columns in U/ and V'
are optimally correlated. By using the fact that the transpose of the rotation
matrices equals their inverse (Strang, 1995; Press et al., 1989), equation 3
can written as:

2The leading column of each Canonical variate holds the time series which have the
highest possible correlation, and the subsequent columns must be orthogonal to the re-
spective leading column (Bretherton et al., 1992). The second Canonical variate would
represent the highest possible correlation of the data if the first Canonical variates and
corresponding patterns were excluded from the data. The third column gives the highest
correlation if the first 2 leading Canonical variates were removed before analysis, and so
on.
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CR=1LM,
CTL =RMT”. (4)
By operating C' on the the last of the equations 4, we get CCTL =
CRMT = LMRTRMT = LMM?, and we can now re-write the equations in

the form of eigenequations where rotation vectors in the columns of I, and
R are the eigenvectors ( Preisendorfer, 1988, p.302):

(cTC) L= L(MMT),

(cC™) R =RM"M). (5)

In order to solve the eigenvalue equation, the normalised covariance ma-
trices, which are subject to the maximization, must be estimated:

Cyy = YTY,
Cxx = XTX,
Cyx =YTX. (6)

The matrix product, C' is a normalised covariance matrix:

C = Cyy°CyxCx%, (7)

and can be diagonalised using the SVD algorithm (Press et al., 1989;
Strang, 1995):

C=LMR". (8)

In equation 8 L and R are left and right rotation matrices respectively
which yield an optimal weighted combinations of the original time series.
M is a diagonal matrix with the canonical correlation values in descending
order on its diagonal. The CCA maps, H and (, can be calculated from the
covariance and the rotation matrices:

H = CyyCyy°L, (9)
G = CXXC)}ng. (10)

CCA extension coefficients (describing time evolution) can be calculated
from the rotation matrices and the original data:
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U= Cyy’LY, (11)
V=C5%RX. (12)

2.3 Linear relationships

The statistical models described here are based on linear relationships be-
tween the predictors and predictands and can be expressed as (Heyen et al.,

1996):

Y =GMVT,
X =HMU". (13)

The first of equations 13 can be written as

YV =UX, (14)

where the matrix W is the statistical model that can be used for prediction.
The canonical variates, U/ and V, the canonical correlation maps, G and H,
and the correlation matrix, M, form the basis for the statistical model. The
two data fields Y and X are related to these CCA products according to equa-
tion 2, and the canonical variate V can estimated as V7 = (HTH)"'HT X.
Y can therefore be predicted from X according to:

Y =GM(HTH)'"HTX (15)
The projection of X onto Y gives the predicted values of Y, and is denoted
as Y. The CCA model is the matrix U = (GM(HT H)='*HT), where G and H

are the canonical patterns and M is the diagonal matrix with the canonical
correlations along its diagonal.

3 Construction of Optimal Models

3.1 Optimal number of predictors

In the development of the statistical models, it is important to find the opti-
mal number of predictands that yields the best prediction scores. The number
and type of predictors must be selected carefully in order to maximise the
skill and avoid overfitting ( Wilks, 1995, p.185). For instance, combinations
of noise or signals unrelated to the predicted quantity may give a good fit
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to the data used in the training of the model, but will usually not produce
good predictions. One method to construct models with optimal skill and
avoid overfit involves cross-validation and the use of a screening technique to
estimate the optimal number of predictors.

The predictors described in this report were the principal components
(PC) of the gridded data (Benestad, 1998). A spatial weighting function
W = W, x W,, had been applied to the data prior to the PCA, where

W, = |\/cos(76/360)| and W, = |\/c0s(7r(qb —60)/90)|. The reason for not

removing the unwanted remote areas all together was that we wanted to
retain all the spatial grid points in order to get a good estimate of the co-
variance matrix and hence a better estimate of the spatial patterns (We need
more spatial data points than temporal data points). The data used in the
models here were not subject to de-trending prior to the analysis. In other

words, the empirical models are sensitive to slow climate changes®.

3.2 Model skill

How do we define which model is the best? It may be (i) the model that
yields the best score for one or a small number of stations, or (i7) the model
which produces the highest average score for all stations. The choice depends
on the nature of the problem we want to address with the models. Tt is
for instance possible to construct empirical models with optimal skills near
the larger cities for estimating scenarios for energy consumption associated
with heating. We will in this report focus on the models that gives highest
prediction scores for one or a small number of stations (the station with
highest skill score), as the model skill for an area as large as Norway may
not be very good.

There are different ways of measuring skill, such as root mean squared
(RMS) errors, variance accounted for by prediction, or correlation coeffi-
cients?. Again, different skill measures are appropriate for different types of
forecasts. In a global warming scenario, for instance, we may want to know
how much the local winter temperatures will vary from year to year or how
strong the maximum winds are going to be, e.g. the variance of the predic-
tands. In this case, it is important to use models which skillfully predict the
signal variance (i.e. where the predicted signal accounts for about 100% of
the observations during the validation period). We will in this report use the

3De-trended data gives a better statistical interpretation, as the probability for correla-
tion between low frequency variability being coincidental is higher than for high frequency
signals.

4Other skill scores, such as linear error in probability space (LEPS) and the Brier Score
for probability forecasts ( Wilks, 1995) will not be discussed here.
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highest correlation to define the optimal model, but also discuss RMS error

(RMSE) as an additional skill measure.

3.3 Cross-validation

The cross validation approach excludes one data point in the construction of
a statistical model and subsequently uses the model to predict the value of
the predictand that was excluded from the model calibration ( Wilks, 1995;
Kaas et al., 1998). The data not used for calibration of the model are referred
to as independent data. The process of excluding one data point is repeated
N times, where N is the total number of observations, and for each iteration
different data points are used as independent data. The cross-validation
method therefore implies the construction of N different models which are
based on different combinations of data.

3.4 Numerical tools

A Matlab script that estimates the CCA products is based on Bretherton
et al. (1992)° and can be found in the Matlab file cca.m. This routine is called
from the scripts ecmpcca.m, optmod.m, and crossval.m. The Matlab script,
cca.m, estimates W and crossval.m performs a cross validation test. The
latter script also employs the singular value decomposition (SVD) method
and multivariate regression (MVR) methods®, and tests have been carried
out with monthly mean values of station observations as predictands and sea
surface temperatures (SSTs), ice, geopotential heights (®), and sea level pres-
sure (SLP) as predictors. The Matlab code estimates the mean and standard
deviation of the model coefficients (weights) for the leading CCA, SVD or
MVR patterns, (Gy;. If the predictands are equally influenced by the leading
CCA pattern and the higher order patterns (with almost similar correlation
coefficients), then the models may be sensitive to the different combinations
of data used in for calibration, as different patterns may contribute to the
estimate of the leading CCA predictand weights. In this case, the weights
are associated with large standard deviations. This situation may not nec-
essarily imply poorly estimated model. If, however, the predictands are not

’Equations 12 differ from the equations given by Bretherton et al. (1992) in that we use
up = C’;%SL instead of their expression u; = C%‘{’,L. Their formulae did not give realistic
results in Matlab as their expression was incorrect and the amplitudes of the predictions
were too low by an order of 3. The canonical vectors are usually normalised, and C}gf’
in equation 12 ensures that UTU = I as LTL = I. Since C%5 has the same magnitude
as X, the Canonical vectors in Bretherton et al. (1992) scale as X?.

5The SVD and MVR models will be discussed in future issues of DNMI-report KLIMA.
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well described by the predictor field, this could also give large standard de-
viations, maybe as a result of an overfit or lack of a physical relationship.
It is also possible that the empirical relationships between circulation pat-
terns and surface variables vary over decadal time scales ( Wilby, 1997)7, and
therefore spread in the coefficient estimates may also imply non-stationary
relationships between the predictors and predictands.

A Matlab script for constructing optimal empirical models is found in
the file modopt.m. This routine loops through all possible (20) EOFs and
tests whether the inclusion of each EOF increases the cross-validation pre-
diction skill. The code in modopt.m calls the function crossval3.m, which
performs the cross-validation analysis. The Matlab scripts crossval2.m (and
crossval.m. The scripts crossval.m, crossval2.m, and crossval3.m are slightly
different version of the same analysis.) was used to plot the results.

4 CCA Model Construction: SST models

Two types of SST models will be discussed here. The first kind is a model
calibrated with regional SSTs covering the area 10°W to 40°E and 55°N to
75°N, and will be referred to as the 'North Sea model’, although SSTs from
the Barent Sea, the Norwegian Sea, Skagerrak, Kattegat, and the Baltic Sea
also are included. The second model type covers a larger area, 90°W to
40°FE and 15°N to 80°N, and is called the 'North Atlantic model’, although
the Mediterranean, the Black Sea, the Labrador Sea, the Barent Sea, the
Norwegian Sea, Skagerrak, Kattegat, the Baltic Sea, and Hudson Bay also
are included.

4.1 January SSTs and land surface Temperatures
4.1.1 Influence from North Sea SSTs

CCA was applied to January mean SSTs from GISST2.2 and the January
mean DNMI station temperatures, and table 1 gives a summary of the cross-
validation prediction scores using CCA models based on different combina-
tions of EOFs from the GISST2.2 January mean North Sea SSTs as predic-
tors, and January mean temperatures from a selection of Norwegian stations
as predictands. The left column indicates which EOFs were included in the
predictor set for the particular model. The numbers listed in columns 2, 3
and 4 represent the scores for the model based on the EOF combination given
in the first column. The second column gives the cross-validation correlation

" Wilby (1997) analysed daily observations, which may differ from monthly mean values.
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Table 1: Evaluation of January temperature CCA model based on North Sea
SSTs from GISST2.2 and surface temperatures from DNMI’s climate data

base

EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 FERDER FYR SKOMVZAR FYR TROMSO
r= 0.64 r= 0.39 r= 0.23

rmse= 0.26 rmse— 0.17 rmse= 0.25

12 FERDER FYR ONA II TROMSO
r= 0.70 r= 0.51 r= 0.16

rmse= 0.25 rmse— 0.17 rmse= 0.25

123 FERDER FYR SKOMVZAR FYR | KARASJOK
678 r= 0.72 r= 0.49 r= 0.40

rmse= 0.24 rmse= 0.16 rmse= 0.56

Table 2: Evaluation of January temperature CCA model based on North
Atlantic SST's from GISST2.2 and surface temperatures from DNMI’s climate

data base
EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 FLISA SKOMVZZAR FYR | UTSIRA FYR
r= 0.60 r= 0.51 r= 0.31
rmse= 0.45 rmse= 0.15 rmse= 0.22
12 FLISA SKOMVZAR FYR | UTSIRA FYR
r= 0.62 r= 0.54 r= 0.40
rmse= 0.44 rmse= 0.15 rmse= 0.21
128 FLISA SKOMVZAR FYR | OPPSTRYN
910 r= 0.70 r= 0.52 r= 0.40
rmse= 0.40 rmse= 0.15 rmse— 0.27
289 LISTA FYR ONA II TROMSO
10 11 14 r= 0.55 r= 0.36 r=-0.08
17 rmse— 0.27 rmse= 0.19 rmse= 0.28
128 FLISA SKOMVAR FYR BOD® VI
910 11 r= 0.75 r= 0.48 r= 0.43
14 17 rmse— 0.37 rmse= 0.16 rmse= 0.26
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and RMS error skill scores for the location with the highest correlation coef-
ficient. The third column shows the scores for the station with the smallest
RMS errors, and the right column gives the skill details of the stations with
the lowest correlation scores, i.e. the 'worst’ prediction.

The correlation analysis shown was based on the independent data, and
table 1 suggests that a combination of EOFs [1,2,3,6,7,8] gave the optimal
SST model for the coastal regions in the southern Norway.

Figure 2 shows the leading predictand CCA weights for the January mean
land surface temperatures, estimated from a sample of N models constructed
with different data combinations used for model calibration. Also shown is
the spread of these mean estimates (error bars), and the larger the spread,
the greater uncertainty in the estimate. The spread in estimated predictand
weights was small when only the 'optimum’ EOFs were included in the pre-
dictor fields. The strongest weights were found at the inland stations Nesbyen
and Flisa, where there were large year to year temperature variations, and
the smallest coeflicients were estimated at the coastal stations Tromsg and
Skomveer fyr, where the temperature amplitudes were smaller. The statistical
models are expected to be stationary with respect to different data combi-
nations used in the model construction, unless the relationships between the
large scale patterns and the local climatic variable change over time ( Wilby,
1997) or the model suffers from an overfit. The fact that the standard devia-
tions were relatively small in figure 2, suggested that the relationship between
large scale predictor and small scale predictand was approximately constant.

The (cross-validated) predicted temperatures at Ferder fyr, shown in fig-
ure 3, had the highest correlation with the corresponding observations, i.e.
best correlation skill with » = 0.72, where the 96% significance level was
estimated to be 0.32, and RMSE=0.24°C. It is evident from figure 3 that
the local January SST model captured the late 1930s and early 1940s cold
period extremely well, but missed many of the later smaller fluctuations.
The prediction for Ferder fyr appeared to have higher correlation with the
observations prior to 1943, when the model captured most of the small tem-
perature variations.

Figure 4 shows the leading CCA SST pattern that accounted for the
highest correlation with the station temperatures. The CCA weights were
greatest near Skagerrak, Kattegat, and parts of the Baltic Sea. The predic-
tions for most of the stations in the southern part of Norway were highly
correlated with the observations, while those in the northern regions showed
lower correlations (figure 2). The RMS errors in the southern part of Nor-
way were less than 0.5°C (except for Rgros), also indicative of high prediction
skills. The temperatures in the coastal areas tended to have better prediction
skills than the observations further away from the coast (with exception of
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Flisa, figure 2). This pattern of prediction skills could be explained as the
North Sea SSTs having a strong local effect.

4.1.2 Influence from remote SSTs

The influence of the large scale SST patterns in the North Atlantic on the
Norwegian January temperatures was investigated by applying a similar CCA
as described above to SST EOFs from the whole North Atlantic basin. The
leading North Atlantic SST EOF, describing strong SST variability near
Cape Hatteras on the east coast of the USA and the subtropical Atlantic,
produced high correlation values with the January temperatures from all
stations. Analysis with the leading SST EOF excluded, gave much lower
correlation coefficients and accounted for less variance than if the leading
EOF (Benestad, 1998) was included in the analysis (table 2). The leading
CCA predictor pattern associated with the optimal model (We will also refer
to the leading CCA structure as 'the predictor pattern’) had strong weights
near Cape Hatteras and the interior North Atlantic as well as in the Baltic
Sea (figure 5). The fact that CCA models using SSTs from the entire North
Atlantic produce higher correlation scores (figure 6) than models that only
include the local SSTs provides strong observational evidence for large scale
SST patterns similar to the coupled mode structure identified by Grotzner
et al. (1998), Sutton & Allen (1997), Latif et al. (1996) and Deser & Black-
mon (1993), affecting the large scale winter time atmospheric circulation.
One possible explanation of the physical mechanism is that SST anoma-
lies associated with the Gulf stream or north-south excursions of the Gulf
stream off the American east coast affect the Norwegian winter temperatures
by shifting the storm tracks location.

Many of the other inland stations in southern Norway scored high in
the cross-validation analysis (figure 6), suggesting that it was the large scale
North Atlantic SST anomalies which were responsible for the prediction skills
seen here as opposed to local SSTs influencing only the coastal climate. Fig-
ure 7, showing the cross-validation predictions for Flisa, indicates that the
North Atlantic SST model captured the major events, but had a tendency
to exaggerate the smaller fluctuations. The correlation skill was 0.75, with
RMS error of 0.37°C, and accounting for 66% of the variance.

The optimum North Atlantic SST models was based on EOFs 1, 2, 8§,
9, 10, 11, 14, and 17. The lowest correlation skill, 0.43, which was still
marginally greater than the 95% confidence level, was found in Bodg (ta-
ble 2).
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analysis shown as filled bars, indicate the importance of the leading North
Sea GISST2.2 January North Sea SST CCA pattern for the land surface

temperatures. The empty black boxes show the weights from a model trained

on the whole time series. The error bars indicate the standard deviation and
hence the spread in samples of each coefficient. The correlation, variance and
RMSE results from the cross-validation analysis are given on the right hand

side.

Correlation=0.72 (95% conf =0.35) Proportional variance =60.3% RMSE=0.24
6 T T T T

-2 | | I/ | 4

Temperature ats27500:FERDER FYR
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-8 L L L L
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Time

Figure 3: Time series of predicted January temperatures (dashed) at Ferder
Fyr, employing the cross-validation method with GISST2.2 North Sea SST's,
shown with the observations (black solid line).
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SST: Leading Predictor CCA pattern
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Figure 4: The mean leading January CCA GISST2.255T pattern associated
with the land surface temperatures. Weights in the regions where the stan-
dard deviation of the leading CCA North Sea SST pattern estimates are

greater than 1°C are not shown.
sst: Leading Predictor CCA pattern
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Figure 5: The mean leading January CCA GISST2.2 SST pattern associated
with the land surface temperatures. Weights in the regions where the stan-
dard deviation of the leading CCA North Atlantic SST pattern estimates are

greater than 1°C are not shown.
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The 1st CCA weights of the station data

T T

Station Cor Var(%) RM

25+ =
s98550:VARDOE 0.57 49 0.2
s97250:KARASJOK 0.46 39 0.5
S93900:SIHCAJAVR] 0.51 43 0.4
s90450: TROMSOE 0.44 39 0.2

20 S85950:SKOMVAER] 0.48 44 0.2+
s$82290:BODOE VI 0.43 40 0.3
s80700:GLOMFJOR 0.48 43 0.2
sS69100:VAERNES 0.48 41 0.3
S62480:ONA II 0.54 a7 0.2

- 15+ s58700:0PPSTRYN 0.49 42 0.3
2 s54130:LAERDAL — 0.55 47 0.4
g s52530:HELLISOEY] 0.58 50 0.2
s50540:BERGEN - 0.56 a7 0.3
s47300:UTSIRA FYH 0.61 53 0.2

10+ s42160:LISTA FYR 0.63 56 0.29
$39100:0KSOEY F 0.66 60 0.2
S27500:FERDER F 0.69 62 0.3
S24880:NESBYEN 0.69 62 0.4
$23160:AABJOERSH 0.52 46 0.4

5 s18700:0SLO — BLI 0.70 62 0.3
s17850:AAS 0.72 64 0.3
s16740:KJIOEREMS 0.46 40 0.4
s10400:ROEROS 0.49 41 0.5
S6040:FLISA 0.75 66 0.4

1 1 1 1 1 1
° -10 -5 0] 5 10 15 20 25 30

Coefficient value in y=ax: a

15

Figure 6: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading GISST2.2
January North Atlantic SST CCA pattern for the land surface temperatures.
The empty black boxes show the weights from a model trained on the whole

time series.

The error bars indicate the standard deviation and hence the

spread in samples of each coefficient. The correlation, variance and RMSE

results from the cross-validation analysis are given on the right hand side.
Correlation=0.75 (95% conf =0.34) Proportional variance =66.0% RMSE=0.37

8 T T T

—4r ! sk I

Temperature ats6040:FLISA

-6 Lol *

-10}+

f\/
X

-12 L L L
1916 1930 1943 1957
Time

I
1971

1984

Figure 7: Time series of predicted January temperatures (dashed) at Flisa,
employing the cross-validation method with GISST2.2 North Atlantic SSTs,
shown with the observations (black solid line).
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4.2 April SSTs and land surface Temperatures
4.2.1 Influence from North Sea SSTs

The optimal April North Sea SST model included EOFs: 123 6 8 10 17,
and 18, and the highest correlation score of 0.65 was found at Utsira fyr (fig-
ures 8 and 9), and was marginally lower than for the corresponding January
model. The worst prediction skill was r=0.15 at Karasjok (table 4). The
estimates of the CCA weights were associated with large standard deviations
at all locations, and the CCA correlation coefficients were: 0.8846, 0.8472,
0.7805, 0.6808, 0.6560, 0.6033, 0.5871, and 0.4141. It is therefore unlikely
that the spread in the weight estimates was due to contribution from sev-
eral unresolved CCA patterns, but rather reflected the weak influence of the
April SSTs on the land temperatures. The leading CCA predictor pattern,
shown in figure 10 was characterised by large weights along the west coast
of Norway. The mean predictor pattern was associated with large standard
deviations, and the Skagerrak, Kattegat, and Baltic Sea have been masked
out due to high uncertainties in the predictor weights.

4.2.2 Influence from remote SSTs

The large scale features in the leading CCA predictor pattern were simi-
lar to the January SST structures, but with stronger SST anomalies in the
Mediterranean and weaker anomalies off Cape Hatteras, in the Black Sea
and in the interior North Atlantic (figure 11). The April correlation skill
scores (figure 12) were lower than the January skill scores, and a comparison
between regional (North sea) and large scale (North Atlantic) SSTs, reveals
a stronger relationship between the Norwegian April temperatures and lo-
cal SSTs than remote SSTs. Figure 12 indicates small spread in the model
coefficient estimates, and like January the weights tended to be larger in
the south. The correlation skills were highest on the west coast of southern
Norway, and the correlation scores in Tromsg dropped from 0.44 in January
to merely 0.09 in April (table 4). The prediction of the April temperatures
at Ferder fyr are shown in figure 13, with r=0.66, RMS error of 0.24°C and
accounting for 62% of the variance. The North Atlantic SST model captured
the major events, such as the cooling in the late 1930s and early 1940s and
the warming in the 1970s, but not some of the smaller fluctuations.
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The 1st CCA weights of the station data

Station Cor: Var(%) RMSE

251 -
s98550:VARDOE 0.26 26 0.2
0.15 21 0.6
0.22 26 0.5
0.22 25 0.3

20 0.27 30 0.2
s$82290:BODOE VI 0.24 27 0.3
s$80700:GLOMFJORD 0.32 31 0.3
s$69100:VAERNES 0.46 41 0.3
S62480:ONA I 0.53 47 0.2

- 15 s58700:0PPSTRYN 0.57 51 0.2
L s54130:LAERDAL — TO 0.52 48 0.4
g $52530:HELLISOEY FY| 0.62 55 0.2

s50540:BERGEN - FL
s47300:UTSIRA FYR
101 s42160:LISTA FYR
$39100:0KSOEY FYR
$27500:FERDER FYR
S24880:NESBYEN - S 0.48 45 0.5

s17850:AAS -
$16740:KJOEREMSGR 0.42 40 0.4

$10400:ROEROS 0.41 40 0.5
S6040:FLISA ey 1 o048 46 0.5
0 Il Il Il Il
-10 -5 0 5 10 15 20 25

Coefficient value in y=ax: a

Figure 8: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading North
Sea GISST2.2 April North Sea SST CCA pattern for the land surface tem-
peratures. The empty black boxes show the weights from a model trained
on the whole time series. The error bars indicate the standard deviation and
hence the spread in samples of each coefficient. The correlation, variance and
RMSE results from the cross-validation analysis are given on the right hand

side.
Correlation=0.65 (95% conf =0.33) Proportional variance =57.4% RMSE=0.18
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Figure 9: Time series of predicted April temperatures (dashed) at Utsira
fyr, employing the cross-validation method with GISST2.2 North Sea SSTs,
shown with the observations (black solid line).
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SST: Mean Predictor CCA pattern
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Figure 10: The mean leading April CCA North Sea GISST2.2 SST pattern
associated with the land surface temperatures. Weights in the regions where
the standard deviation of the leading CCA pattern estimates are greater than
1°C are not shown.

sst: Mean Predictor CCA pattern
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Figure 11: The mean leading April CCA North Sea SST pattern associated
with the land surface temperatures. Weights in the regions where the stan-
dard deviation of the leading CCA pattern estimates are greater than 1°C
are not shown.
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The 1st CCA weights of the station data
T T T T T

T
Station Cor  Var(%) RMSE
25 : B
s98550:VARDOE 0.20 21 0.2
S97250:KARASJOK 0.14 17 0.6

S93900:SIHCAJAVRI
$90450: TROMSOE

0.19 19 0.5
0.09 14 0.3

20 $85950:SKOMVAER F 0.25 23 0:2
$82290:BODOE VI 0.33 27 0.3
s80700:GLOMFJORD 0.33 26 0.3
$69100:VAERNES 0.44 33 0.3
s62480:0NA I 0.45 34 0.2

151 s58700:0PPSTRYN 0.48 37 0:3
s54130:LAERDAL - TO| 0.54 41 0.4

Station

s52530:HELLISOEY F
s50540:BERGEN - FL(
s47300:UTSIRA FYR

0.57 44 0.2
0.57 44 0.3

0.64 50 0.2

101 s42160:LISTA FYR 0.66 52 0:2
$39100:0KSOEY FYR 0.65 52 0.3
s27500:FERDER FYR 0.66 52 0.3
s24880:NESBYEN - SH 0.57 45 0.5
s$23160:AABJOERSBRA 0.50 38 0.4

5 $18700:0SLO - BLIND} 0.57 44 0:3
s17850:AAS 0.59 46 0.4
s16740:KJOEREMSGR| 0.45 33 0.4
s10400:ROEROS 0.40 30 0.5
s6040:FLISA 0.50 39 0.5

1 1 1 1 1 1 1
° -10 -5 0 5 10 15 20 25

Coefficient value in y=ax: a

Figure 12: The mean leading April CCA GISST2.2 North Atlantic SST
pattern associated with the land surface temperatures. Weights in the re-
gions where the standard deviation of the leading CCA pattern estimates are

greater than 1°C are not shown.

Correlation=0.66 (95% conf =0.38) Proportional variance =52.4% RMSE=0.24
4 X T T

Temperature ats42160:LISTA FYR
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Figure 13: Time series of predicted April temperatures (dashed) at Lista fyr,

employing the cross-validation method with GISST2.2 North Atlantic SSTs,
shown with the observations (black solid line).
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Table 3: Evaluation of April temperature CCA model based on North Sea
SSTs from GISST2.2 and surface temperatures from DNMI’s climate data

base

EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 UTSIRA FYR SKOMVZAR FYR | KARASJOK
r= 0.42 r= 0.08 r= -0.36
rmse= 0.21 rmse= 0.18 rmse= 0.61
123 UTSIRA FYR ONA II KARASJOK
6 810 r= 0.65 r= 0.53 r= 0.15
17 18 rmse= 0.18 rmse= 0.17 rmse= 0.62

Table 4: Evaluation of April temperature CCA model based on North At-
lantic SSTs from GISST2.2 and surface temperatures from DNMTI’s climate

data base
EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 VAERNES SKOMVZAR FYR VARD®
r= 0.25 r= 0.15 r= 0.03
rmse= 0.36 rmse= 0.18 rmse= 0.21
123 FERDER FYR SKOMVZAR FYR TROMSO
r= 0.60 r= 0.27 r=0.16
rmse= 0.28 rmse= 0.17 rmse= 0.26
123 LISTA FYR ONA II TROMSO
6810 r= 0.66 r= 0.45 r= 0.09
rmse= 0.24 rmse= 0.18 rmse= 0.26
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The 1st CCA weights of the station data

T T T T T T T T

Station Cor Var(%) RMSE
25 . : 4
s98550:VARDOE 0.19 22 0.2
$97250:KARASJOK 0.11 19 0.6
s93900:SIHCAJAVRI 0.12 20 0.5
s90450: TROMSOE 0.15 20 0.3
20 $85950:SKOMVAER FYR 0.18 20 0.2
$82290:BODOE VI 0.22 24 0.3
s80700:GLOMFJORD 0.25 25 0.3
s69100:VAERNES 0.29 26 0.4
$62480:0NA I 0.24 23 0.2
15 s58700:0PPSTRYN 0.35 30 0.3
s54130:LAERDAL - TOEN 0.33 29 0.4
s52530:HELLISOEY FYR
s50540:BERGEN - FLORI
s47300:UTSIRA FYR
10 s42160:LISTA FYR
$39100:0KSOEY FYR
s27500:FERDER FYR
S24880:NESBYEN -1§
s23160:AABJOERSBRAATE
5 $18700:0SLO —BLINDER
s17850:AAS
516740:KJIOEREMSGRENDI
s10400:ROEROS
s6040:FLISA

1
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Figure 14: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading North
Sea GISST2.2 July SST CCA pattern for the land surface temperatures. The
empty black boxes show the weights from a model trained on the whole time
series. The error bars indicate the standard deviation and hence the spread
in samples of each coefficient. The correlation, variance and RMSE results

from the cross-validation analysis are given on the right hand side.
Correlation=0.45 (95% conf =0.41) Proportional variance =37.6% RMSE=0.51
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Figure 15: Time series of predicted July temperatures (dashed) at Utsira
fyr, employing the cross-validation method with GISST2.2 North Sea SSTs,
shown with the observations (black solid line).
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Table 5: Evaluation of July temperature CCA model based on North Sea
SSTs from GISST2.2 and surface temperatures from DNMI’s climate data

base
EOFs Maximum correlation Minimum RMSE Smallest correlation
included location (independent data) (predictand) ("Worst prediction’)
1 NESBYEN - SKOGLUND | SKOMVZAER FYR | LISTA FYR
r= 0.24 r=0.11 r= 0.09
1410 | NESBYEN - SKOGLUND | SKOMVZAR FYR | KARASJOK
11 18 20 r= 0.45 r= 0.18 r=0.11
rmse= 0.51 rmse= 0.18 rmse= 0.63

Table 6: Evaluation of July temperature CCA model based on North Atlantic
SSTs from GISST2.2 and surface temperatures from DNMI’s climate data

base
EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
2 TROMSO SKOMVZAR FYR | NESBYEN - SKOGLUND
r= 0.26 r=-0.07 r=-0.65
rmse= 0.25 rmse= (.18 rmse= (.58
2456 KARASJOK SKOMVZAR FYR FERDER FYR
910 14 r= 0.61 r= 0.54 r= 0.16
1516 17 rmse= 0.49 rmse= 0.15 rmse= (.38
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SST: Mean Predictor CCA pattern
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Figure 16: The mean leading July CCA North Sea GISST2.255T pattern
associated with the land surface temperatures. Weights in the regions where
the standard deviation of the leading CCA pattern estimates are greater than

1°C are not shown.
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Figure 17: The mean leading July CCA North Atlantic SST pattern associ-
ated with the land surface temperatures. Weights in the regions where the
standard deviation of the leading CCA pattern estimates are greater than
1°C are not shown.
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4.3 July SSTs and land surface Temperatures
4.3.1 Influence from North Sea SSTs

The relationship between the July SSTs and land temperatures was weak
(maximum r=0.45, table 5), with the optimum EOF combination in the
predictor set consisting of EOFs 1, 4, 10, 11, 18, and 20. The CCA weight
estimates had low standard deviations, but the correlation skill was generally
low and barely significant for the best predictions (figure 14). The highest
prediction scores were found at Nesbyen (figure 15) and Flisa, both inland
stations, and the CCA predictor pattern indicated strong SST weights in
the Baltic Sea (figure 16). This result suggests that warm Baltic SSTs were
associated with warm Norwegian July temperatures, although the predictions
could only account for about 30-40% of the July temperature variability. The
highest correlation score was 0.45, the July North Sea SST model could only
account for a fraction of the temperature anomalies during the major events,
but did not describe all the smaller fluctuations (figure 15). The model also
predicted some spurious smaller events in the 1960s. It is possible that both
the SSTs and the land temperatures were both forced by the same large scale
circulation pattern (i.e. High pressure system).

4.3.2 Influence from remote SSTs

The leading CCA predictor pattern for the July North Atlantic SSTs was
characterised by strongest SST anomalies over a large area of the interior
Northern Atlantic (figure 17), and the best July skill scores (figure 18) were
lower than those for January (figure 6) and April (figure 12). However, the
highest prediction scores for the North Atlantic SSTs (r=0.61, figure 19) were
higher than for the regional SSTs (r=0.45, figure 15), indicating at least
some influence from the distant large scale maritime regions. The lowest
correlation was 0.16 and found at Ferder fyr.

The estimates of the July model indicated substantially larger weights in
northern Norway, where the correlation scores also were the highest. The best
prediction skill was found at Karasjok (figure 19), where the cross-validation
correlation coefficient was 0.61, the RMS error was 0.49°C, and the predicted
signal accounted for 64% of the variability. Figure 19 indicates that the July
North Atlantic SST model captured most of the major events, but did predict
too warm temperatures during the 1970 warm event and missed some of the
smaller peaks. The reduction of prediction skill and weights to the south
in figure 18 is quite remarkable. Experiments with dynamical models are
needed in order to give a physical explanation for this observation.
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The 1st CCA weights of the station data

T T T T T T T
Station Cor  Var(%) RMSE

5L : . i
s98550:VARDOE 0.47 55 0.2
$97250:KARASJOK 0.61 64 0.5
S93900:SIHCAJAVRI 0.58 61 0.4
s90450: TROMSOE 0.59 59 0.2

20 $85950:SKOMVAER FYR 0.54 57 0.2+
s$82290:BODOE VI 0.52 59 0.3
s$80700:GLOMFJORD 0.53 55 0.2
s$69100:VAERNES 0.38 49 0.4
S62480:ONA II 0.45 54 0.2

- 15 s58700:0PPSTRYN 0.45 51 0.3 1
L s54130:LAERDAL - TOEN 0.38 49 0.4
g s52530:HELLISOEY FYR 0.32 47 0.2
s50540:BERGEN - FLORI 0.33 48 0.3
s47300:UTSIRA FYR 0.22 42 0.2

10 s42160:LISTA FYR 0.19 41 0.3 1
$39100:0KSOEY FYR 0.20 42 0.4
S27500:FERDER FYR 0.16 41 0.4
S24880:NESBYEN — SKOG 0.31 45 0.6
$23160:AABJOERSBRAATE 0.19 42 0.4

5 $18700:0SLO — BLINDER 0.29 46 0.4+
s17850:AAS 0.29 45 0.5
$16740:KJIOEREMSGRENDI 0.27 46 0.5
s10400:ROEROS 0.28 43 0.6
S6040:FLISA 0.32 44 0.6

| | | | | | |

0 -25 -20 -15 -10 -5 5 10

Coefficient value in y=ax: a

Figure 18: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading July
GISST2.2 North Atlantic SST CCA pattern for the land surface tempera-
tures. The empty black boxes show the weights from a model trained on
the whole time series. The error bars indicate the standard deviation and
hence the spread in samples of each coefficient. The correlation, variance and
RMSE results from the cross-validation analysis are given on the right hand
side.

Correlation=0.61 (95% conf =0.35) Proportional variance =63.7% RMSE=0.49
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Figure 19: Time series of predicted July temperatures (dashed) at Karasjok,
employing the cross-validation method with GISST2.2 North Atlantic SST,
shown with the observations (black solid line).
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Table 7: Evaluation of October temperature CCA model based on North Sea
SSTs from GISST2.2 and surface temperatures from DNMI’s climate data

base

EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 VARDQ SKOMV AR FYR AS
r= 0.07 r=-0.27 r= -0.55
rmse= 0.21 rmse= (.18 rmse= 0.45
123 TROMSO SKOMVZAR FYR | LISTA FYR
579 r= 0.48 r= 0.34 r=-0.30
10 15 20 rmse= 0.23 rmse— 0.17 rmse— 0.37

Table 8: Evaluation of October temperature CCA model based on North
Atlantic SSTs from GISST2.2 and surface temperatures from DNMTI’s climate

data base
EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 TROMSQ SKOMVAR FYR | ABJORSBRATEN
r= 0.12 r=-0.38 r=-0.73
rmse= 0.25 rmse= 0.18 rmse= 0.42
12 TROMSO SKOMVZAR FYR UTSIRA FYR
r=0.24 r= 0.07 r=-0.12
rmse= 0.25 rmse= 0.18 rmse= 0.24
126 TROMSO SKOMVZAR FYR LISTA FYR
813 r= 0.37 r= 0.15 r=-0.19
rmse= 0.24 rmse= 0.18 rmse= 0.35

4.4 October SSTs and land surface Temperatures

4.4.1

Influence from North Sea SSTs

The highest correlation score for the October North Sea SST model was 0.48
in Tromsg, and the worst prediction was for Lista fyr where r=-0.30 (table 7)%.
Figure 20 shows a slight cooling trend for Tromsg for both observations and
predictions and the correlation skill score may have been ’artificially inflated’
as a result of this common trend. The October North Sea model missed the

8Negative correlation coefficients do not represent any skill in validation of predictions,
but merely indicate the fact that the model predicts warm events during cold months
and vice versa. Thus negative correlation coefficients from the cross-validation analysis
indicate that the predictions were 'misleading’.
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Correlation=0.48 (95% conf =0.25) Proportional variance =41.1% RMSE=0.23
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Figure 20: Time series of predicted October temperatures (dashed) at
Karasjok, employing the cross-validation method with North Sea GISST2.2
SST, shown with the observations (black solid line).

The 1st CCA weights of the station data
T T T T

T
Station

T

Cor Var(%) RMSE

251 : : -
s98550:VARDOE 0.32 32 0.2
$97250:KARASJOK 0.36 33 0.6
$93900:SIHCAJAVRI 0.35 31 0.5
s$90450: TROMSOE 0.48 41 0.2

20 $85950:SKOMVAER FYR 0.34 32 0.2 4
s$82290:BODOE VI 0.30 30 0.3
s$80700:GLOMFJORD 0.34 33 0.3
s$69100:VAERNES 0.09 20 0.4
S62480:ONA II 0.04 19 0.2

- 15 s58700:0PPSTRYN 0.05 22 0.3+
2 s54130:LAERDAL - TOEN -0.06 20 0.5
g s52530:HELLISOEY FYR —-0.10 17 0.3
s50540:BERGEN - FLORI —-0.05 19 0.3
s47300:UTSIRA FYR -0.27 13 0.3

10 s42160:LISTA FYR -0:30 13 0.4+
$39100:0KSOEY FYR -0.21 16 0.4
S27500:FERDER FYR -0.21 16 0.4
S24880:NESBYEN - SKOG 0.06 25 0.6
$23160:AABJOERSBRAATE —-0.01 19 0.5

5 $18700:0SLO — BLINDER —0:04 21 0.4 -~
s17850:AAS 0.04 23 0.5
$16740:KJOEREMSGRENDI - -0.01 17 0.5
s10400:ROEROS 0.02 19 0.6
S6040:FLISA It 0.12 26 0.6
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Figure 21: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading October
GISST2.2 North Sea SST CCA pattern for the land surface temperatures.
The empty black boxes show the weights from a model trained on the whole
time series. The error bars indicate the standard deviation and hence the
spread in samples of each coefficient. The correlation, variance and RMSE
results from the cross-validation analysis are given on the right hand side.
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Figure 22: The mean leading October CCA GISST2.2 North Sea SST pattern
associated with the land surface temperatures. Weights in the regions where
the standard deviation of the leading CCA North Sea SST pattern estimates

are greater than 1°C are not shown.
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Figure 23: The mean leading October CCA North Atlantic SST pattern
associated with the land surface temperatures. Weights in the regions where
the standard deviation of the leading CCA pattern estimates are greater than

1°C are not shown.
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major warming events, but captured one of the cool periods during the 1960’s.
Evidently, the relationship between the land temperatures and the regional
SSTs was weak during October (figure 21), and only marginal prediction skills
were found in northern Norway. The leading October North Sea SST CCA
pattern was characterised by strongest positive weights north of Scotland
and negative weights in the Baltic Sea (figure 22).

4.4.2 Influence from remote SSTs

The October CCA predictor pattern in figure 23 was associated with strong
weights along the Greenland coast, in the eastern Mediterranean, and in the
North Atlantic interior. Because the predictor weights over a large region in
the North Atlantic were associated with large standard deviations, a large
area is masked out (white) east of New Foundland.

The October North Atlantic SST model gave in general poor predictions
(figures 24 and 25), and the variance accounted for by the predictions was
in general low. Figure 24 shows the predictions with highest correlation
score of 0.37 for Tromsg, which is still above the 95% confidence level. It is
evident that most of the large events were not captured by the model. The
prediction skill for the whole North Atlantic was lower than when only the
regional SSTs were used for model calibration. In general, the skills were
marginally greater in the north than in the south. The worst prediction
was for Lista fyr, where the cross-validation correlation was -0.19 (table 8).
This result suggests that the North Atlantic SSTs contribute little to the
Norwegian autumn temperatures.

4.5 Discussion of the SST models

In summary, the SST model is promising for the prediction of January mean
land temperatures in Norway, and may be suitable for seasonal forecasting
for the winter (the SSTs vary slowly). There is a deterioration of the North
Atlantic SST model skill in the summer and autumn seasons, especially in
the south for the July month. This observation brings up speculations as
to whether the SST model performs better in colder climates and is more
unreliable when it is warm. The reason why the model skill varies so much
with seasons is unclear, but some explanations may include the effect of the
seasonally varying mixed layer in the ocean or boundary layer in the at-
mosphere, or smaller ocean-atmosphere heat fluxes during summer due to
smaller differences between SSTs and air temperatures. The model sensi-
tivity to the seasons may be an indication that non-stationarity can be a
problem for downscaling of global warming scenarios if warming over the
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Figure 24: Time series of predicted October temperatures (dashed) at
Karasjok, employing the cross-validation method with GISST2.2 North At-
lantic SST, shown with the observations (black solid line).
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Figure 25: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading October
GISST2.2 North Atlantic SST CCA pattern for the land surface tempera-
tures. The empty black boxes show the weights from a model trained on
the whole time series. The error bars indicate the standard deviation and
hence the spread in samples of each coefficient. The correlation, variance and
RMSE results from the cross-validation analysis are given on the right hand
side.
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Nordic countries make future winters look more like autumns or spring of
present climate. The confidence of the SST model results for future climate
predictions also depends on how well the SST's are represented in the GCMs.
A common problem for low-resolution ocean models is to give a sufficiently
realistic description of the Gulf stream, as the models tend to reproduce
realistical global circulation, and often simulate too weak north-south tem-
perature gradients and place the location where the current separates from
the east coast of the USA too far north or too far south (Cane & Prasad,
1995).

5 CCA Model Construction: SLP models

Large scale pressure systems, or geostrophic circulation, may have a strong
influence on the surface temperatures in Norway. In order to investigate the
relationship between SLP and temperatures, CCA models were constructed
using SLP as the predictor fields. 3 different data sets, with different spa-
tial resolution and spanning different time periods, were used as predictors:

NCAR, NMC, and UEA.

5.1 Models based on the NCAR data

5.1.1 January North Atlantic SLPs and land surface Tempera-
tures

The CCA results using the NCAR ds010.0 SLPs as predictor produced pre-
dictions with maximum cross-validation correlation of 0.84 and RMSE of
0.2°C (figure 26). The January NCAR SLP model captured most of the
major and smaller anomalies, although it did not predict sufficiently low
temperatures during the cold winter in the early 1940s. The leading CCA
predictor pattern describing the SLP structure which had highest correla-
tions with land temperatures is shown in figure 27. This pattern resembled
the North Atlantic Oscillation (NAQO), and as much as 80% of the January
mean temperatures variability in some locations (Oksgy fyr) could be ac-
counted for by enhanced westerlies due to a deepening of the Icelandic low
and strengthening anti-cyclone over the Azores (figure 26). The high pre-
diction skills and low model coefficient spread (figure 28) suggested that the
NCAR SLPs were ideal predictors for most of the stations, except those in
the far north. Table 9 suggests that the optimum choice of predictors was a
combination of EOFs 1,4,6,7.8, and 12.

The data north of 70°N had been excluded from the analysis which pro-
duced figure 27, but similar results were obtained when the Arctic region was
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Correlation=0.84 (95% conf =0.33) Proportional variance =77.5% RMSE=0.18
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Figure 26: Time series of predicted January temperatures (dashed) at Oksgy
Fyr, employing the cross-validation method with NCAR SLP, shown with

the observations (black solid line).
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Figure 27: The mean leading January CCA NCAR SLP pattern associated
with the land surface temperatures. Weights in the regions where the stan-
dard deviation of the leading CCA SLP pattern estimates are greater than
10hPa are not shown.
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included (not shown). The NCAR data set contained a number of spatial
points with 'bad’ data (Benestad, 1998), especially near the Arctic but also
over Russia, and it is questionable whether any Arctic climatic signals that
may be correlated with the Norwegian temperatures is present in the NCAR
data set.

Figure 28 indicates small spread in the model coefficient estimates. All
weights had the same sign, and Nesbyen and Flisa were associated with the
largest weights.

5.1.2 April North Atlantic SLPs and land surface Temperatures

The April NCAR SLP model was associated with lower correlation skill than
the corresponding January model. The highest skills in April were found at
Ona IT as opposed to Oksgy fyr in January. Figure 29 indicates negative
signs for the weights at Oksgy, Ferder fyr, and Vardg, while the remaining
stations had positive weights. The predictor pattern described negative (pos-
itive) SLP anomalies west of the British isles, associated with warm (cold)
temperature anomalies at all stations except for the south and east coast
stations (figure 30). Figure 31 indicates that the April model had a tendency
to produce some spurious cold temperatures at Oksgy fyr, but did capture
most of the warm Aprils.

Table 10 indicates that the optimal model used EOFs 1, 2, 4, 6, 9, 10,
14, and 15 as predictors.

5.1.3 July North Atlantic SLPs and land surface Temperatures

The NCAR July model gave lower skill scores than the January model, but
made skillful predictions nevertheless (table 11). The optimum combination
of EOFs included EOFs 1, 2, 4, 6, 10, and 11. The predictor pattern (fig-
ure 32) indicated a high (low) pressure system over the North Sea, which was
associated with higher (lower) temperatures in the south and cold anomalies
in the north. The best prediction was found at Abjgrsbraten, with r=0.72,
RMS error of 0.14°C, and variance of 62% (figure 33). The July model cap-
tured most of the warm episodes, but missed some of the cold events. The
predictions of the peak values were were often too large or too small. The
predictands with poorest skill was found at Ona, where r=0.37. Figure 34
shows the predictor weight estimates, and the weights were negative with
relative large standard deviations in the north, suggesting that higher order
CCA patterns may have played a role here. The best predictions were found
along the west coast of Norway.
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Table 9: Evaluation of January temperature CCA model based on January

SLPs from NCAR ds010.0 and surface temperatures from DNMI’s climate

data base

EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 OKSQOY FYR SKOMVZZAR FYR | KARASJOK
r= 0.67 r= 0.48 r= 0.33
rmse= 0.25 rmse= 0.16 rmse= 0.58
14 BOD® VI SKOMVZAR FYR | OPPSTRYN
r= 0.73 r= 0.70 r= 0.51
rmse= 0.19 rmse= 0.13 rmse= 0.25
146 OKSOY FYR SKOMVAR FYR VARDO
7812 r= 0.84 r= 0.74 r= 0.55
rmse= 0.18 rmse= 0.12 rmse= 0.18

Table 10: Evaluation of April temperature CCA model based on April SLPs
from NCAR ds010.0 and surface temperatures from DNMI’s climate data

base
EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 VARD® UTSIRA FYR | LERDAL - TONJUM
r= 0.32 r= -0.23 r= -0.43
rmse= 0.16 rmse= 0.12 rmse= (.18
12 ONA II ONA II FERDER FYR
r= 0.55 r= 0.55 r= 0.15
rmse= 0.10 rmse= 0.10 rmse— 0.17
124 ONA II ONA II FERDER FYR
r= 0.61 r= 0.61 r= 0.11
rmse= 0.10 rmse= 0.10 rmse— 0.17
124 ONAII ONAII AS
69 r= 0.62 r= 0.62 r= 0.01
rmse= 0.09 rmse= 0.09 rmse= 0.20
124 ONA II ONA II FERDER FYR
6910 r= 0.66 r= 0.66 r= 0.22
14 15 rmse= 0.09 rmse= 0.09 rmse— 0.17
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The 1st CCA weights of the station data
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s$62480:0ONA II 0.72 66 0.1
15+ s58700:0PPSTRY! 0.61 55 0.29

s54130:LAERDAL —| 0.71 63 0.3
s52530:HELLISOE 0.78 72 0.1
s50540:BERGEN - 0.74 68 0.2
S47300:UTSIRA FY¥ 0.78 73 0.1
101 $42160:LISTA FYR 0:80 - 75 0.2+
$39100:0KSOEY F 082 76 0.2
$27500:FERDER F 079 74 0.2
S24880:NESBYEN 0.72 64 0.4
$23160:AABJOERS 0.76 69 0.3

Station

5r- $18700:0SLO - BLI| 0:71 - 63 0.3
s17850:AAS 0.74 67 0.3
$16740:KJIOEREMS] 0.72 65 0.3
$10400:ROEROS 0.65 58 0.4
S6040:FLISA 0.69 59 0.4

1 1 1 1 1 1 1 1

© -10 -5 0 5 10 15 20 25 30

Coefficient value in y=ax: a

Figure 28: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading January
NCAR SLP CCA pattern for the land surface temperatures. The empty black
boxes show the weights from a model trained on the whole time series. The
error bars indicate the standard deviation and hence the spread in samples
of each coefficient. The correlation, variance and RMSE results from the

cross-validation analysis are given on the right hand side.
The 1st CCA weights of the station data
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Figure 29: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading April
NCAR SLP CCA pattern for the land surface temperatures. The empty black
boxes show the weights from a model trained on the whole time series. The
error bars indicate the standard deviation and hence the spread in samples
of each coefficient. The correlation, variance and RMSE results from the
cross-validation analysis are given on the right hand side.
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Figure 30: The mean leading April CCA NCAR SLP pattern associated with
the land surface temperatures. Weights in the regions where the standard
deviation of the leading CCA SLP pattern estimates are greater than 10hPa

are not shown.

Correlation=0.66 (95% conf =0.22) Proportional variance =63.3% RMSE=0.09
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Figure 31: Time series of predicted April temperatures (dashed) at Ona II,
employing the cross-validation method with NCAR SLP, shown with the

observations (black solid line).
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Figure 32: The mean leading July CCA NCAR SLP pattern associated with
the land surface temperatures. Weights in the regions where the standard
deviation of the leading CCA SLP pattern estimates are greater than 10hPa
are not shown.
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Figure 33: Time series of predicted July temperatures (dashed) at
Abjgrsbraten, employing the cross-validation method with NCAR SLP,
shown with the observations (black solid line).
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The 1st CCA weights of the station data
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Figure 34: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading July
NCAR SLP CCA pattern for the land surface temperatures. The empty black
boxes show the weights from a model trained on the whole time series. The
error bars indicate the standard deviation and hence the spread in samples
of each coefficient. The correlation, variance and RMSE results from the

cross-validation analysis are given on the right hand side.
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Figure 35: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading October
NCAR SLP CCA pattern for the land surface temperatures. The empty black
boxes show the weights from a model trained on the whole time series. The
error bars indicate the standard deviation and hence the spread in samples
of each coefficient. The correlation, variance and RMSE results from the
cross-validation analysis are given on the right hand side.
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Table 11: Evaluation of July temperature CCA model based on July North
Sea SLPs from NCAR ds010.0 and surface temperatures from DNMI’s cli-

mate data base

EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 SIHCAJAVRI ONA II FERDER FYR
r= 0.33 r= 0.15 r= -0.06
rmse= (.28 rmse= 0.16 rmse= 0.19
12 GLOMFJORD ONA II VARD®
r= 0.47 r=0.24 r=-0.25
rmse= (.23 rmse= 0.15 rmse= 0.24
1246 KARASJOK SKOMVZZAR FYR | UTSIRA FYR
r= 0.62 r= 0.52 r= 0.30
rmse= 0.24 rmse= 0.15 rmse= 0.15
124 ABJORSBRATEN OKSOY FYR ONA 1II
610 11 r= 0.72 r= 0.67 r= 0.37
rmse= 0.14 rmse= 0.12 rmse= 0.15

5.1.4 October North Atlantic SLPs and land surface Tempera-
tures

The optimal October model includes EOFs 1, 2, 3, 4, 5, 7, 9, 11, 12, 17,
and 20 in the predictors (table 12). The predictor weights in figure 35 all
had the same sign and were associated with small standard deviations. The
predictor pattern described a strong pressure system over Iceland (figure 36),
and low pressure was associated with warmer weather over Norway. The
best prediction was found at Tromsg (r=0.86, figure 37), where the October
temperatures were highly correlated with the southerly geostrophic wind.
The October NCAR model captured virtually all the peaks in figure 37. The
lowest skill was seen at Nesbyen, where the correlation skill was 0.52 and was
significant at the 95% level.

The NCAR models could skillfully predict the land surface temperatures,
but with slightly lower skill during April and July. It is unlikely that the weak
sensitivity to the seasons will be important for studies of future warming
scenarios.
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Figure 36: The mean leading October CCA NCAR SLP pattern associated
with the land surface temperatures. Weights in the regions where the stan-
dard deviation of the leading CCA SLP pattern estimates are greater than

10hPa are not shown.

Correlation=0.86 (95% conf =0.30) Proportional variance =82.9% RMSE=0.13
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Figure 37: Time series of predicted October temperatures (dashed) at
Tromsg, employing the cross-validation method with NCAR SLP, shown with

the observations (black solid line).
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Table 12: Evaluation of October temperature CCA model based on October
North Sea SI.Ps from NCAR ds010.0 and surface temperatures from DNMI’s

climate data base

EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 OPPSTRYN UTSIRA FYR FERDER FYR
r= 0.35 r= 0.27 r= -0.07
rmse= 0.22 rmse= 0.14 rmse= 0.18
1234 TROMSO UTSIRA FYR | NESBYEN - SKOGLUND
57911 r= 0.86 r= 0.63 r= 0.52
12 17 20 rmse= 0.13 rmse= 0.11 rmse= 0.19

5.2 Models based on the NMC data

5.2.1 January North Atlantic SLPs and land surface Tempera-
tures

The NMC ds195.5 SLP data set spanned a relatively short time period (1946-
1994), but had a high spatial resolution (2.5° x 2.5°) compared to the other
SLP data sets. Figure 38 shows the leading CCA predictor pattern for the
NMC ds195.5 SLPs, which described a north-south dipole structure resem-
bling the NAO. The optimum number of EOFs in the CCA was 8, which
included EOFs 1, 5, 6, 11, 13, 15, 16 and 20 (table 13). The NMC CCA pat-
tern differed from the corresponding NCAR pattern by describing a weaker
dipole structure, with the southern maximum of the north-south dipole pat-
tern covering a larger area. There was weaker variability over the Bay of
Biscaya in the NMC pattern, and stronger SLP anomalies over Finland and
north eastern Russia. The station with the highest correlation skills asso-
ciated with the NMC model was Lista fyr (figure 39), with a correlation
coeflicient of 0.91, RMSE of 0.14°C, and accounting for 92% of the variance.
The NMC model was poor at predicting the January temperatures in north-
ern Norway, despite using data from the Arctic (figure 40). The January
NMC model predicted all the major events, although the peak values were
sometimes slightly too large or too small.

The different time periods, different errors in the predictor data (Benes-
tad, 1998), and different spatial resolution may decide which locations have
the greatest prediction skill and what predictor pattern is associated with
these temperatures. Figure 40 indicates that all the weights had same sign
and that the standard deviations were small. Hence the leading CCA pat-
tern, associated with enhanced westerly geostrophic flow, was important for
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Figure 38: The mean leading January CCA NMC SLP pattern associated
with the land surface temperatures. Weights in the regions where the stan-
dard deviation of the leading CCA SLP pattern estimates are greater than
10hPa are not shown.

Correlation=0.91 (95% conf =0.42) Proportional variance =92.3% RMSE=0.14
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Figure 39: Time series of predicted January temperatures (dashed) at Lista
Fyr, employing the cross-validation method with NMC SLP, shown with the
observations (black solid line).
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all the stations.

5.2.2 April North Atlantic SLPs and land surface Temperatures

The April NMC model produced predictions with lower skills than the Jan-
uary model for the locations with highest skills. The predictand weight esti-
mates in figure 41 were small compared to the January weights, suggesting
weaker influence of April SLPs on the temperatures. Flisa, with the highest
correlation score, had almost zero mean weights but relatively large spread,
which suggests that higher order patterns were likely to be important. The
CCA correlations for the whole time series were high for the 8 CCA patterns:
1.0000, 0.9918, 0.9845, 0.9652, 0.9159, 0.9008, 0.833 and 0.6608.

The predictor pattern for April was substantially different to the January
leading CCA pattern, where the April temperatures were correlated with
a west-east dipole pressure system in addition to a north-south dipole over
western Atlantic (figure 42), and warm temperature anomalies in Scandinavia
were associated with southerly geostrophic flow. The highest prediction skill
for April was found at Flisa, with r=0.67, RMS error of 0.18°C, and ac-
counting for 79% of the variance. Figure 43 demonstrates that the NMC
April model could reproduce the timing of most anomalies, but misjudged
the amplitudes.

5.2.3 July North Atlantic SLPs and land surface Temperatures

Figure 44 shows the leading NMC CCA predictor pattern for July, with a
tripole structure with maximum SLP variability north of the British isles and
maxima with opposite polarity over subtropical Atlantic and east of Svalbard.
This system was associated with southerly and northerly geostrophic winds
over southern Norway.

The highest skills in July were seen along the west coast in southern
Norway. The best prediction, which was for Hellisgy fyr, had a correlation
score of 0.79, RMS error of 0.11°C, and accounted for 75% of the variance
(figure 45).

The NMC July model gave relatively high correlation skills over all of
Norway, and there were small uncertainties in the estimates of predictand
coefficients for the leading CCA pattern (figure 46). The predictand coeffi-
cients were large and positive in the north and small and negative in southern
Norway.
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Table 13: Evaluation of January temperature CCA model based on January
SLPs from NMC ds195.5 and surface temperatures from DNMI’s climate

data base

EOFs Maximum correlation Minimum RMSE | Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 OKSOY FYR UTSIRA FYR | KARASJOK
r= 0.75 r= 0.71 r= 0.12
rmse= 0.23 rmse= (.18 rmse— 0.77
12 OKSOY FYR UTSIRA FYR | KARASJOK
r= 0.72 r= 0.68 r= 0.03
rmse= 0.25 rmse= 0.19 rmse— 0.79
156 LISTA FYR UTSIRA FYR VARD®
11 13 15 r= 0.91 r= 0.86 r= 0.00
16 20 rmse= 0.14 rmse= 0.13 rmse= 0.29

Table 14: Evaluation of April temperature CCA model based on April SLPs
from NMC ds195.5 and surface temperatures from DNMI’s climate data base

EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 VARD® SKOMVZAR FYR | OPPSTRYN
r= 0.40 r= 0.35 r= -0.05
rmse= 0.19 rmse= 0.14 rmse= 0.23
12356 ABJORSBRATE UTSIRA FYR BOD® VI
r= 0.49 r= 0.34 r=-0.07
rmse= 0.24 rmse= 0.15 rmse= 0.24
123 ABJORSBRATE | HELLISQY FYR | GLOMFJORD
567 r= 0.62 r= 0.49 r= 0.30
rmse= 0.21 rmse= 0.14 rmse= 0.22
123 FLISA ONA II GLOMFJORD
567 r= 0.67 r= 0.52 r= 0.28
15 17 rmse= 0.18 rmse= 0.14 rmse= 0.23
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The 1st CCA weights of the station data

T T T T T T

Station Cor Var(%) RMSE

251 : -
s98550:VARDOE 0.00 36 0.3
S97250:KARASJOK 0.35 51 0.8
s93900:SIHCAJAVRI 0.45 59 0.6
s90450:TROMSOE 0.18 44 0.4

20~ s$85950:SKOMVAER FYR 0:.44 59 0.2+
$82290:BODOE VI 0.47 58 0.3
s80700:GLOMFJORD 0.61 68 0.3
s69100:VAERNES 0.75 80 0.3
s62480:ONA II 0.72 80 0.2

- 15 s58700:0PPSTRYN 0.63 72 0.3+
L s54130:LAERDAL — TOEN 0.72 75 0.3
g s52530:HELLISOEY FYR 0.79 85 0.2
s50540:BERGEN - FLORI 0.76 80 0.2
s47300:UTSIRA FYR 0.86 89 0.1

10 s42160:LISTA FYR 0.91 92 0.1+
$39100:0KSOEY FYR 0.89 90 0.2
s27500:FERDER FYR 0.86 84 0.2
s24880:NESBYEN - SKOf 0.74 76 0.4
s23160:AABJOERSBRAATE 0.78 80 0.3

S5 $18700:0SLO — BLINDER 0.75 78 0.3+
s17850:AAS 0.73 75 0.3
s16740:KJIOEREMSGRENDI - 0.74 77 0.4
s10400:ROEROS i 0.68 73 0.5
s6040:FLISA [ 0.68 73 0.5
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Figure 40: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading January
NMC SLP CCA pattern for the land surface temperatures. The empty black
boxes show the weights from a model trained on the whole time series. The
error bars indicate the standard deviation and hence the spread in samples
of each coefficient. The correlation, variance and RMSE results from the

cross-validation analysis are given on the right hand side.
The 1st CCA weights of the station data

T T T T T
Station Cor Var(%) RMSE
25 -
s98550:VARDOE 0.57 65 0.2
$97250:KARASJOK 0.51 56 0.3
s93900:SIHCAJAVRI 0.55 62 0.3
s90450: TROMSOE 0.41 52 0.2
20 s$85950:SKOMVAER FYR 0.41- - 58 0.1 -
$82290:BODOE VI 0.28 47 0.2
s80700:GLOMFJORD 0.28 46 0.2
s69100:VAERNES 0.36 55 0.2
s62480:ONA I 0.52 68 0.1
- 15 s58700:0PPSTRYN 0.38 - 59 0.2 -+
2 s54130:LAERDAL — TOEN 0.49 67 0.2
g s52530:HELLISOEY FYR 0.49 70 0.1
s50540:BERGEN - FLORI 0.56 77 0.2
s47300:UTSIRA FYR 0.50 71 0.1
10~ s42160:LISTA FYR 0.47 69 0.2 - A
s$39100:0KSOEY FYR 0.57 72 0.2
s27500:FERDER FYR 0.59 72 0.2
$24880:NESBYEN - SKOG 0.65 72 0.2
s23160:AABJOERSBRAATE 0.63 75 0.2
5r s18700:0SLO — BLINDER 0.63 76 0.2 -
s17850:AAS 0.65 78 0.2
516740:KJOEREMSGRENDI 0.56 72 0.2
s10400:ROEROS 0.46 62 0.3
s6040:FLISA 0.67 78 0.2
1 1 | 1 1
° -10 -5 0] 5 10

Coefficient value in y=ax: a

Figure 41: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading April
NMC SLP CCA pattern for the land surface temperatures. The empty black
boxes show the weights from a model trained on the whole time series. The
error bars indicate the standard deviation and hence the spread in samples
of each coefficient. The correlation, variance and RMSE results from the
cross-validation analysis are given on the right hand side.
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Figure 42: The leading April CCA NMC SLP pattern associated with the

land surface temperatures.

Correlation=0.67 (95% conf =0.32) Proportional variance =77.9% RMSE=0.18
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Figure 43: Time series of predicted April temperatures (dashed) at Flisa,
employing the cross-validation method with NMC SLP, shown with the ob-
servations (black solid line).
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Figure 44: The leading July CCA NMC SLP pattern associated with the

land surface temperatures.

Correlation=0.79 (95% conf =0.39) Proportional variance =75.3% RMSE=0.11
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Figure 45: Time series of predicted July temperatures (dashed) at Hellisgy
fyr, employing the cross-validation method with NMC SLP, shown with the
observations (black solid line).
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The 1st CCA weights of the station data

T T T T T T

Station Cor Var(%) RMSE

251 =
s98550:VARDOE 0.54 58 0.3
s97250:KARASJOK 0.56 59 0.3
s93900:SIHCAJAVRI 0.55 55 0.3
s90450: TROMSOE 0.67 64 0.3

20 $85950:SKOMVAER FYR 0.58 59 0.2 4
$82290:BODOE VI 0.63 59 0.2
s$80700:GLOMFJORD 0.63 58 0.2
s69100:VAERNES 0.62 57 0.2
s62480:0NA I 0.46 54 0.2

- 15 s58700:0PPSTRYN 0.68 67 0.2 4
L s54130:LAERDAL - TOEN 0.54 55 0.2
g s52530:HELLISOEY FYR 0.79 75 0.1
s50540:BERGEN - FLORI 0.76 76 0.1
s47300:UTSIRA FYR 0.77 76 0.1

10 s42160:LISTA FYR : 0.64 v 63 0.1 4
$39100:0KSOEY FYR 0.58 60 0.2
s27500:FERDER FYR 0.58 57 0.2
$24880:NESBYEN - SKOG 0.64 65 0.2
s23160:AABJOERSBRAATE 0.65 64 0.2

5+ $18700:0SLO — BLINDER 0.61 63 0.2 -+
s17850:AAS 0.61 63 0.2
s16740:KJOEREMSGRENDI 0.64 59 0.2
s10400:ROEROS 0.62 57 0.2
s6040:FLISA 0.67 64 0.2
1 1 1 1 1 1
° -10 -5 0 5 10 15

Coefficient value in y=ax: a
eof-Jul-nmc-slp—mm.nc

Figure 46: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading July
NMC SLP CCA pattern for the land surface temperatures. The empty black
boxes show the weights from a model trained on the whole time series. The
error bars indicate the standard deviation and hence the spread in samples
of each coefficient. The correlation, variance and RMSE results from the

cross-validation analysis are given on the right hand side.
The 1st CCA weights of the station data

T T T T T

Station Cor Var(%) RMSE

25 =
$98550:VARDOE 0:79 84 0.2
$97250:KARASJOK 0.78 82 0.3
$93900:SIHCAJAVRI 0.82 86 0.3
s90450: TROMSOE 0.88 89 0.2

20 $85950:SKOMVAER FYR 0.73 74 0.2 -+
$82290:BODOE VI 0.76 76 0.2
s80700:GLOMFJORD 0.75 76 0.2
s69100:VAERNES 0.55 64 0.2
S62480:0ONA Il 0.65 69 0.2

- 15+ s58700:0PPSTRYN 0.68 71 0.2 -+
2 s$54130:LAERDAL - TOEN 0:39 50 0.3
% s52530:HELLISOEY FYR 0.41 51 0.2
s50540:BERGEN - FLORI 0.47 54 0.2
s47300:UTSIRA FYR 0.39 50 0.2

10+ S42160:LISTA FYR 0.36 47 0.2 -
$39100:0KSOEY FYR 0.42 51 0.2
s27500:FERDER FYR 0.50 58 0.2
s24880:NESBYEN - SKOG 0.49 55 0.2
s23160:AABJOERSBRAATE 0:48 56 0.2

5 $18700:0SLO-—BLINDER 0.44 54 0.2 -+
s17850:AAS 0.48 56 0.2
$16740:KJOEREMSGRENDI 0.52 59 0.2
s10400:ROEROS 0.54 62 0.2
s6040:FLISA 0.49 59 0.3

1 1 I 1 1
° -10 -5 0 5 10

Coefficient value in y=ax: a
eof-Oct-nmc-slp—-mm.nc

Figure 47: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading October
NMC SLP CCA pattern for the land surface temperatures. The empty black
boxes show the weights from a model trained on the whole time series. The
error bars indicate the standard deviation and hence the spread in samples
of each coefficient. The correlation, variance and RMSE results from the
cross-validation analysis are given on the right hand side.
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Table 15: Evaluation of July temperature CCA model based on July SLPs
from NMC ds195.5 and surface temperatures from DNMI’s climate data base

EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 GLOMFJORD HELLISOY FYR VARD®

r= 0.36 r= 0.13 r= -0.44

rmse= 0.29 rmse= 0.18 rmse= 0.32

12 GLOMFJORD HELLISOY FYR | LERDAL - TON

r= 0.41 r= 0.31 r= -0.59

rmse= 0.28 rmse— 0.17 rmse= 0.20

123 UTSIRA FYR UTSIRA FYR VAERNES
r= 0.74 r= 0.74 r= 0.26

rmse= 0.12 rmse= 0.12 rmse= 0.20
123 HELLISOY FYR | HELLISOY FYR ONA II
6815 r= 0.79 r= 0.79 r= 0.46

rmse= 0.11 rmse= 0.11 rmse= 0.17

Table 16: Evaluation of October temperature CCA model based on October
SLPs from NMC ds195.5 and surface temperatures from DNMI’s climate

data base
EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 FERDER FYR UTSIRA FYR | SKOMVZAR FYR
r= 0.42 r= -0.13 r= -0.64
rmse= 0.20 rmse= 0.16 rmse= 0.26
123 OPPSTRYN UTSIRA FYR KARASJOK
r= 0.54 r= 0.45 r= 0.16
rmse= (.22 rmse= 0.14 rmse— 0.47
124 TROMSO UTSIRA FYR | LERDAL - TON
r= 0.85 r= 0.54 r= 0.45
rmse— 0.17 rmse= 0.14 rmse= 0.23
124 TROMSO TROMSO LISTA FYR
81519 r= 0.88 r= 0.88 r= 0.36
20 rmse= 0.15 rmse= 0.15 rmse= 0.20
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Figure 48: The leading October CCA NMC SLP pattern associated with the

land surface temperatures.

Correlation=0.88 (95% conf =0.42) Proportional variance =88.7% RMSE=0.15
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Figure 49: Time series of predicted October temperatures (dashed) at
Tromsg, employing the cross-validation method with NMC SLP, shown with
the observations (black solid line).
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5.2.4 October North Atlantic SLPs and land surface Tempera-
tures

The October NMC model gave high skill scores in the north, with the best
prediction in Tromsg where r=0.88, and worst prediction at Lista fyr with
r=0.36 (table 16). Figure 47 shows that the weights in the north were relative
large, and that the standard deviation at all stations were small. The leading
CCA pattern described a north-south dipole structure with maxima over the
British isles and Svalbard (figure 48), and zonal component of the geostrophic
flow was highly correlated with temperature anomalies in northern Norway.
The prediction for Tromsg, shown in figure 49, demonstrates that the October
model captured most of the temperature signal.

The model results for the NMC SLP models can be summarised as rel-
atively good prediction skills for most seasons, but with January being the
month with the highest and April the month with the lowest prediction
scores.

5.3 Models based on the UEA data

5.3.1 January North Atlantic SLPs and land surface Tempera-
tures

The leading UEA CCA SLP pattern (figure 50) was similar to the leading
NMC CCA SLP pattern, but the southern dipole maximum was displaced
further east. The optimum predictor combination consisted of the EOFs
1,2,3,4,7,8,10,11,12 and 18 (table 17), and the highest skills were found at
Glomfjord (figure 51), with a correlation coefficient of 0.89 and RMSE of
0.12°C. The UEA CCA SLP pattern implied a south-westerly geostrophic
flow, and most of the temperature variability at Glomfjord could be predicted
by the UEA January model.

Contrary to the NMC model, however, the UEA model also produced
relatively skillful predictions for northern Norway (figure 52). The UEA
data was cropped north of north of 70%, where the data quality was highly
questionable (Benestad, 1998). The fact that the prediction skills were so
high without data from the Arctic may suggest that small scale Arctic SLP
anomalies did not have much impact on the Norwegian January tempera-
tures.

The predictand weights in figure 52 were associated with small standard
deviations, which may suggest that the leading CCA pattern was well re-
solved from the higher order CCA structures. The implication of a dominant
leading CCA pattern was that most of the Norwegian January temperatures
were highly correlated with the meridional wind component.
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Figure 50: The mean leading January CCA UEA SLP pattern associated
with the land surface temperatures. Weights in the regions where the stan-
dard deviation of the leading CCA SLP pattern estimates are greater than
10hPa are not shown.

Correlation=0.89 (95% conf =0.40) Proportional variance =85.7% RMSE=0.12
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Figure 51: Time series of predicted January temperatures (dashed) at Glom-

fjord, employing the cross-validation method with UEA SLP, shown with the
observations (black solid line).
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The 1st CCA weights of the station data

T T T T T T T
Station Cor Var(%) RMSE

25 =
s98550:VARDOE 0.52 52 0.2
$97250:KARASJOK lH 0.76 70 0.4
s93900:SIHCAJAVR] 0.77 71 0.3
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s62480:ONA II 0.81 75 0.1
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5r- s$18700:0SLO — BLI 0.69 60 0.3
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53

The mean weights (model coefficients) from the cross-validation

analysis shown as filled bars, indicate the importance of the leading January
UEA SLP CCA pattern for the land surface temperatures. The empty black
boxes show the weights from a model trained on the whole time series. The
error bars indicate the standard deviation and hence the spread in samples
of each coefficient. The correlation, variance and RMSE results from the

cross-validation analysis are given on the right hand side.
The 1st CCA weights of the station data

T T T T T

Station Cor Var(%) RMSH

25 -
s98550:VARDOE 0.39 29 0.2
$97250:KARASJOK 0.40 30 0.2
$93900:SIHCAJAVRI 0.38 30 0.3
$90450: TROMSOE 0.33 28 0.2

20 s$85950:SKOMVAER FYR 0.42 36 0.1
s$82290:BODOE VI 0.35 31 0.2
s80700:GLOMFJORD 0.38 32 0.2
s$69100:VAERNES 0.51 43 0.2
S62480:0ONA II 0.56 48 0.1

- 15 s58700:0PPSTRYN 0.55 48 0.2
2 s54130:LAERDAL — TOEN 0.47 40 0.2
g s52530:HELLISOEY FYR 0.50 45 0.1
s50540:BERGEN ~ FLORI 0.60 53 0.1
s47300:UTSIRA FYR 0.36 33 0.1

10~ s42160:LISTA FYR 0.35 34 0.1
s$39100:0OKSOEY FYR 0.32 32 0.2
$27500:FERDER FYR 0.26 28 0.2
s24880:NESBYEN - SKOG 0.42 36 0.2
$23160:AABJOERSBRAATE 0.47 40 0.2

5r s$18700:0SLO — BLINDER 0.29 29 0.2
s17850:AAS 0.28 28 0.2
s$16740:KIOEREMSGRENDI 0.51 43 0.2
s10400:ROEROS 0.40 35 0.2
S6040:FLISA 0.34 31 0.2
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Figure 53: The mean weights (model coefficients) from the cross-validation
analysis shown as filled bars, indicate the importance of the leading April
UEA SLP CCA pattern for the land surface temperatures. The empty black
boxes show the weights from a model trained on the whole time series. The
error bars indicate the standard deviation and hence the spread in samples
of each coefficient. The correlation, variance and RMSE results from the
cross-validation analysis are given on the right hand side.
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Table 17: Evaluation of January temperature CCA model based on January
SLPs from UEA and surface temperatures from DNMTI’s climate data base

EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 OKSOY FYR SKOMVZAR FYR | KARASJOK
r= 0.68 r= 0.50 r= 0.38
rmse= 0.24 rmse= 0.16 rmse= 0.56
123 GLOMFJORD SKOMV AR FYR ROROS
47 r= 0.80 r= 0.80 r= 0.49
rmse= 0.16 rmse= 0.11 rmse= 0.49
1234 GLOMFJORD SKOMV AR FYR VARD®
7810 r= 0.89 r= 0.85 r= 0.52
11 12 18 rmse= 0.12 rmse= 0.10 rmse= 0.18

Table 18: Evaluation of April temperature CCA model based on April SLPs

from UEA and surface temperatures from DNMI’s climate data base

EOFs Maximum correlation Minimum RMSE Smallest correlation
included | location (independent data) (predictand) ("Worst prediction’)
1 VARD® UTSIRA FYR | HELLISO Y FYR
r= 0.32 r=-0.11 r=-0.44
rmse= 0.16 rmse= 0.12 rmse= 0.12
12 ONA II ONA II BOD® VI
r= 0.49 r= 0.49 r=0.14
rmse= 0.10 rmse= 0.10 rmse= 0.19
123 | BERGEN - FLORIDA ONA II AS
r= 0.50 r= 0.46 r=0.11
rmse= 0.14 rmse= 0.11 rmse= 0.19
123 | BERGEN - FLORIDA ONA II FERDER FYR
489 r= 0.60 r= 0.56 r= 0.26
10 rmse= 0.13 rmse= 0.10 rmse= 0.17
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Table 19: Evaluation of July temperature CCA model based on July SLPs
from UEA and surface temperatures from DNMI’s climate data base

EOFs Maximum correlation Minimum RMSE | Smallest correlation
included | location (independent data) (p