DNMI

Det norske meteorologiske institutt

Report no. 01/99

KLIMA

KLIBAS research
notes volume 1

Petter Ogland

DNVIERERCRil

REPORT NO.
NORWEGIAN METEOROLOGICAL INSTITUTE
BOX 43 BLINDERN N-0313 OSLO 01/99 KLIMA
DATE

PHONE: +47 22 96 30 00
Jan 4 1999

TITLE

KLIBAS RESEARCH NOTES VOLUME 1

AUTHOR

Petter @gland

PROJECT CONTRACTOR

DNMI - Climatology Division

SUMMARY

In this volume eight research notes dating from November and December
1998 are presented. All notes are related to on-going research and
development of the KLIBAS climatological database system.

The first note concerns the problem reducing internal time fricticn for
the SYNOP data collection. The second note issues the problem of
reading PIO («PC In the Observation Services») observations into
KLIBAS. The third note is concerned with the dataflow of the KLIBAS
system, addressing problems related with the updating of Semi-Automatic
Weather Stations (SAWS) in the main data processing routine (ALV} by
use AWS observations from the AWS data processing routine (ALA). The
fourth note continues along this path by facing problems concerning the
rocbustness of an AWS data transport program. The fifth note concerns
problems related to ancther AWS data transport program. In the sixth
note, a user interface problem for the AWS statistics is discussed.

The seventh note addresses a problem having to do with the design of a
quality control program {CONTSYN1l} in the main data processing routine,
while the eighth note comments on a problem having to do with data
transport for SAWS in relation to the PIO data processing routine.

KEYWORDS
1. Climatological databases 3. Meteorological quality control
2. Meteorological data ceollection 4. SYNOP, PIO, AWS, SAWS

SIGNATURE

4

Petter @gland

Research Scientist Head of Climatology Division

Table of Contents

FFOTEWOTT . oeitvvereeserereerssee e eemeaessaabasssEearTre e e e easabs s sRoRa e omron e oR e s e s mns e om oot S 4 hE e b LA bR e s s b AT T SRS e nr e s a0 3
Reducing the internal time friction for the SYNOP data collection at DNMI ..o
Reading PIO observations into the KLIBAS database system at DNMI ... 11
Dataflow in the KLIBAS database system at DNMI: Updating SAWS in ALV with AWS observa-

LHONS FTOTIL AL +veeeerereenresereeeeesitsstessarsressaeseebasshsestssassansshnsoana s £ es s e e b Saae 2o ae L E o4 b e R sas s nr s b A e e b s bbb e e 14
Facing a problem of robustness on the MND2HLA AWS data transportation program in the

KLIBAS database system at DINMIociieiioimme i s 16
Comparing collapse history for the MND2ALA and MND2HLA data transportation programs in

the KLIBAS databasc system at DINIVILcovommeiemcemcrine et st 18
Problems in AWS statistical reports due to running Oracle i different environments for the

KLIBAS database system at DINMI ..ot s 21
Deciding the future of the CONTSYNI data check for the KLIMA control routine at the Clima-

tology Division at DNMI ..ottt 22

Reading and converting SAWS weather observations V1/V2/V3 into the KLIBAS database sys-
eI L 1 1 OO OOV U PP P RIS PF RO PRSI ST RIS SR 24

Foreword

Late 1989 it was announced that a new climatological database system, later coined KLIBAS, should
be planned and implemented in order to replace the previous solution (Moe, 1995). A group of representa-
tives from all divisions was assembled, and requirements for the computer and database system was out-
lined.

It was decided that the implementation of the system should be done with limited resources. At the
Climatological Division a group of approximately eight persons ("the database group”) was established
(Moe et al, 1991), first to accomplish the requirements for climatological data, and later to design and
implement the system,

Requirements were sent potentional vendors late 1990. Evaluations and dicussions of the offered
systems took place during spring 1991, and an Oracle database performing on Silicon Graphics computers
was decided upon summer 1991 (Moe, 1995).

The work of the database group wsa organised in projects, giving goals, estimations, work packages
and scedules, especially during the design phases (@gland et al, 1992; Moe et al, 1994). As implementation
commenced, during the second half of 1993, unpredictable problems arose, and work was hence done in a
more experimental manner (Moe et al, 1994; @gland et al, 1994).

The first part of the KLIBAS database system to be implemented was the module responsible for 1.5
gigabytes of precipitation data. During the first half of 1994 routines for handling the SYNOP data were
added, along with a prototype version of the routine for handling data from climatological weather stations
(Bgland et al, 1994). During the second half of 1994 the database was updated from Oracle 6 to Oracle 7,
the operative programs and systems were refined (@gland et al, 1995).

In 1995 about 12 gigabytes of disk was configured for the database, and a large amount of historical
weather observations, maritime observations and plumatic observations were inserted into the database
(@gland et al, 1996). The Oracle database core was updated from version 7.0 to 7.1. Much of the work of
1995 did also involve security routines, backup, the archive log of the Oracle databasc system, technical
equipment such as instaliment of PC’s, when to dispatch the old ND-788 system and geographical in for-
mation systems (GIS).

By the summer of 1996 KLIBAS contained data and routines for handling precipitation stations, tra-
ditional weather stations and synop, Aanderaa automatic weather stations (AWS), plumatic precipitation
intensity stations, maritime weather stations and metar aeroport weather stations {(Moe et al, 1996). Differ-
ent kinds of statistics computer programs were made as a part of KLIBAS. During the second half of 1996
all routines were refined, and a significant amount of historical observations from Aanderaa AWS w ere
inserted into KLIBAS (@gland et al, 1997).

In October 1997 the database project was officially terminated. During 1997 all relevant historical
weather observations had been moved from outdated systems and inserted in KLIBAS or related systems.
Most of the work done by the database group was now restricted to maintenance and refinement of routines.
It was furthermore announced that a new database project would commence in 1997, moving KLIBAS to a
new database server and updating the database structure in order to handle demands unconsidered at th e
time when the KLIBAS database project was initiated (@gland, 1998).

In 1998 improvement and refinement of the KLIBAS routines have continued. The system now con-
sists of more than 120 computer programs, and during the year system documentation of updates or estab-
lishmed of new programs gave rise to 69 KLIBAS system documentation reports (Dgland, 1999). Many
KLIBAS programs are now systematically being logged and a great amount of time is being put into keep-
ing the system alive.

During the two last months of 1998 eight research notes adressing different aspects of problems aris-
ing in the KLIBAS system were written under the assumption that better solutions would be found for the
system if the problems were analysed in a formal manner, making it possible to communicate problems that
are being found in a more systematically than before and make sure that problems are sufficiently specified
and understood before a solution is attempted.

"Reducing the internal time friction for the SYNOP data collection at DNMI" was the first problem
given this systematic treatment. The note was written in its final form on November the 27th and the

SYNO_INN program was consequently adjusted according to analysis and suggestions.

The second problem adressed was "Reading PIO obsercations into the KLIBAS database system at
DNMI". This resulted in the detection of an error in the PIO database system of KLIBAS which was con-
sequently corrected.

The next three notes are related to problems with the AWS computer programs. The note "Dataflow
in the KLIBAS database system at DNMI: Updating SAWS in ALV with AWS observations from ALA"
resulted in an update of the ALA2ALV program documented in KLIBAS-report no. 66/98. Results from
the note "Facing a problem of robustness on the MNDZHLA AWS data transportation program in the
KLIBAS database system at DNMI" ended up as KLIBAS-report no. 67/98, while the problem discussed as
“"Comparing collapse history f or the MND2ALA and MND2ZHLA data transportation programs in the
KLIBAS database system at DNMI" resulted in KLIBAS-report no. 68/98.

After these three major updates in the KLIBAS system, a lesser but still important problems concern-
ing the user interfaces was discussed as "Problems in AWS statistical reports due to running Oracle i differ-
ent environments for the KLIBAS database system at DNMI".

The note "Deciding the future of the CONTSYNI data check for the KLIMA control routine at the
Climatology Dicition at DNMI" did on the other hand result in a total reprogramming of one of the central
quality control programs. The result was internally published as KLIBAS-report no. 69/98.

The final note "Reading and converting SAWS weather observations V1/V2/V3 into the KLIBAS
database system at DNMI" caused reprogramming for the PIO_INN system, but in this case not drastical
changes of the type that would imply a need for updating the system documentation.

These eight KLIBAS research notes make the body of this first volume of KLIBAS research notes.
The prime reason for documenting the analysis of problems is to hopefully gain long term advantage of a
better understanding of how and why KLIBAS fails. Even though only special cases of problems with the
KLIBAS system is discussed, some of these cases may examplify general problems that can arise in other
systems and contexts.

Petter @gland
Blindern, January 4th 1999

References:

Moe, M., Iden, X., Kjensli, P.O., Kristiansen, 5., Lystad, S.L., Nordin, B., Vidal, A.M. and Aasen, T, 1991,
Database/maskin prosjektet i Klimaavd. 1990-1991. Informasjonsmodell, flagging og kontroller.
Status pr. 30.06.9]. KLIMA-report no. 32/91, DNMIL, Oslo.

Moe, M., Bgland, Vidal, AM., Aasen, T. and Kjensli, P.O., 1994: Databaseprosjektet Klimaavdelingen.
Status pr 31.12.1993. KLIBAS-report no. 03/94, DNMI, Oslo.

Moe, M., 1995: KLIBAS - The DNMI Climatological Database System. KLIMA-report no. 22/95, DNMI,
Oslo

Moe, M., Kjensli, P.O., Vidal, AM., @gland, P, and Aasen, T., 1996: KLIBAS - status 30.06.1996.
KLIBAS-report no. 13/96, DNMI, Oslo.

@gland, P, Iden, K.A., Kjensli, P.O,, Lystad, S.L., Moe, M., Nordin, B., Vidal, AM. and Aasen, T., 1992;
Databaseprosjektet i Klimaavdelingen. Status pr 23.12.1992. KLIMA-report no. 53/92, DNMI,
Oslo.

@gland, P, Kjensli, P.O., Moe, M., Vidal, AM., and Aasen, T., 1994: Databaseprosjekiet i Klimaavdelin-
gen. Status prforste halvér 1994. KLIBAS-report no. 24/94, DNMLI, Oslo.

@gland, P., Kjensli, P.O., Moe, M., Vidal, AM., and Aasen, T., 1995: Databaseprasjektet i Klimaavdelin-
gen. Status pr drsskifte 1994/95. KLIBAS-report no. 06/95, DNMI, Oslo.

@gland, P., Kjensli, P.O., Moe, M., Vidal, A.M., and Aasen, T., 1996: Databasegruppen 1995 KLIBAS-
report no. 01/96, DNMI, Oslo.

-5.

@gland, P., Kjensli, PO., Moe, M., Vidal, AM., and Aasen, T., 1997: Referater fra mpter i databasegrup-
pen 1996. KLIBAS-report no. 03/97, DNMI, Oslo.

@Ggland, P., 1998: Arbeid i databasegruppen 1997, KLIBAS-report no. 07/98, DNML, Oslo.
(igland, P., 1999: KLIBAS process improvement December 1998. KLIBAS-note no. 01/99, DNMI, Oslo.

Reducing the internal time fricton for the SYNOP data collection at
DNMI

Perter @gland

Norwegian Meteorological Institute
November 27th, 1998

ABSTRACT

Due to repeated changes in the SYNO_INN data collection system, including the
adding of statistical control methods for making it possible for the system to do self diag-
nosis and prevent uncontrolled breakdown, each run of the system seem to take alarm-
ingly longer time from month to month. Although the reason for this development is not
fully understood, various aspects of it is analysed and explained, leading to suggestions

for further implementations and research.

SYNOP data collection

The purpose of the SYNO_INN data col-
Jection system is to read binary GTS files that are

updated every 5 minutes into an Oracle RDBS as -

often as necessary, at the moment every 10 min-
utes. The present SYNO_INN program has been
developed through several versions.

Using data from realtime synop data flow
for insert in the climatological data base was dis-
cussed in 1985. Andresen et al. [1] wrote at the
time a report addressing quality control issues in
relation to observations being digitalised outside
the Climatology Division.

The dataflow then implemented consisted
on only reading observations relevant for long
time storage in the Climatological database sys-
tem on the ND computers. The dataflow was
summarized in further detail during the autumn of
1993 by @gland, Aasen and Vidal [2] as a part of
the plans for the implementation of a new data
collection system to be build for an Oracle RDMS
on a SGI platform.

The first version of the SYNO_INN pro-
gram, reading all observations from zone one on
the synoXX-files into Oracle database tables, was
implemented and put in operation in February
1994 (Pgland [3]) and revised due to upgrading
the Oracle database system from version 6.0 to
7.0 in November 1994 [4], and revised once again
by the end of the year (5] with a final revision 2.0

in April 1995 [6].

Runtime statistics from the system were
systematically collected and summarised under

" the name GTS2FIFO in monthly reports from

June 1995 and onwards (@gland [7]). The name
GTS2FIFO was chosen due to a FIFO-construc-
tion modelled after the work by Schgyen {8] on
administrative data.

In October 1996 the SYNO_INN program
was completely rewritten [9], later versions up to
the present [10-15] being grown out of this code..
PP In figure 1 runtime statistics in terms of
median value of seconds for each month is plot-
ted. The change of from version 2.0 to 3.0 in
October 1996 is marked by a circle. The system
appears faster after this change, but still there
seems to be a tendency of runtime increasing by
the month. An explanation for this growth in
time, that is mentioned in the SYNO_INN
reports, is that the datatables are growing and
each insert consequently takes longer time.

From February 1996 and onwards the defi-
nition used for runtime logging was changed, now
logging the time used for inserting each syno-file
instead of loggin a session or group of files. This
means that runtime statistics are not comensu-
rable before and after this. The new curve show
the same alarming characteristics, however, as the
old one in that it is rapidly increasing. In Novem-
ber 1998 this caused consequtive runs of the pro-
gram to bump into each other, causing warning

and error messages with a pro spect of total col-
lapse within short time.

150 —]
100 =

50 —

I [I
Feb97 Feb98 Nov98

Fig 2. Average runtime in seconds

As with the GTS2FIFO versions of the
SYNOQ_INN program, figure 2 shows the increase
in runtime averages from month to month. The
revisions 3.2, 3.3, 3.4, 3.5 and 3.6 of SYNO_INN
arc marked by circles on the curve. Unfortunately
statistical values for the interval May 1998 to
October 1998 have been lost due to failure while
testing version 3.6 of the program in early
November, but, nevertheless, remaining values
seem give a rather non-blurred picture of the criti-
cal development of the program.

Measuring runtime statistics

In order to give objective measurements of
how long each particular run takes, the execution
time is calculated by the program as it runs and
added to a log file.

The runtime T(s)=t(s)}1g(s5) of
SYNO_INN is defined in seconds without deci-
mals where 14(s) and #(s) correspond to the SGI
internal clocktime read by the program started at s
as soon as it starts to run and when it is about to
terminate.

By the end of the month, in order not to
overuse disk space, the measurcments of the
months are replaced by a runtime average and a
standard deviation. Statistics for November 1998
amounts, so far, to the following:

Shortest time of execution: 1 second
Longest time of execution: 2970 seconds
Runtime average: 151.1 seconds

Standard deviation: 138.8 seconds

Number of runs: 13876

The plot in figure 3 shows the frequency
distribution of T for November 1998. Character-
istics of the distribution is a long right hand tail
and three peaks.

1500 —

1000 —

500 —

I I | I I
1 141 282 422 567

Fig 3. Runtime frequency distribution

The distinct peaks in the frequency distribu-
tion in figure 4 could be explained by a change of
mean value for the process T{s) during the
month. A time plot consisting of daily averages of
T is presented in figure 4 does, in fact, seem to
support this theory.

400

300 —

200 —

100 —

] I] I I
1 7 15 22 30

Fig. 4 Day by day runtime averages

The information in figure 4 shows that there
is a significant time gradient at the time of when
the version 3.6 of the system was put in operation.
After this peak the program goes back to more
normal behaviour although it still seems to be
running slower and slower for each consequtive

day of the month.

Possible sources for gross time consumption

The SYNO_INN program makes use of
several Oracle datatables and data files for tempo-
rary storage, logging and process control. There
are three datatables that are being updated with
each observations that is read by the program:

1. TELE contains only basic observations at
00, 06, 12 and 18 UTC. Observations are
not systematically deleted from the table, so
there is a significant accumulation of data
on a daily and monthly basis.

SYNOP contains all observatons found on
the synoXX-files. As observations are not
being systematically deleted on this table
either, there is here an even greater accumu-
lation of data making the table more com-
plex and timeconsuming to update.

SYNOP2 contains only the last 90 days of
SYNOP with some additional observations
from the automatic weather stations that are
not a part of the synop network. As indices
are updated the table may demand more
time on each update as the months go on
although the amount of data is kept con-
stant.

As can be seen from figure 5, the SYNOP
data table contains more than twice as much data
as the SYNOP? table, the TELE table somewhat
less data than the SYNOP table but still signifi-
cantly more than the SYNOP2 table. The
SYNOP table contains data, from one or two up
to 24 observations pr station pr day, from April
1998 until the present month. The TELE table
contains data from July 1997 with a maximum of
four observations each day, but the data set does
not contain a complete list of stations until Febru
ary 1998.

300000 —

200000 —

100000 —

[

| I |
SYNOP TELE SYNOP2

Fig 5. The number of rows presently in each table

Another possible source for time consump-
tion may be the log files that are being updated on
every run of the program. The files devide into
two group, one group of files that is being used
for system log and one group of files that is being
used for data control. The group of system files
consist of’

The ERR files. These files are being
updated whenever a system warning or sys-
tem error is recognized by the SYNO_INN
program. More warnings generate larger
files, and as the files are being read on each
run, the total ellapse of time may increase.

The FIX files. These are rather small files
compared with the ERR files and contain
mostly manually vpdated information on
system changes whenever SYNO_INN is
being altered or reprogrammed.

The LOG file. This is a file that grows with
each run, and as the SYNO_INN program
is run typically around 10000 times in a
month, this file would inflict on the daily
growth in time consumption. While it
presently contains log from all runs of
SYNO_INN, in the period Mars to Septem-
ber 1998 it only contained log from the
synoXX files containing observations at 00,
06, 12 and 18 UTC.

a)

b)

c)

While the size of the files a) to ¢) above are
only depending on the performance of the
SYNOQ_INN program, the size of files d} to f)
below is a function of the quality of the observa-
tions in the synopXX files which means that the
size of the files are not as controllable as a) to ¢).

d) The TST files. These files arc used for log-
ging data errors or data problems that have
to be handled while running SYNO_INN.
In the TELE, SYNOP and SYNOP?2 tables
there are restrictions on the meteorological
values to be stored, and values out of range
will not be inserted. Whenever such a case
is found, or the time of observation does
not correspond with definitions in data table
TELE_PARA, the instance is logged on a
TST file.

The TMP files. In order to make statistical
process control (SPC) there is a need for
counting and remembering how many
errors or problems that have been detected
each day. The TMP files are updated and
contain the total number of problems and
the distribution of problems among stations
for each run.

The TXT files. The output from the SPC is
presented in curves and statistical values for
daily check and monthly publication in the
Process Improvement reports. The size of
each TXT file does, however, not change
radically neither by day nor month,

€)

N

In addition to these six groups of files there
is also a group called the STAT files that is
presently not being used by the system, but was
designed for producing statistics concerning how
long the program had to wait for a particular sta-
tion to report an observations. The purpose of the
files was in other words to make a list over sta-
tions order by how punctual each station was. As
this has turned out to be a less important issue
than originally thought, the functions in
SYNO_INN used for reading and updating these
files have been temporarily put out of function.

30000 —

20000 —

10000 —

I I | i | f
mp emr log fix st txt

Fig 6. Size (blocks) for groups of files

As is visualized in in figure 6, the size of
the tmp files arc almost 8 times as big as the err
files. The log file is also quite large, almost as
large as the sum of the twelve err files. On the
other hand, the total size made up from the sum of
the three last groups is less than 13 times as small
as the log file, and should play an insignificant
role in the time consumption of the program.

Conclusions

In order to find out how each of the plausi-
ble causes for runtime fatigue may infect the pro-
gram, daily measurements of file size and table
size should be recorded in order to perform
regression analysis.

From the present analysis, the most reason-
able thing to do is to find a way to reduce the size
of the tmp files. However, as the program history
shows, there is a tendency of increase in time con-
sumption, not having anything to do with the tmp
files, so daily recording of file sizes and table
sizes should be done anyway.

References

[1] Andresen, L. et al. Rapport nr I fra
datakontroil-gruppen. KLIMA work note

no. 41, DNMI, Oslo, 1985.

@gland, P, Aasen, T., Vidal, AM. Data
inn - spesifikasjonsrapport. KLIBASI-
report no. 01/94, DNMI, Oslo, 1994,

@gland, P. Innlasting av synoptiske data til
arbeidsiager. KLIBAS-report no. 05/94,
DNMI, Osto, 1994.

@giand, P Omlegging av databaserutiner

ved overgang fra Oracle6 til Oracle.
KLIBAS-report no. 28/94, DNMI, Oslo,

(2]

(3]

[4]

(5]

(6]

(71

(8]

(9]

(10}

(1]

[12]

{13}

(14]

(15]

1954,

Pgland, P. Innlasting av synoptiske data til
arbeidslager. Revidert utgave. KLIBAS-
report no. 40/94, DNMI, Oslo, 1994.

@igland, P. Innlasting av synoptiske data til
arbeidslager. Versjon 2.0. KLIBAS-report
no. 18/95, DNMI, Oslo, 1995.

Pgland, P. Driftsrapport juni 1995,
KLIBAS-note no. 09/95, DNMI, Oslo,
1994,

Schgyen, A. Brukerveiledning LOG-
DATABASE Vv2.0. DNMI, EDB-avdelin-
gen, Oslo, 1994,

@gland, P. Eksperimentell overforing av
data fra syno-filer til Oracle-database. Ver-
sjon 3.0. KLIBAS-report no. 15/96, DNMI,
Oslo, 1996.

@gland, P. Overfpring av data fra syno-
filer til tabeller SYNOP og TELE. Versjon
3.1, KLIBAS-report no. 04/97, DNMI,
Oslo, 1997.

@gland, P. Dataoverfpring SYNO_INN
v.3.2 fra syno-filer til tabeller SYNOP og
TELE med utvidet sikkerher. KLIBAS-
report no. 55/97, DNMI, Oslo, 1997.

@gland, P. SYNO_INN v.3.3: Revised for
inserting international synops into TELE.
KLIBAS-report no. 03/98, DNMI, Oslo,
1998.

@gland, P. Reading data from syno-files
into KLIBAS: SYNO_INN v.3.4. KLIBAS-
report no. 54/98, DNMI, Oslo, 1998.

@gland, P. Reading data from syno-files
into KLIBAS: SYNO_INN v.3.5. KLIBAS-
report no. 59/98, DNMI, Oslo, 1998.

@gland, P. Reading data from syno-files
into KLIBAS: SYNO_INN v.3.6. KLIBAS-
report no. 65/98, DNMI, Oslo, 1998.

-10-

Reading PIO observations into the KLIBAS database system at DNMI

Petter Pgland

Norwegian Meteorological Institute
December 4th, 1998

ABSTRACT

In order to have a reliable routine for reading PIO observations (observations gen-
erated by use of Personal Computers on the observation sites) into the KLIBAS database
system at the Climatology Division at DNMI, the PIO_INN program has been conti-
nously revised during the second half of 1998. The system is still, however, not too sta-
ble, and while the reason for the frequent collaps is not fully understood to the extent of
having eliminated all problems, the latest reason for the system breaking down is d
iscussed and analysed in this paper, suggesting reprogramming that may make it more

robust.

PIO weather stations

Primo December 1998, the PIO_INN com-
puter program is reading observations from eight
PIO weather stations. Figure 1 shows the number
of files read each month since the intiation of the
system in Mars 1998.

8

7 -

1 1 1 1 T "1 1T 11
Mar AprMay Jun Jul Aug Sep Oct NovDec

Fig 1.Number of files with PIO observations

On the area where the PIO files are to be found,
observation files from semi-automatic weather
stations (SAWS) are also placed. The first test
SAWS being from June 1998. In July there were
§ stations of this kind, in August to November 14
while there have been none in December so far.

Program development

The development of the PIO_INN system
has so far consisted of two phases. Shortly after
PIO data were a part of the DNMI datafiow sys-
tems on Mars 23rd 1998, see user guide in [1], an
initial verson of the PIO_INN program, described
in [2], was operative in the sense that it was read-
ing observations from the pio-files into the PIO
datatable in the Oracle RDBS of the KILIBAS
database system on a daily basis. An instruction
on how the Climatology Division were to handie
PIO observations is described in [3].

The files generated during these early
stages of the PTIO project contained only parame-
tres for barometre temperature (Bp), air pressure
(PO, PE, FT), evaporation (EV), air temperature
(TT, TnT, TN_12, TxT, TX_12), ground level
temperature (TG_12), water temperature (TW)
and relative humidity (UU), all acronyms
explained in [1].

The initial version of PIO_INN was revised
in July 1998 by adding log functions in order to
add a systematic control on whether the program
was running according to specifications or not and
to which extent observations were being made at
correct time. The version 1.1 of the systein, that
is described in (4], was also augmented in order to
handle a complete set of parametres, as described
in [1], not only the test parametres being used on
early files.

During August 1998 the PIO_INN system
was significantly reprogrammed in order to merge
data from semi-automatic weather stations
(SAWS) into the PIO dataflow as documented in
[5]. Due to the complex nature of the SAWS
files, using a mixed approach for marking missing
values, including attainable values to signify
missing ones, this second version of the PIO_INN
system has been so far revised twice, documented
in [6] and [7].

1n the version 2.1 of PIO_INN, described in
[6], statistical charts were added to be produced
by the program in order to make it easier to see
whether the program was performing normally or
not. Problems having to do with data format on
the SAWS files was systematically documented
and reported to those responsible for the produc-
ing the files.

The version 2.2, described in [7), went a
step further by adding a simple quality control
routine to the program in order to eliminate obser-
vations that could not be inserted into the PIO
datatable, causing the system to break down, and
displaying quality control resulis by methods of
statistical process control (SPC) as a help to
detect whether the program was under control or
not.

Robustness

The first version of PIO_INN started run-
ning on the 12th of May 1998. In figure 2 the rel-
ative number of abnormal (defective) terminations
of the program so far is plotted.

0.8

0.6 —

0.4 —

I T T 1T 1 1
May Jun Jul Aug Sep Oct Nov Dec

212 -

Fig 2. Relative number of executions to fail 1998

As can be seen in figure 2, with exception
of recent program failure of early December, the
tendency since the design of version 1.1 in July

1998 has been a gradual improvement of the sys-
tem in terms of reporting less and less defects on
the average each month. The general average rel-
ative number of defects for the eight month period
is 0.231 as indicated by the dashed line.

The program is run about 200 times each
month on the average. According to automatic
runs by the crontab schedule where it is to be
executed every 3 hours or eight times a day, it
should run 240 times on a 30 day month. The
average being below this value is explained, how-
ever, by the three hour schedule tun by the
crontab prior to redefinitions in October. 10n the
beginning the program was automatically run
only four times a day.

The December problem

In addition to logging the number of fail-
ures each month, the program also logs the cause
of failure, meaning, of course, that the only
defects used in these statistics are the ones that
are being detected by the system itself. Program
crash because of bus error or other technical fault
causing uncontrolled abortion are not normally
logged.

There are two types of problems that are
being logged by the system. The first one is
called warnings and it indicates that something is
wrong in the system, although not critical enough
to stop execution. The other type is called errors,
causing immediate controlled breakdown of the
program, logging the sequence of functions that
resulted in the fatal state.

As identification of errors are kept on an
revolving 12 month basis, the reasons for the rise
in relative defects level in figure 2 should be
found on the log files. In fact, the reason is found
by inspection of the log files to be an error having
to do with problems reading data from a PIO sta-
tion at Brat4 - Slettom at Sjék in Oppland, station
no. 15730.

In this case, it can be read from the log files
that the error has been reported on October 1st,
November 13th, November 20th and then on
numerous occations early December up to present
day (December fourth).

1t can also be read from the files that the
error occured in the function "insertDefectsSta-
tion" which was called by the function "insert-
Data", called by the function “readData”, called
by the function "system_test" which was called
by the main loop of the program.

By running the program in test mode and
using station no. 15730 as test station, the pro-
gram is constructed in such a manner that the
error can be reconstructed. From doing so it is
revealed that the program was not designed in a
proper manner to handle new stations being added
to the string of PIO stations, failing to insert data
if the station in question was not already repre-
sented in the PIO datatable.

Why did the program break down?

Why did it happen that the program only
broke down sporadically in October and Novem-
ber while it broke down systematically in Decem-
ber?

The first file for station no. 15730 is the
October file. This file only conatins one singular
observation, the first of October at 11:00 UTC.
By using UNIX functions to check file status, we
see that the file was last updated on October the
first at 12:10 UTC. PIQ_INN being constructed
to only read files that have been updated since last
session, this file would never be read again.

Similarily the November file was last
updated on November 20th at 12:11 UTC, proba-
bly meaning that the only updates on this file
where on November 13th and November 20th,
causing the two breakdowns of the system.

The December file containing observations
from the first day at 12:00, 18:00 and 21:00 and
then then observations systematically at 00:00,
03:00, 06:00, 12:00, 18:00 and 21:00 UTC is in
correspondance with what was noted above.

Conclusion

Reprogramming PIO_INN so that the group
of stations being used for checking validity of
observations consist of both stations already
stored in the PIO table and possible new stations
defined by the input files should prevent this type
of problems from reoccuring, adding to the stabil-
ity and robustness of the PIO_INN system.

References

[1] O. Benlid, "Inntastingsprogram for Synop-
stasjoner. Brukerveiledning for Pio versjon
32" in PC i observasjonstjenesten:
PIO_INN vl.l. (appendix), KLIBAS-

report no. 25/98, DNMI, Oslo, 1998,

P. Bgland, Computer program PIO_INN.
KLIBAS-report no. 19/98, DNMI, Oslo,
1998.

(2]

-13-

(3]

(4]

(5]

(6}

(71

AM. Vidal and PO. Kjensli, "5 PIO
stasjoner ble satt i drift 24. mars” in PC i
observasjonstjenesten: PIO_INN v.i.L
(appendix), KLIBAS-report no. 25/98,
DNMI, Oslo, 1998.

P. @gland, PC i observasjonsijenesten:
PIO_INN v.1.1. KLIBAS-report no. 25/98,
DNMI, Oslo, 1998.

P. @gland, PC i observasjonsijenesten:
PIO_INN v.2.0. KLIBAS-report no. 41/98,
DNMI, Oslo, 1998.

P. @gland, PC | observasjonsijenesten:
PIO_INN v.2.1. KLIBAS-report no. 53/9%,
DNMLI, Oslo, 1998.

P. @gland, PC i observasjonstjenesten:
PIO_INN v.2.2. KLIBAS-report no. 58/98,
DNMI, Oslo, 1998.

Datafiow in the KLIBAS database system at DNMI: Updating SAWS
in ALV with AWS observations from ALA

Petter @gland

Norwegian Meteorological Institute
December 14th, 1998

ABSTRACT

Semi-Automatic Weather Stations (SAWS) are handled as a part of the Non-Auto-
matic Weather Stations in the DNMI data preparations routines (ALV) at the Climatology
Division. Part of this treatment is an automatic update of values from the Automatic
Weather Stations (AWS) that are being treated seperately by a routine for exclusively
automated weather stations (ALA). A system ALAZALV is responsible for this update,
but even though it has been run systematically since July 1998 it is still not stable, and w
hile the reason for the frequent collaps is not fully understood to the extent of having
eliminated all problems, the latest reason for the system breaking down is discussed and
analysed in this paper, suggesting reprogramming that may make the program more

robust.

Semi-Automatic Weather Stations

The first Semi-Automatic Weather Station
(SAWS) to be established was a station at Jan
Mayen on the 4th of October 1995. Since then
more and more SAWS have been included in the
network. At present there are 16 such stations, as
shown on figure 1.

15 —

10 —

! | I I
1995 1996 1697 1998

Fig 1.Number of SAWS at DNMI

In December 1995 there was one operative
SAWS. In December 1996 this had increased to
seven stations, and then again 12 in December

1997 and 16 in December 1998. On the average
four stations have been added to the network each
year.

Program development

The development of the ALA2ALV pro-
gram has so far consisted of two versions, the ini-
tial version [1] and a revised version 1.1 docu-
mented in [2].

The inital version of the program was made
as a test program, and did only update values in
the data table TELE. In August 1998, as the pro-
gram had been running successfully for about a
month, the revision 1.1 was established which
included functions for updating and flagging
observations in the data table ALV.

Updates in the TELE table where flagged
with values ’5' in order to distinguish the update
from other types of updates done by other pro-
grams, while a value *1° was used in the ALV
table as this table only accepts values 0" and *1’.

Robustness

The first version of ALA2ALV started run-
ning on the 23rd of July 1998. In figure 2 the rel-
ative number of abnormal (defective) terminations

of the program so far is plotted.

0.6 —

04 -

0.2 4

04

I I] | i i
Jul98 Aug98 Sep98 Oct98 Nov98 Dec98

Fig 2. Relative number of executions to fail

As can be seen in figure 2, with exception
of program failure in November, the tendency
since the design of version 1.1 in August 1998 has
been a gradual improvement of the system in
terms of reporting less and less defects on the
average each month. The general average relative
number of defects for the eight month period is
0.1928 as indicated by the dashed line.

The program is run about 85 times each
month on the average, including numerous fest
runs during this period. The program is designed
to be run as a part of the AUTO_INN system,
documented in [3], and should hence be run once
a day.

Although not indicated on figure 2, the pro-
gram has been systematically terminating in error
since 25th of November and all of December up
to the present date,

The November/December problem

In addition to logging the number of fail-
ures each month, the program also logs the cause
of failure, meaning, of course, that the only
defects used in these statistics are the ones that
are being detected by the system itself. Program
crash because of bus error or other technical fault
causing uncontrolled abortion are not normally
logged.

There are two types of problems that are
being logged by the system. The first one is
called warnings which indicate that something is
wrong in the system, although not critical enough
to stop execution. The other type is called errors,
causing immediate controlled breakdown of the
program, logging the sequence of functions that

-15-

resulted in the fatal state.

As identification of errors are kept on an
revolving 12 month basis, the reasons for the rise
in relative defects level in figure 2 in November is
to be found on the log files. In fact, the reason is
found by inspection of the log files to be an error
having to do with problems reading values of PP
and TN being out of bounds within a function
"sprintfloat”.

Why did the program break down?

One of the reported problems was tempera-
ture on Blindern reaching bottom level of 273.1
centigrads on December 10th at 18:00 UTC.
Other stations also reported similarily unlikely
low temperatures late November and December.
The problem is reported to the Instrument Divi-
sion. Apparently sensors or sensor software may
be out of order.

The other problem that is systematically
recorded, air pressure tendency of value 5553.5 is
registered on a total of 108 observations since
November 21st. In this case the IT department is
notified if there may have been changes in the
observation system using this new value as a
"missing value" indicator.

Conclusion

In respect of how the system has been
working, reporting an error is somewhat misguid-
ing in this case, and the statement in the sprint-
float function should be adjusted to reporting a
warning instead as the problem is handled by the
program and does not cause breakdown. The
problem has nothing to do with the robustness of
the program.

References

{11 P. @gland, Computer program ALAZALV,
KLIBAS-report no. 27/98, DNMI, Oslo,
1998,

[21 P @gland, Updating AWS in ALV and TELE
by ALA2ALV v.i.I, KLIBAS-report no.
45/98, DNMI, Oslo, 1998.

(3] P @gland, Dggnlig dataoverfgring med

AUTO_INN v.1.0 og AUTO2ZTELE v.2.0,
KLIBAS-report no. 56/98, DNMI, Oslo,
1997.

Facing a problem of robustness on the MND2HLA AWS data
transportation program in the KLIBAS database system at DNMI

Petter Pgland

Norwegian Meteorological Institute
December 15th, 1998

ABSTRACT

The program MNDZ2ALA is an interface program that reads observations from a
format generated by the AUTO data collection system run by the IT Division and inserts
into datatables in the KLIBAS database system run by the Climatology Division. Even
though it has been run systematically since October 1995 it is still not compietely stable,
and while the reason for the frequent collaps is not fully understood to the extent of hav-
ing eliminated all problems, the latest reason for the system breaking down is dis cussed
and analysed in this paper, suggesting reprogramming that may make the program more

robust.

The MND2HLA program

The MND2HLA program is a part of the
AUTO_INN data transport and storage system
that was constructed in order to read AWS data
from the "manadsfil"-format, or mnd-format as
they are refered to here after, described by Waage
in his description of the AUTO data collection
and formatting system [1], and inserting observa-
tions into Oracle RDMS A-data tables.

The first version of AUTOQ_INN, called
MND2ALA at the time, was completed in Octo-
ber 1994 (2] and copied only data from the mnd-
format files to the ALA data table in the Oracle
RDBS KLIBAS. The system was revised in Jan-
uary 1995 (gland [3)).

In 1995 the inital programs were aug-
mented into a system named ADI, the first version
appearing in Mars 1995 [4] with a revision in
May 1995 [5].

The present system, AUTO_INN was
developed from the ADI system in June 1997 [6]
and revised in July 1997 [7], and the present
MND2HLA program is a part of this system.

Robustness

With the MND2HLA program there is alog
system, updated since October 1995, containing
the number of times the program was run, how

many times it failed, how long time it makes on
the average on each daily run and how many lines
of code the program consists of.

In November 1996 the practice of logging
was changed by logging each file instead of the
complete session. Recent data is thus plotted in
figure 1.

0.05 <

0.04 -

0.03 —

0.02

0.01 —

0—

] [i | |
Jan97 Jul97 Jan98 Jul98 Dec98

Fig 1. Relative number of executions to fail

As can be seen in figure 1, there is no ten-
dency of the program stabilising. On the contrary,
it appears to jump randomnly up and down for
each consequtive month with particulary nasty
cases in May 1997 where 16 of the 476 runs

failed and in November 1998 where 9 of the 681
runs failed causing even more problems in
December.

In both these cases the total run of pro-
grams is significantly lower than expected. The
average number of runs of this program from
November 1996 and onwards has been 1160 runs
a month. Numbers below this may have to do
with the program not being run as the mother pro-
gram AUTO_INN has already failed and termi-
nated.

The November/December problem

In addition to logging the number of fail-
ures each month, the program also logs the cause
of failure, meaning that the only defects used in
these statistics are the ones that are being detected
by the system itself. Program-crash because of
bus error or other technical fault causing uncon-
trolled abortion is not normaily logged.

There are two types of problems that are
being logged by the system. The first one is
called warnings and it indicates that something is
wrong in the system, although not critical enough
to stop execution. The other type is called errors,
causing immediate controlled breakdown of the
program, logging the sequence of functions that
resulted in the fatal state.

As identification of ermors are kept on an
revolving 12 month basis, the reasons for the rise
in relative defects level in figure 2 should be
found on the log files. In fact, the reason is found
by inspection of the log files to be an error having
to do, among other things, with problems reading
data from an AWS station at Kvitfjell in Oppland,
station no. 13160.

It can also be read from the files that the
error occured in the function "insert_data_hla"
which was called by the function "insert_data”,
called by the function "systern_test” which was
called by the main loop of the program.

The Oracle error message in
"insert_data_hla" function explains that
"ORA-01438: value larger than specified preci-
sion allows for this column”, and by further anal-
ysis and debugging of the MND2HLA program it
appears the the program is trying to insert values
of the number of minutes in an hour when precip-
titation was measured to be 187 minutes, 202
minutes, 195 minutes and so on but where the col-
umn in the data table would only accept two-digit
values, preferably between 0 and 60.

-17-

Why did the program break down?

Discussing the problems with the IT Divi-
sion it appears that the AUTO data collection sys-
tem was modified around the 25th of November.
While the AUTO system normally eliminate val-
ues that are far out of range of what would be
physically expected, this filter did not function on
all sensor elements after modification and hence
the breakdown of the MND2HILA program.

Conclusion

Even though the reason why the
MND2HLA program broke down in November
1998 is not very likely to happen again, it was
nevertheless a weakness of the MND2ZHLA pro-
gram that it did not handle the situation more ele-
gantly. The imperative thing to do then, is to
reprogram MND2HLA so that values that wont fit
with the table format are automatically rejected
with a warning, without causing the whole system
to break down.

References

[1] Waage, E. Brukarrettleiing AUTO.
Datainnsamling frd automatiske
vérstasjonar. KLIBAS-report no. 31/94,

DNMI, Oslo, 1994,

@gland, P. Mdnedlig rutine for innlasting
av automatstasjonsdata i arbeidslager
KLIBAS-report no, 32/94, DNMI, Oslo,
1994,

@gland, P. Innlasting og uthenting av
automatsiasjonsdata. Ny utgave.
KLIBAS-report no. 07/95, DNMI, Oslo,
1995.

@gland, P. ADI: Automatisk datainnlasting
for AUTO til arbeidsiager KLIBAS-report
no. 13/95, DNMI, Oslo, 1995.

@gland, P. Auwtomatisk datainnlasting for
AUTO med mdnedlig oppdatering av hov-
edlager: ADI v1.] KLIBAS-report no.
16/95, DNMI, Oslo, 1995.

@gland, P. Dggnlig dataoverfgring med
AUTO_INN v.1.0 og AUTO2TELE v.2.0
KLIBAS-teport no. 56/97, DNMI, Oslo,
1997.

@gland, P. Innlesing AUTO_INN v.1.1 for
AVS: Programmer mnd2ala, mnd2hia,
ala2tele, adk og mkk KLIBAS-report no.
59/97, DNMI, Oslo, 1997.

[2]

3]

(4]

15]

(6]

!

-18 -

Comparing collapse history for the MND2ALA and MND2HLA data
transportation program in the KLIBAS database system at DNMI

Petter Ogland

Norwegian Meteorological Institute
December 16th, 1998

ABSTRACT

The programs MND2ALA and MND2HLA are interface programs that read obser-
vations from a format generated by the AUTO data collection system run by the IT Divi-
sion and inserting these observations into datatables in the KLIBAS database system run
by the Climatology Division. Even though the programs have been run systematically
since June and October 1995, they are still not completely stable. ‘While the reason for
the frequent collapses are not fully understood to the extent of having eliminated all
proble ms, the latest reason for the programs breaking down is discussed and analysed in

this paper, suggesting reprogramming that may make the programs more robust.

The MND2HLA and MND2ALA programs

Both the MND2HLA and the MND2ZALA
programs are part of the AUTO_INN data trans-
port and storage system that was constructed in
order to read AWS data from the "ménadsfil"-for-
mat (mnd-format) described by Waage in his
description of the AUTO data collection and for-
matting system {1], and inserting observations
into QOracle RDMS data tables.

The first version of AUTO_INN, called
MND2ALA at the time, was completed in Octo-
ber 1994 [2] and copied only data from the mnd-
format files to the ALA data table in the Oracle
RDBS KLIBAS. The system was revised and re-
documented [3] in January 1995.

In 1995 the inital programs were aug-
mented into a system named ADI, the first version
appearing in Mars 1995 {4] with a revision in
May 1995 [5].

The present system, AUTO_INN was
developed from the ADI system in June 1997 {6)
and revised in July 1997 [7], and the present
MND2ALA program is a part of this system. The
latest version 1.2 of the MNDZHLA program is
described in [8].

Collapse history

With both programs there are log systems,
updated since June and October 1995 respec-
tively, containing the number of times the pro-
gram was run, how many times it failed, how long
time it makes on the average on each daily run
and how many lines of code the program CONSists
of.

In November 1996 the practice of logging
was changed for both programs by logging each
file instead of the complete session. Only recent
data is thus plotted in figures 1 and 2.

0.04 —

0.03 -

0.02 —

0.01

0

i | | | [
Jan97 Jul97 Jan98 Tul98 Dec98

Fig 1. Relative number of failures for MNDZALA

As can be seen in figure 1, there is no ten-
dency of the program MND2ALA stabilising. On
the contrary, it appears to jump randomnly up and
down for each consequtive month with local max-
ima in December 1996 where 8 out of 1056 runs
failed, Janvary 1998 where 4 out of 1699 runs
failed and November 1998 whre 78 of 1982 runs
failed.

0.05

0.04 —

0.03 —

0.02 —

0.01

0 -

[| I [|
Jan97 Jul97 Jan%8 Jul98 Dec98

Fig 2. Relative number of failures for MND2HLA

In figure 2 it can be seen that problems in
MND2HLA appear equally randomn as with the
MND2ALA program. The extreme cases for this
program are recorded in May 1997 where 16 of
the 476 runs failed and in November 1998 where
9 of the 681.

In both these cases the tota) run of
MND2HLA is significantly lower than expected.
The average number of runs of this program from
November 1996 and onwards has been 1160 runs
a month. Numbers below this may have to do
with the program not being run as the mother pro-
gram AUTO_INN has already failed and termi-
nated.

In figure 3 both programs are plotted
against each other.

As could also be seen from the seperate
plots in figures 1 and 2, the scatter plot in figure 3
also shows that there is very little evidence of a
linear relationship between the relative number of
failures in MND2ALA and MND2HLA.

This loss of linear dependancy would
indeed be expected as both MNDZALA and
MND2HLA are run by the AUTO_INN system,
and whenever MNDZALA breaks down,
AUTO_INN also breaks down and MND2HLA
will not be executed.

In other words, the failures recorded by
MND2HLA are those that were recorded when
MNDZALA was running normally.

0.05 -
0.04 —
0.03 —
0.02 —
0.01 -

o B o

I I I I I]
0 001 002 003 004 005

Fig 3. MND2ALA vs. MND2HLA (rel. failure)

When one of the programs MND2ALA or
MNDZHLA break down, it is often the case that
the source code of each program has to be edited,
often doing the same type of corrections in paral-
fell.

The reason why the programs are being run
seperately, the table update not being handled by
a single program, is that in the early version of the
AUTO_INN system it was considered sensible to
have different parts of the data flow structure
work in an orthogonal manner, that is indepen-
dantly of each other.

The system would appear more robust if a
problem only caused a part of system to break
down, not all of the system. Today, as the run of
MND2HLA depend on a normal run of
MND2ALA, this argument does no longer seem
to hold.

Should the two programs be merged into one?

In order to avoid doing something in a rash,
a pro-et-contra discussion is presented. Reasons
for merging the programs are:

P1. Even though it was initially a good idea to
have MND2ZALA and MND2HLA working
in parallell, the programs are no longer run
in an independent manner. Maintenance of
two similarily structured programs is more
demanding than just one.

P2. By reducing the amount of administrative
logs the focus on more relevant problems
may be higher.

On the other hand, there are also reasons
for not merging the programs:

Cl. The programs have been running seperately
for two and a half year. Unless it is an
undemanding task to merge, then system
should continue as it is as there are more
important issues to address than data flow

for AWS.

It may turn out in the future that the idea of
seperate flow may be a better one than the
integrated approach.

C2.

Al present, it seems that the pro arguments
P1 and P2 are more significantly than the argu-
ments C1 and C2. In fact, while the arguments P1
and P2 represent questions that are raised every
time the system breaks down, arguments C1 and
C2 do not seem very strang at all:

In the case of argument CI, it does not
appear likely that the effort of merging the pro-
grams will be any more difficult than the more
regularily effort put in at random times in order to
make the system function.

Even though argument C2 may turn out to
be right, if, say, MND2HLA is merged into
MND2ALA, the programs can still exist in seper-
ate code, although MND2HLA will not get
updated until it should turn out that argument C2
is valid.

In conclusion, yes, the the tow programs
should be merged into one.

References
(1] E. Waage, Brukarrettleiing AUTO.
Datainnsamling frd automatiske

vérstasjonar, KLIBAS-report no. 31/94,
DNMLI, Oslo, 1994,

P. Pgland, Mdnedlig rutine for innlasting
av automatstasjonsdata | arbeidslager,
KLIBAS-report no. 32/94, DNMI, Oslo,
1994.

P. Pgland, Innlasting og uthenting av
automatstasjonsdata. Ny utgave, KLIBAS-
report no. 07/95, DNMI, Oslo, 1995.

P. @gland, ADI: Automatisk datainnlasting
for AUTO til arbeidslager;, KLIBAS-report
no. 13/95, DNMI, Oslo, 1995.

P. @gland, Automatisk datainnlasting for
AUTO med mdnedlig oppdatering av hov-
edlager: ADI v.1.1, KLIBAS-report no.

(2]

(3]

(4]

(5]

-20-

(6]

(7]

{8i

16/95, DNMI, Oslo, 19935.

P. @gland, Dggnlig dataoverfgring med
AUTO _INN v.1.0 og AUTO2TELE v.2.0,
KLIBAS-report no. 56/97, DNMI, Oslo,
1997.

P. @gland, Innlesing AUTO_INN v.1.1 for
AVS: Programmer mnd2ala, mnd2hla,
alaZrele, adk og mkk, KLIBAS-report no.
59/97, DNMI, Oslo, 1997.

P @gland, Reading AWS mnd-files into A-
tables by MND2HLA v.1.2, KLIBAS-report
no. 67/98, DNMI, Oslo, 1998.

_2] -

Problems in AWS statistical reports due to running Oracle in different
environments for the KLIBAS database system at DNMI

Petter @gland

Norwegian Meteorological Institute
December 18th, 1998

ABSTRACT

Different Oracle environments for different users of the KLLIBAS database system
at DNMI causes problems when running certain programs. This paper adresses the issue,
analysing the cause of problem and makes a suggestion on how to avoid these types of

problems.

The KLIBAS users and Oracle environment

On the SGI database server (galeha) there
are defined 45 users of the "ka" category in the
/usr/people directory. For these users the Oracle
environment is normally defined on the .bashrc
file as default script language is in most cases
defined to be the Bourne Again shell (bash) [1].

The AWS statistical reports [2], accessible
throught the AUTO menu on galeha, were devel-
oped by the user kapo, and function normally for
this user. For other users, such as kahh, the inter-
face for these programs works less well, giving
meaningless symbols as default values.

The SQLPATH variable

When running a Sqlplus session, the inter-
face may either run in default mode or it may
apply a special mode defined by files that are
listed in the SQLPATH environment variable on
the .bashre file.

In this particular case, the user kapo is
using the default mode while other users, such as
kahh, is using the kapk mode defined on the
directory /klima/usr/people/kapk/orasql. In the
script login.sql that is executed automatically by
all Sqlplus sessions, an 'alter session’ command
makes the Sqlplus program return confirmative
information about the altering of the session.

The way the interface for the AUTO statis-
tics are generated, however, each call to Oracle by
the Sglplus interface does ONLY expect to have
search results generated in return, and, in fact,

additional administrative information causes the
interface not to function as intended.

How to handle the problem

There are at least two ways of handling the
problem of unwanted information returned by the
Sqlplus interface.

Al.

A2,

Altering the bashre script for all users.

Altering the environment locally whenever
the programs causing problems are being
run.

As alternative Al would result in a possible
update of 44 users, perhaps causing problems in
other situations where the information in question
may become useful, the alternative A2 is prefer-
able.

It turns out that A2 is not a very difficult
way to solve the problem. It can, for instance, be
done by adding a statement saying something like
setenv SQLPATH ".:$(HOME}" in the C-
shell environment program for each of the eight
programs that currently make up the AUTO
menu.

References

{11 S. Parker et al., UNIX unleashed, SAMS
publishing, Indianapolis, 1994.
P. @gland, Utskriftsrammer for verifikasjon
og testutskrift av AVS-data, KLIBAS-report
no. 16/96, DNMI, Oslo, 1996.

(2]

Deciding the future of the CONTSYNI1 data check of the KLIMA
control routine at the Climatology Division at DNMI

Petter @gland

Norwegian Meteorological Institute
December 21st, 1998

ABSTRACT

On the 16th of November 1998 it was reported that the CONTSYN1 quality check
program was not working as specified when handling a semi-automatic weather station at
Kjevik, station no. 39040. This particular problem has been analysed, and viable solu-
tions for further development of the CONTSYN1 program is discussed.

Evolution of the CONTSYNI1 program

The CONTSYNI program is a missing
value test which is a part of the KLIMA quality
control routine first described in [1] as it was
working on the ND-computers and later imple-
mented on the SGI computers in 1995 as
described in [2].

The purpose of the CONTSYNI program,
according to [2], is to pin-point situations where
either of the elements TT, UU, DD, FF, FB, FX,
N, PO, A, PP, S, FG, WW, W1, W2, TN, TX, TG,
TW. Cases of EM = 0, H is missing and NH <> 0
and the number of days with RR > 0 are also
noticed.

The program works as a supplement to
CONTSYN? that also lists missing values. CON-
TSYNT1 is only run by the person in charge of the
KLIMA routine, however, and problems spotted
by the program usually result in one of the fol-
lowing two cases:

Cl. An observation has been punched in the
wrong column or for a wrong date. The
value is moved to the right place.

C2. The observation is missing in the database
and also missing on paper. The interpola-
tion expert is then notified in order to fill in
an appropriate value.

In 1996 the CONTSYN programs were
jmproved as a version 1.1 of the system became
available [3]. The update 1.1 of the CONTSYN

system included a revision 1.1 of CONTSYN]I,
and although CONTSYN1 was one of the major
reasons for updating the system, (3] does not
inctude system code for CONTSYNI or more
specific information on particular problems with
the ealier version.

A further update v.2.0 was made of CON-
TSYNI, documented in [4], but this version con-
tained errors that were difficult to correct, and the
revised version was not used after a short initial
period.

In July 1998 work on how to redesign and
improve the KLIMA quality control routine com-
menced, and a program KLIMA KONTR run-
ning the CONTSYN programs in simulation
mode was established. The system is described in

[5].

Problems with CONTSYN1

The problems reported on the 16th of
November was that the program does not operate
properly with semi-automatic weather stations
(SAWS). As a consequence of this, and a conse-
quence of how the program is constructed in gen-
eral, the output generated by CONTSYNI is enor-
mous. For the SAWS there are serveral problems.

P1. Due to unknown reason, the program states
that the observation at 06:00 UTC is miss-
ing when this is not the case.

P2. The program reports missing N, VV, WW,
Wi, W2, NH at 00:00 UTC, which is

indeed the case, but should not be reported
as no such observations are done on an
SAWS.

The program reports missing TN, TX and
H for cases when these observations are not
missing.

P3.

Another problem with the present CON-
TSYNI program is that it does not produce error
logs and run statistics. For most programs in the
KLIBAS system, these logs are used for program
performance analysis and error detection. At the
present, problems with CONTSYN1 can only be
detected by manual inspection.

The cost of maintenance

As explained in [2], all the CONSYN pro-
grams on SGI where created by use of common
function libraries, depending upon each other in
such a manner that compilation of a particular
program includes reading of several files that are
used by all.

In 1996, however, one of the common files
was changed in such a manner that none of the
programs can be maintained and compiled. The
source code for the programs is now stored in the
directory /usr/people/kapo/klima/contsyn.

Even if it were possible to change the code
of the original CONTSYN1, at the moment it
seems more reasonable to reprogram.

Further development

There are no difficult algoritms in CON-
TSYNI1, and by keeping a similar interface as was
previously used, a new program should be able to
fit into the system with less effort than reworking
the old.

References

[1]) P @gland, Kvaliterskontroll av vaerstasjons-
data i Klimaavdelingen, KLIBAS-report

no. 23/94, DNMI, Oslo, 1994.

P. @gland, Programvare for kvalitetskon-
troll av klimadata, KLIBAS-report no.
29/95, DNMI, Oslo, 1995.

P. @gland, Rutine for kvalitetskontroll av
klimadata. Versjon 1.1, KLIBAS-report no.
10/96, DNMLI, Oslo, 1996.

P. @gland, Upgrading of the Contsyn Sys-
tem for Verification of Linke Data. Contsyn
v2.0, KLIBAS-report no. 12/96, DNMI,

(2]

{3]

(4]

.93 .

(5]

Oslo, 1996.

P. @Ggland, KLIMA_KONTR: Simulation
and control of a quality control system for
weather data, KLIBAS-report no. 24/98,
DNMI, Oslo, 1998.

Reading and converting SAWS weather observations V1I/V2/V3into
the KLIBAS database system at DNMI

Petter @gland

Norwegian Meteorological Institute
December 29th, 1998

ABSTRACT

In order to have a reliable routine for reading PIO observations {observations gen-
erated by use of Personal Computers on the observation sites) and SAWS observastions
(semi-automatic weather stations) into the KLIBAS database system at the Climatology
Division at DNMI, the PIO_INN program has been continously revised during the second
half of 1998. The system is still, however, not t0o stable, and while the reason for the fre-
quent collapse is not fully understood to the extent of having eliminated all pro blems, the
latest reason for the system breaking down is discussed and analysed in this paper, sug-
gesting reprogramming that may make it more robust.

SAWS weather stations

Ultimo December 1998, the PIO_INN com-
puter program is reading observations from eight
PIQ weather stations and 14 SAWS. Figure 1
shows the number of files read each month since
the intiation of the system in Mars 1998.

1 1 1 1 1 © 1T 1"/
Mar AprMay Jun Jul Aug Sep Oct NovDec

Fig 1.Number of stations: PIO=solid, SAWS=dashed

On the directory where the PIO files are to be
found, observation files from semi-automatic
weather stations (SAWS) are also placed. The
first test SAWS being from June 1998. In July
there were 9 stations of this kind, and in August
to December there have been 14 stations.

Program development

The development of the PIO_INN system
has so far consisted of two phases. Shortly after
PIO data were a part of the DNMI dataflow sys-
tems on Mars 23rd 1998, see user guide in [1], an
initial verson of the PIO_INN program, described
in [2], was operative in the sense that it was read-
ing observations from the pio-files into the FIO
datatable in the Oracle RDBS of the KLIBAS
database system on a daily basis. An instruction
on how the Climatology Division were to handle
PIO observations is described in {3].

The files generated during these early
stages of the PIO project contained only parame-
tres for barometre temperature (Bp), air pressure
(PO, PF, PT), evaporation (EV), air temperature
(TT, TnT, TN_12, TxT, TX_12), ground level
temperature (TG_12), water temperature (TW)
and relative humidity (UU), all acronyms
explained in {1].

The initial version of PIQ_INN was revised
in July 1998 by adding log functions in order to
add a systematic control on whether the program
was running according to specifications or not and
to which extent observations were being made at
cormrect time. The version 1.1 of the system, that
is described in [4], was also augmented in order to
handle a complete set of parametres, as described
in [1], not only the test parametres being used on

early files.

During August 1998 the PIO_INN system
was significantly reprogrammed in order to merge
data from semi-automatic weather stations
(SAWS) into the PIO dataflow as documented in
(5]. Due to the complex nature of the SAWS
files, using a mixed approach for marking missing
values, including attainable values to signify
missing ones, this second version of the PIO_INN
system has been so far revised twice, documented
in [6] and [7].

In the version 2.1 of PIO_INN, described in
[6]. statistical charts were added to be produced
by the program in order to make it easier to see
whether the program was performing normally or
not. Problems having to do with data format on
the SAWS files was systematically documented
and reported to those responsibie for the produc-
ing the files.

The version 2.2, described in [7], went a
step further by adding a simple quality control
routine to the program in order to eliminate obser-
vations that could not be inserted into the PIO
datatable, causing the system to break down, and
displaying quality control results by methods of
statistical process control (SPC) as a help to
detect whether the program was under control or
not.

A breakdown of the system in early
December 1998 was analysed and improved
accoreding to suggestions made in [8].

Robustness

The first version of PIQ_INN started run-
ning on the 12th of May 1998. In figure 2 the rel-
ative number of abnormal (defective) terminations
of the program so far is plotted.

04

0.3 H

0.2

0.1

[I I 1 [| [
May Jun Jul Aug Sep Oct Nov Dec

-75.

Fig 2. Relative numbet of executions to fail 1998

As can be seen in figure 2, with exception
of recent program failure of early December, the
tendency since the design of version 1.1 in July
1998 has been a gradual improvement of the sys-
tem in terms of reporting less and less defects on
the average each month. The general average rel-
ative number of defects for the eight month period
is 0.163 as indicated by the dashed line.

The program is run about 200 times each
month on the average. According to automatic
runs by the crontab schedule where it is to be
executed every 3 hours or eight times a day, it
should run 240 times on a 30 day month. The
average being below this value is explained, how-
ever, by the three hour schedule run by the
crontab prior to redefinitions in October. In the
beginning the program was automatically run
only four times a day.

The December problem

In addition to logging the number of fail-
ures each month, the program also logs the cause
of failure, meaning that the only defects used in
these statistics are the ones that are being detected
by the system itself. Program crash because of
bus error or other technical fault causing uncon-
trolled abortion are not normally logged.

There are two types of problems that are
being logged by the system. The first one is
called warnings and it indicates that something is
wrong in the system, although not critical enough
to stop execution. The other type is called errors,
causing immediate controlled breakdown of the
program, logging the sequence of functions that
resulted in the fatal state.

As identification of errors are kept on an
revolving 12 month basis, the reasons for the rise
in relative defects level in figure 2 should be
found on the log files. In fact, the reason is found
by inspection of the log files to be an error having
to do with problems reading data from a PIO sta-
tion at Hekkingen Fyr at Lenvik in Troms, station
no. 88690.

In this case, it can be read from the log files
that the error has been reported on December
25th, 26th, 27th, 28th and 29th (present day).

It can also be read from the files that the
error was of type "ORA-01438: value larger than
specified precision allows for this column™ when
the program tried to insert values of 102 for the
column V2 that can only store values between -99
and 99, that is integer values of no more than two
digits.

The error occured in the function “insert-
Data" which was called by the function "read-
Data”, called by the function "system_test” which
was called by the main loop of (he program.

By running the program in test mode and
using station no. 88690 as test station, the pro-
gram is constructed in ssch a manner that the
error can be reconstructed.

From doing so it becomes clear that the
problems arises from the way the column
_VT_newl is interpreted and read into variables
V1, V2 and V3. The program should not have
crashed the way it did, preventing observations
entering the PIO table, but rather generated a
warning and continued business as usual.

Why did the program break down?

On the 25th of December, 12:00 UTC, the
_VT_newl column contained the value 10240.00.
According to specifications in [9], this column
should only contain four digits, the two first being
V1 and the last two being V2. The value on
December 25 violates this.

There seems to be no obvious reason why
the column contained a five digit integer, so the
only thing to do was to send a message is sent to
the IT Division if they could possibly explain
what was going on.

Conclusion

The program PIO_INN should be altered so
that it does not try to convert five digit values of
_VT_newl, _VT_new?2, _VT_oldl or _VT_old2
into weather code. Such instances should be
reported as warnings, but otherwise the program
should continue normally.

References

[1] O. Bonlid, "Inntastingsprogram for Synop-
stasjoner. Brukerveiledning for Pio versjon
32" in PC i observasjonsifenesten:
PIO_INN vl.1. (appendix), KLIBAS-

report no. 25/98, DNM], Oslo, 1998.

[2] P @gland, Computer program PIO_INN.
KLIBAS-report no. 19/98, DNMI, Oslo,
1998.

[3] AM. Vidal and PO. Kjensli "5 PIO
stasjoner ble satt i drift 24. mars” in PC {
observasjonstjenesten: PIO_INN v.1.1.
(appendix), KLIBAS-report no. 25/98,

DNMI, Oslo, 1998.

-26-

(4]

[5)

(6]

(7]

(8]

(9

P. @gland, PC i observasjonsijenesten:
PIO_INN v.l.1. KLIBAS-report no. 25/98,
DNMLI, Oslo, 1998,

P. @gland, PC i observasjonsijenesten:
PIO_INN v.2.0. KLIBAS-report no. 41/98,
DNM], Oslo, 1998.

P. @gland, PC i observasjonstjenesten:
PIO_INN v.2.1. KLIBAS-report no. 53/98,
DNM], Oslo, 1998.

P. @gland, PC i observasjonstjenesten:
PIO_INN v2.2. KLIBAS-report no. 58/98,
DNMI, Oslo, 1998.

P @gland, Reading PIO observations into
the KLIBAS database system at DNMI,
preprint (to appear in the KLIMA report
series), DNMLI, Oslo, 1998.

H. @stby et al., Navnekonvensjon for
maéleparametre fra automatstasjoner,
manuelle observasjoner, eller en kombi-
nasjon av disse, preprint, November 6,
DNM], Oslo, 1998,

