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ABSTRACT

Downscaling analysis can be improved by incorporating statistical techniques such as the analog method. This method
has the advantage of being more appropriate than the linear model when studying precipitation which is not gaussian. This
method has then been developed for analysis of local climate on a daily basis. Tests have been applied to both daily winter
precipitation and temperature. The results suggest that precipitation and temperature depend on the weather pattern and
that analog methods do skillfully reproduce the variability and the observed amounts, especially for temperature.
Analysis of observed linear trends for 1980-1992 and trends reproduced by the analog model show a very similar behaviour
of the two corresponding distributions. The analog method is able to reproduce the tail of the distribution describing
extreme values as well as the return values and it can then be used to study future climate.

KEY WORDS: the Analog method Downscaling clim.pact Regional climate change Common EOFs.
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Introduction

Even if the impacts of climate change are global, its effects on a more concentrated area are also inter-
esting to look at, and for this, downscaling techniques are an important tool of analysis. Indeed, even if
General Circulation Models (GCMs) represent the main features of the global atmospheric circulation
reasonably well, their performance in reproducing regional climatic details is rather poor. Two types of
downscaling are generally considered: dynamical downscaling (Christensen et al., 2001) and empirical
downscaling (Beckmann & Buishand, 2002; Zorita € von Storch, 1999; von Storch et al., 1993).

The idea of downscaling GCM predictions is to relate the large scale parameters such as upper level
winds, geopotential heights, and sea level pressure to historical observations of temperature, precipitation
or wind speed for instance. Thus, the local scale information is derived from the larger scale considering
that the regional climate is the result of interplay of the overall atmospheric, or oceanic circulation and
of regional specifics such as topography, land-sea distribution and land-use.

Statistical methods can also be introduced to increase the performance of these techniques. One
approach is to use a linear model as Rasmus E.Benestad proposed it in his study about dynamically
downscaled temperature scenarios in southern Norway (Benestad & Hanssen-Bauer, 2003). The method
has proved to skillfully reproduce observed temperature but is not so appropriate to study variables non
normally distributed. Analog methods permit to deal in a better way with this problem and have then
commonly been used in downscaling of local climate eg (van den Dool, 1995; Zorita € von Storch, 1999).
They can indeed be tested on precipitation whose distribution is not gaussian and they also give a good
description of the tails of distribution.

Benestad (2001) proposed the use of ”common PCAs” (Flury, 1988; Sengupta & Boyle, 1998; Bar-
nett, 1999), also refered to as ”common EOFs” in empirical downscaling. In this report, the analog
method is applied in a common EOF frame and applied to downscaling, first for daily December-February
precipitation and then for daily December-February temperature, by using the clim.pact* R-package
already developped by Rasmus E.Benestad (Benestad, 2003a).

After a general presentation of the Meteorological Institute and a description of the main theoretical
concepts, the analog method is tested on 91 stations, mainly in southern Norway, to analyse how good is
the fit and how well the method can reproduce observations in the extremes. The method is then applied
to empirical downscaling and a comparison is drawn with the results based on a linear model presented
by Benestad (Benestad & Hanssen-Bauer, 2003). Finally, the analog method has been written in order
to make it into a R-package called anm, now freely available over the Internet (URL http://www.R-
project.org/) and for which a documentation is given in the report.

1 General presentation

1.1 The Norwegian Meteorological Institute

The institute provides the public with meteorological services for both civil and military purposes. The
institute is to provide services for the authorities, commerce and industry, institutions and the general
public for the protection of their interests, for the protection of life and property, for planning and for
the protection of the environment.

The official duties of the Norwegian Meteorological Institute include:

issue weather forecasts

study the national climatological conditions and produce climatological reports

provide meteorological observations from Norway, adjacent sea areas, and from the Svalbard area
carry out research and development in support of the institute’s operational functions to ensure that
the service are of the highest possible standard

make available the results of its work

e provide special services for the public and private interests on a commercial basis

e participate in international meteorological co-operation.

*Available from the CRAN Internet site (http://cran.r-project.org/)
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1.2 Vision and basic functions

The vision is that the institute is to be a centre of excellence on meteorological conditions relevant for
Norway, and the results of its competence are to be used as a tool to the general public, the authorities,
commerce and industry in their decision making process on a short term basis and for the future.

The main goals are that

e The institute shall provide meteorological services that in content and quality meet the requirements
of society. In order to meet both present and future requirements, the institute is to carry out relevant
research and development activities.

e The institute’s activities shall, on all levels, from the collection of observations to the final forecasting
product, be based on an effective and modern atmospheric and ocean forecasting system.

e The institute shall provide expertise on climate conditions on the global and the national scale and
shall at any time be able to provide climatological information for monitoring and planning purposes,
and as input to the formulation of national climate policies.

The main activities of the institute are therefore associated with core activities financed by the Govern-
ment, as well as with commercial services.

Core Activities

Observations: Operation, data collection and the transmission of national and international obser-
vational data

Research and development financed by the Government: development and improvement of oper-
ational models, tasks related to environmental emergency services, and general climate research
Weather forecasting: Analyses, prognoses, general forecasts and warnings, emergency preparedness
Climatological services: Observations, databases and general climatological information

Commercial Services

Products and services tailored to fit customers’ requirements

Services for aviation

Commercial climatological services: Specialised weather and climatological information, climato-
logical data, statistics and environmental data from the Continental Shelf

e Commissions and reports: Atmosphere and sea impact analyses, transport models of marine pol-
lution and air pollution, quantitative precipitation calculations, regional and local climatology, calcu-
lations of extremes and application of climatological data.

1.2.1 International Co-operation

The work of the Norwegian Meteorological Institute depend on extensive international co-operation.
International exchange of data, technology, knowledge and methodology is required. The atmosphere
knows no national boundaries, and to prepare forecasts, the institute needs access to observational data
from all over the world. This is particularly important for the 7-10 day weather forecasts.

Common international measurement techniques and standards can only be achieved through inter-
national co-operation. High capacity communication and data handling systems for the exchange of data
and products are the result of extensive co-operative activities.

Norway is a member of the World Meteorological Organization (WMQ), the European Centre for
Medium Range Weather Forecasts (ECMWTF), and the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT). The institute is actively involved in the work of these organi-
sations.

The European meteorological institutes have also entered into a number of formal and informal co-
operative agreements in order to exploit common resources to the benefit of all. One example is ECOMET,
an economic interest grouping of the meteorological services.

Another is EUMETNET, a network for co-operation with defined subject areas for a more cost-effective
exploitation of these resources.
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1.2.2 Climatology Division

The Climatology Division is responsible for the Norwegian Meteorological Institute’s climatological ser-
vices. It is headed by Mr. Qystein Hov.

The database in which the data are stored is the basis for the climatological service. Society makes use
of the data in various ways, and the main users are those who deal with water resource management,
hydroelectric power and energy supply, transport and communications, planning, maritime and offshore
activities, insurance, building and construction, sports and leisure events.

The Climatology Division produces a wide range of climatological reports, such as estimates and
analyses of extreme values, studies of local climate, analyses based on existing data-material and special
measurement projects where new data are related statistically to reference data.

Climatological research includes analyses and prognoses for mean and extreme weather conditions, and
how these vary with time and space. The aim is to gain more knowledge about the processes that cause
variations in the climate, and to investigate the possible long-term effect of man’s activities.

2 Presentation of the method

2.1 EOF

In climatology, Principal Component Analysis (PCA) received the name of Empirical Orthogonal Func-
tions (EOF) Analysis (Lorenz, 1956).

The EOF analysis has been employed to phenological and climatological data from two aspects
which are data compression and outlier detection. EOF's consist in orthogonal spatial patterns that can
be thought of as empirically derived basis functions and are used to identify patterns of simultaneous
variation (von Storch & Zwiers, 1999).

Among the existing statistical downscaling techniques, the analog method appears to be one of the
simplest to implement. The idea is to search archives of climatological data closely resembling current
observations and assume that the future evolution of the climate will be similar to the flows that followed
the historical analogs.

The analog method has the advantage of being reliable both for normally and nonnormally dis-
tributed local variables. Moreover, it produces the right level of variablity of the local variables and
preserves the spatial covariance between them. To obtain matches between currently observed and his-
torical fields as accuratly as possible, several fields should be considered. Thus, not only heights and
temperature fields but also sea level pressure (SLP) need to be taken into account.

A problem associated with this method is the need for sufficiently long observations, so that a

reasonable analog of the large-scale circulation always can be found.
Due to the number of degrees of freedom of the large-scale atmospheric circulation, it has been pointed
out that on a global basis and for prediction purposes several thousands years would be needed (Zorita
& von Storch, 1999). However, many of these degrees of freedom represent just background noise that
can be previously filtered out, for instance, by a standard empirical orthogonal function (EOF) analysis
(Lorenz, 1956; Preisendorfer, 1988). In downscaling applications the area of interest is not global but
normally covers a continent or an ocean basin, which, as a result, reduces the degrees of freedom of the
problem.

2.2 The analog concept

The analog method consists in associating the local variables observed with the most similar large-scale
circulation pattern in a pool of historical observations. To achieve this comparison, minimum distances
can be used.

Thus, if n is the number of EOFs taking into account and z(t) the amplitude of the kth EOF pattern
at time ¢, then the pattern of coordinates z; has its analog defined as the circulation at time step ¢ that
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minimizes the distance in EOF space:

dt) =3 [z — au(t).

k=1,n

A cross-validation was also carried out to improve the fitting of the process, the technique consisting
in omitting at each step one observation of the predictand. The data is then divided into a set of size
n — 1 and the remaining value. In that way, the cross-validation procedure uses all n observations of the
predictand to evaluate the prediction ( Wilks, 1995).

To check the performance of the method, it can be determined which observation in the historical
dataset is the closest to the observation at time ¢. Statistical tests can then be used to compare the
two predictions returned by both tests. Correlation and Root Mean-Squared Error (rmse) provide two
common measures of comparison which are implemented in the routine predict.anm (Appendiz).

2.2.1 Predictors

The applications of downscaling techniques vary widely with respect to regions, spatial and temporal
scales and the type of both predictors and predictands. Different parameters have then to be taken into
account as they play a role and influence the analysis.

The first of them is the number of Principal Components (PC) that should be retained without discarding
important information carried in the original data.

It is indeed generally not useful to include all of the predictor variables as they would not permit to
significantly increase the results but would slow the computing of analysis. However, there is not a clear
criterion to decide how many of them are sufficient to produce a good prediction model. This problem
can be partly solved by implementing a stepwise algorithm in which, at each step, the most important
predictor variable is included. In the end, the algorithm selects the model which gets the lowest rmse.
Another parameter to consider is the geographical location of the region on which downscaling procedure
has focused on. If, for instance, the study lies on the region defined by 16°E-31°E and 64°N-73°N spatial
coordinates, the best matches should be expected for northern Norway as around Tromsg.

2.2.2 Predictand

The test of the analog model was made for 91 stations in Norway. A list of the locations, including
position and elevation is given in Table 1 and Figure 1 shows a map of the same locations.

3 Results

3.1 Scatterplots

Before implementing the analog method, it may be informative to look at the repartition of wet and dry
days by drawing scatter plots as it is presented in Figures 2 and 3. In these graphs, rainy days appear
in blue whereas dry days are represented by red solid circles.

The number of data points (daily observations) falling into box (i, j) is n(i, ), and the corresponding
number of wet and dry days is n. (i, j) and ng4(4, j) respectively. One necessary criterion is that the boxes
are sufficiently large to give robust statistics on the data distribution. Contour lines have also been added
to the plots by evaluating a Kriging surface over the grid (from R-package ’spatial’).

The plots are shown for different EOF dimensions in Figure 2 and for different stations in Figure
3(a)-(d), using the two first PCs as a reference.

The scatter plots suggest a weak clustering of dry days with respect to the SLP-based EOFs. A
vector of factors "wet” and ”dry” was constructed according to whether the daily precipitation was non-
zero or greater than zero. A multiple regression was carried out between the vector of factors and the PCs,
and a summary of the regression model was used to identify the PCs that were most important. Another
method to select the right number of PCs was to used a stepwise algorithm which was implemented in
the routine step.anm (Appendiz) presented in section 2.2.1.

This is illustrated by figure 4 where the evolution of the correlation coefficient (right axis) as well as
of the rmse (left axis) are plotted versus the steps of the algorithm. The aim is to select a model among
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TABLE 1. A presentation of the meteorological stations. The columns list the longitude (°E), latitude (°N) and
altitude (m. a.s.l).

n location station lon lat alt

1 Rgros 10400 11.38 62.57 628.00

2 Prestebakke 1130 11.54  58.99 157.00

3 Dstre 11500 10.87 60.70 264.00

4 Lillehammer 12680 10.48 61.09 114.00

5 Venabu 13420 10.11 61.65 930.00

6 Skabu 13670 9.38 61.52 890.00

7 Gjeilo 15540 8.45 61.87 378.00

8 Brata 15720 7.86 61.91 712.00

9 Fokstua 16610 9.29 62.11 386.00
10 Rygge 17150 10.79  59.38 205.00
11 Jelgy 17290 10.59 59.44 12.00
12 Oslo 18700 10.72 59.94 380.00
13 Tryvasshggda 18960 10.69  59.99 528.00
14 Fornebu 19400 10.62  59.89 10.00
15 Dgnski 19480 10.50 59.90 59.00
16 Asker 19710 10.44  59.86 163.00
17 Vest—torpa 21680 10.04 60.94 542.00
18 Fagernes 23420 9.24 60.99 365.00
19 Lgken 23500 9.07 61.12 525.00
20 Nesbyen 24880 9.12 60.57 70.00
21 Geilo 25590 8.20 60.52 353.00
22 Finse 25840 7.50 60.60 1224.00
23 Makergy 27410 10.44  59.16 43.00
24 Ferder 27500 10.53  59.03 6.00
25 Kongsberg 28370 9.65 59.66 168.00
26 Lungdal 28800 9.52 59.91 142.00
27 Magnor 2950 12.21  59.97 154.00
28 Moesstrand 31620 8.18 59.84 388.00
29 Lynggr 35860 9.15 58.63 4.00
30 Torungen 36200 8.79 58.38 12.00
31 Nelaug 36560 8.63 58.66 142.00
32 Tveitsund 37230 8.52  59.03 124.00
33 Landvik 38140 8.52  58.33 6.00
34 Kjevik 39040 8.07 58.20 23.00
35 Oksgy 39100 8.05 58.07 9.00
36  Byglandsfjord 39690 7.80 58.67 212.00
37 Lindesnes 41770 7.05 57.98 13.00
38 Lista 42160 6.57 58.11 14.00
39 Sirdal 42920 6.85 58.89 242.00
40 Ualand 43500 6.35 58.55 196.00
41 Obrestad 44080 5.56  58.66 24.00
42 Sola 44560 5.64 58.88 312.00
43 Suldal 46200 6.42  59.46 58.00
44 Midtlaeger 46510 6.99 59.83 1079.00

the first eight predictor variables representing rainfall at station Bergen. The graph suggests that the
minimum rmse (12.25) is obtained at step seven with a good correlation (0.43), which leads to keep the
first seven predictors for further analysis.

The previous plots have not taken into account the possible disproportion between the number of
wet and dry days during winter which can influence the results. However, if we refer to the total number
of wet days as Ny (depicted in each subgrid) and to the total number of dry days as Ng4, it appears
that Ny is far greater than Ny. In Sirdal for instance, rainy days are three times more frequent than
days without precipitation (Ng =389 and N = 785).

To avoid biases caused by many more wet days, scatter plots based on an equal number of wet
and dry days were realized. Samples of wet days were generated by selecting 100 different combinations
of N =min(N,, Ng) days. The analysis was then repeated 100 times, taking the average number of
p(i, 7) =n.w(i, j)/n(i, j). The results are shown for Sirdal in Figure 3(e) which suggests that there is
not a specific repartition of rainy and dry days.
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TABLE 1 continued...

n location  station lon lat alt
45 Sauda 46610 6.36 59.65 240.00
46 Nedre 46910 5.75  59.48 64.00
47 Utsira 47300 4.88 59.31 55.00
48 Gardermoen 4780 11.08 60.21 202.00
49 Slattergy 48330 5.07 59.91 15.00
50 Upsangervatn 48390 5.77 59.84 60.00
51 KEidfjord 49580 6.86 60.47 165
52 Omastrand 50130 5.98 60.22 2.00
53 Kvamskogen 50300 591 60.39 210.00
54 Flesland 50500 5.23  60.29 48.00
55 Bergen 50540 5.33 60.38 23.00
56 Voss 51590 6.50 60.65 30.00
57 Reimegrend 51670 6.74  60.69 590.00
58 Modalen 52290 5.95 60.84 114.00
59 Hellisgy 52530 4.71  60.75 20.00
60 Takle 52860 5.38 61.03 38
61 Vangsnes 53100 6.65 61.17 51.00
62 Laerdal 54130 7.52 61.06 36.00
63 Fortun 55160 7.70  61.50 27.00
64 Sognefjell 55290 8.00 61.57 1413.00
65 Krakenes 59100 499 62.03 41.00
66 Svingy 59800 5.27 62.33 38.00
67 Flisa 6040 12.02 60.61 184.00
68 Tafjord 60500 742  62.23 52.00
69 Vigra 60990 6.12 62.56 106.00
70 Hjelvik 61170 721  62.62 21.00
71 Lesjaskog 61770 8.37 62.23 621.00
72 Ona 62480 6.54 62.86 13.00
73 Tingvoll 64550 8.30 62.84 69.00
74 Vinjeoera 65110 9.00 63.21 229.00
75 Sula 65940 8.47 63.85 5.00
76 Berkaak 66730 10.02 62.82 231.00
7 Selbu 68340 11.12 63.21 117.00
78 Vaernes 69100 10.94 63.46 23.00
79 Meréker 69330 11.70 63.44 145.00
80 Rena 7010 11.44 61.16 240.00
81 @rland 71550 9.60 63.70 10.00
82 Halten 71850 9.41  64.17 16.00

83 Buholmrésa 71990 10.45 64.40 18.00
84 Namdalseid 72100 11.20 64.25 86.00

85 Harran 73620 12.51 64.59 118.00
86 Nordgyan 75410 10.55  64.80 33.00
87 Sklinna 75550 11.00 65.20 23.00
88 Leka 75600 11.70 65.10 47.00
89 Susendal 77750  14.02  65.52 265.00
90 Evenstad 8130 11.14 61.41 255.00
91 S@rnesset 8710 10.15 61.89 739.00

3.2 The analog method

3.2.1 Data description

To check the quality of the analog method, it has been tried to reconstruct the time series of the
December-February (DJF) daily temperature and rainfall in Norway in the period 1980-1992. Two
large-scale variables are used in the testing, the SLP field and the temperature field, the second one
being particularly adapted to study daily temperature. These common EOFs were produced by Rasmus
E. Benestad with the clim.pact R-package.

3.2.2 Precipitation

Table 3 gives the rmse and correlation coefficients between daily December-February rainfall observa-
tions and predictions in southern Norway.

The results point to poor correlations for most of the stations. This is significant of oneof the weaknesses
of the method which does not optimize the Pearson correlation, contrary to a linear model.

However, the table also provides information about the skill of the two approaches to reproduce vari-
ability. This time, the analog method reveals to be the most appropriate as the percentages of variance
reproduced range from 74% to 114% and are close to 100% in most of the cases whereas the linear model
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Figure 4. Selection of the predictor variables using a stepwise algorithm for rainfall in Bergen.
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Figure 5. Results of the Analog method for daily winter rainfall in Voss using the SLP field and 5E16E-57N66N
region for downscaling. (a) Comparison between daily winter rainfall and predictions by the analog method. (b)
Absolute error between observations and predictions.

is not able to restitute more than 45% of the observed variability.
Thus, this study already suggests that none of the two techniques is better than another but that their
performance depends on the criterium taking into account.

The analog method can also be generalized by introducing different weights on the EOF coordi-
nates (Zorita & von Storch, 1999). Each of them was then weighted by its eigenvalue and the results are
summarized in the two columns rmse.w and r.anm.w. They suggest that the fit between predictions and
observations has been improved with the introduction of weights, especially for the stations located on
the south-western coast, which is not surprising as it corresponds to the region where downscaling was
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TABLE 2. Comparison of the standard analog method with a weighted version and a linear model. The columns
list the Pearson correlation coefficient for the three models (resp. r.anm, r.anm.w and r.lm), the rmse with and
without weights (resp.rmse and rmse.w), as well as the percentage of variance reproduced between observations
and predictions with the analog model (var.anm) and a linear model (var.lm). The study was on daily DJF
precipitations (mm). Downscaling was derived using the SLP field covering the 5°E 12°E-57°N 66°N region.

n station location r.anm rmse r.anm.w rmse.w rJm var.anm varlm

1 10400 Rgros 0.14 3.23 0.13 3.31 0.34 77.88 11.44

2 1130 Prestebakke 0.22 6.61 0.25 6.67 0.50 88.25 24.75

3 11500 Dstre 0.10 3.76 0.07 3.86 0.42 80.27 17.41

4 12680 Lillechammer 0.29 3.68 0.32 3.55 0.51 99.60 25.88

5 13420 Venabu 0.15 3.90 0.16 3.73  0.42 112.47 17.87

6 13670 Skabu 0.19 3.93 0.27 3.62  0.40 114.17 15.69

7 15540 Gjeilo 0.23 4.03 0.10 4.57 0.34 112.87 11.86

8 15720 Brata 0.40 5.90 0.38 5.98 0.52 93.05 27.23

9 16610 Fokstua 0.21 2.36 0.20 2.42  0.39 88.07 15.22
10 17150 Rygge 0.33 4.80 0.26 5.05 0.51 96.76 25.93
11 17290 Jelgy 0.28 5.73 0.17 6.35 0.47 88.64 21.81
12 18700 Oslo 0.27 3.81 0.24 4.02 0.47 74.48 22.07
13 18960  Tryvasshggda 0.25 8.10 0.17 8.88 0.49 82.91 24.02
14 19400 Fornebu 0.26 4.14 0.20 4.35 0.47 83.64 22.40
15 19480 Dgnski 0.31 5.38 0.24 5.78 0.51 87.34 26.05
16 19710 Asker 0.32 6.58 0.27 7.08 0.56 91.08 31.41
17 21680 Vest-torpa 0.25 5.19 0.15 549 0.51 99.05 26.09
18 23420 Fagernes 0.12 3.82 0.21 3.53 0.38 102.03 14.65
19 23500 Lgken 0.18 3.81 0.27 3.44 0.43 112.43 18.15
20 24880 Nesbyen 0.31 2.03 0.31 2.05 0.48 90.36 23.14
21 25590 Geilo 0.34 3.97 0.35 3.75 0.48 85.72 23.46
22 25840 Finse 0.56 5.52 0.54 5.71 0.63 75.62 39.59
23 27410 Makergy 0.17 6.69 0.13 6.58 0.42 104.98 17.87
24 27500 Feaerder 0.25 5.29 0.15 5.40 0.48 105.24 23.40
25 28370 Kongsberg 0.29 5.46 0.23 5.73 0.51 90.41 25.60
26 28800 Lungdal 0.40 3.42 0.40 3.44 0.54 90.90 28.94
27 2950 Magnor 0.17 4.78 0.19 4.63 0.43 102.56 18.29
28 31620 Moesstrand 0.39 4.17 0.44 3.98 0.54 88.28 29.52
29 35860 Lynggr 0.18 7.31 0.17 7.35 0.44 103.97 19.78
30 36200 Torungen 0.18 8.22 0.15 8.29 0.47 97.85 21.70
31 36560 Nelaug 0.29 9.98 0.32 9.37 0.53 109.78 28.61
32 37230 Tveitsund 0.40 5.19 0.35 5.33 0.55 104.18 30.26
33 38140 Landvik 0.27 9.33 0.23 8.81 0.49 131.18 23.96
34 39040 Kjevik 0.33 8.24 0.33 8.32 0.55 93.16 30.12
35 39100 Oksgy 0.22 8.73 0.21 8.52 0.44 103.84 18.97
36 39690 Byglandsfjord 0.39 8.62 0.40 8.34 0.58 104.85 33.34
37 41770 Lindesnes 0.27 7.51 0.25 7.62 0.47 97.54 22.02
38 42160 Lista 0.26 7.55 0.29 7.19 0.50 101.46 24.99
39 42920 Sirdal 0.56 10.28 0.60 9.50 0.67 99.47 45.05
40 43500 Ualand 0.32 15.84 0.42 14.56  0.58 91.18 33.36
41 44080 Obrestad 0.27 8.02 0.23 8.27 0.51 101.99 26.26
42 44560 Sola 0.33 6.48 0.35 6.45 0.56 90.61 31.71
43 46200 Suldal 0.35 15.94 0.35 16.02  0.59 87.22 34.88
44 46510 Midtlaeger 0.31 4.93 0.23 5.12  0.57 86.74 33.05
45 46610 Sauda 0.45 13.65 0.50 1291 0.64 95.15 40.94

derived. The increase in the correlation is then statistically significant for stations such as Omastrand,
Flesland, Voss, Modalen, Hellisgy, Takle, Lardal, Vangsnes or Krakenes. At the same time,
the rmse has decreased, which makes the generalized version of the analog method quite interesting.

Figure 5(a) shows a comparison between observations and predictions from the analog model in Voss
and Figure 5(b) gives the corresponding absolute error. The correlation was estimated to 0.55 and the
rmse was 7.46 (Table 3). Although the analog model overestimates the precipitation peaks, it successfully
reproduces the observations. For climate analysis and future scenarios, however, the exact timing is less
important than the statistical properties such as distributions.

One advantage the analog method has to linear regression-based models is that the shape of the
distribution is in principal conserved. The tails of the distributions are of great interest for studies of
extreme weather events and that is why a general extreme value (GEV) distribution (R-package evd)
and a general Pareto distribution (GPD) (Imbert, 2002) were used to model the extreme distributions.

Figure 6 shows that winter rainfall observations and predictions fit equally well to the GPD and
that their distributions vary similarly.
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TABLE 3 continued...

n station location r.anm rmse r.anm.w rmse.w rJm var.anm var.m
46 46910 Nedre 0.28 15.35 0.29 15.24 0.54 97.76 28.68
47 47300 Utsira 0.31 6.35 0.23 6.56 0.49 104.14 24.12
48 4780 Gardermoen 0.30 5.00 0.26 5.15 0.51 96.35 25.79
49 48330 Slattergy 0.29 7.75 0.29 7.90 0.52 94.85 26.64
50 48390 Upsangervatn 0.23 13.37 0.24 13.39 0.5 95.27 25.48
51 49580 Eidfjord 0.36 15.77 0.38 15.31  0.59 90.91 34.86
52 50130 Omastrand 0.36 18.21 0.41 17.26  0.60 93.88 36.07
53 50300 Kvamskogen 0.52 15.73 0.56 14.74  0.66 93.26 43.83
54 50500 Flesland 0.27 9.45 0.36 9.25 0.55 75.02 30.38
55 50540 Bergen 0.42 12.39 0.43 12.25 0.60 103.49 35.82
56 51590 Voss 0.47 8.30 0.55 7.46 0.65 104.03 41.84
57 51670 Reimegrend 0.45 12.19 0.48 12.15 0.63 99.20 40.11
58 52290 Modalen 0.37  20.70 0.46 18.69 0.64 95.05 41.11
59 52530 Hellisgy 0.23 6.07 0.30 5.88 0.46 92.32 21.49
60 52860 Takle 0.41 22.16 0.48 20.80 0.63 100.42 39.34
61 53100 Vangsnes 0.20 10.18 0.26 9.80 0.53 88.94 28.33
62 54130 Laerdal 0.39 6.17 0.46 5.78 0.54 82.75 29.28
63 55160 Fortun 0.42 7.47 0.43 7.21 0.57 86.49 32.78
64 55290 Sognefjell 0.46 3.67 0.32 4.27 0.53 86.82 28.39
65 59100 Krakenes 0.25 7.08 0.30 7.07 0.51 94.09 26.20
66 59800 Svingy 0.16 4.69 0.19 4.65 0.37 97.7 13.72
67 6040 Flisa 0.20 3.15 0.21 3.29 0.44 88.1 19.71
68 60500 Tafjord 0.44 7.96 0.45 7.67 0.59 109.02 34.90
69 60990 Vigra 0.42 7.17 0.34 7.52 0.5 96.9 25.47
70 61170 Hjelvik 0.39 9.64 0.35 991 0.54 105.91 29.09
71 61770 Lesjaskog 0.25 7.70 0.28 7.49 0.46 112.47 21.35
72 62480 Ona 0.36 9.18 0.31 9.26 0.44 95.92 19.56
73 64550 Tingvoll 0.36 8.01 0.33 7.94 0.5 97.95 24.73
74 65110 Vinjeoera 0.38 9.70 0.43 8.95 0.55 90.73 30.31
75 65940 Sula 0.21 7.93 0.21 7.90 0.41 96.71 16.52
76 66730 Berkaak 0.29 5.42 0.27 5.25 0.49 112.21 23.88
s 68340 Selbu 0.40 4.27 0.33 4.35 0.51 91.16 26.08
78 69100 Vaernes 0.33 4.86 0.33 4.80 0.52 85.14 27.12
79 69330 Meraker 0.34 6.88 0.32 7.13 0.51 90.29 25.74
80 7010 Rena 0.17 4.93 0.15 4.94 0.46 97.91 21.25
81 71550 @rland 0.19 6.95 0.22 6.62 0.43 97.53 18.50
82 71850 Halten 0.13 5.55 0.23 5.10 0.44 100.22 19.30
83 71990 Buholmrasa 0.20 5.43 0.23 5.12 0.37 98.96 13.41
84 72100 Namdalseid 0.45 7.32 0.43 7.36  0.56 94.48 31.12
85 73620 Harran 0.36 9.13 0.40 8.99 0.56 95.58 30.95
86 75410 Nordgyan 0.18 5.49 0.19 5.65 0.39 108.16 15.47
87 75550 Sklinna 0.16 5.99 0.16 6.05 0.40 100.06 15.95
88 75600 Leka 0.25 8.86 0.25 8.75 0.49 105.24 23.62
89 77750 Susendal 0.41 8.08 0.40 8.95 0.51 74.14 26.17
90 8130 Evenstad 0.31 4.87 0.21 5.11 0.53 93.64 28.56
91 8710 S@rnesset 0.12 3.60 0.22 3.43 0.34 92.27 11.54

The return value plots have also the same unbounded shape which is characteristic of an infinite limit
for extrapolation (Coles, 1999).

When considering all these results, it is important to keep in mind that the length of the test period
was short and that, as a consequence, the results may not be robust.

3.2.3 Temperature

The analysis was carried out for the temperature records from the same stations as in Table 1 but
on temperature predictors. The results for the December-February season are depicted in Table 3 and
suggest that there is a good match between the observations and the time series reproduced with the
analog method.

Both the correlation and the percentage of variance reproduced by the model suggest indeed that the
method is able to skillfully describe the observations.

Some stations however get poor Pearson coefficients with both approaches (Prestebakke, Asker, Finse,
Moesstrand, Sirdal, Midtlaeger, Upsangervatn, Eidfjord, Hellisgy, Krakenes, Flisa, Tafjord, Ona, Vinjgera,
Selbu, Namdalseid, Nordgyan, Leka, Evenstad, Sgrnesset), which Benestad accounted for low data qual-
ity or a weak relationship between the large-scale features and local temperature.

What is interesting to note is that, even for these stations, the analog method unlike the linear model is
able to reproduce the variance levels.
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Figure 6. A comparison between daily December-February rainfall observations and predictions from the analog
method at station Voss. Generalized Pareto Distribution for (a) observations, (c) predictions. Return value plots
for (b) observations, (d) predictions.
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TABLE 3. Comparison of the standard analog method with a weighted version and a linear model. The columns
list the Pearson correlation coefficient for the three models (resp. r.anm, r.anm.w and r.lm), the rmse with and
without weights (resp.rmse and rmse.w), as well as the percentage of variance reproduced between observations
and predictions with the analog model (var.anm) and a linear model (var.lm). The study was on daily DJF
temperatures (°C). Downscaling was derived using the temperature field covering the 4°E 14°E-58°N 64°N

region.

n station location r.anm rmse r.anm.w rmse.w r.m var.anm var.Im
1 10400 Rgros 0.71 6.42 0.78 5.61 0.84 84.76 70.22
2 1130 Prestebakke 0.40 3.64 0.85 3.16 0.58 83.31 33.26
3 11500 Dstre 0.69 4.40 0.83 3.77 0.83 87.25 69.6
4 12680 Lillehammer 0.74 4.18 0.80 3.87 0.84 83.69 70.61
5 13420 Venabu 0.7 3.58 0.77 3.31 0.84 78.47 69.90
6 13670 Skabu 0.61 3.85 0.78 3.47 0.76 82.89 58.30
7 15540 Gjeilo 0.72 6.80 0.78 6.16 0.83 93.67 69.19
8 15720 Brata 0.72 4.80 0.79 4.37 0.83 81.71 69.40
9 16610 Fokstua 0.75 3.42 0.83 3.05 0.86 80.09 74.67
10 17150 Rygge 0.74 3.90 0.83 3.50 0.84 78.93 70.10
11 17290 Jelgy 0.76 3.17 0.87 2.68 0.85 78.33 72.21
12 18700 Oslo 0.73 3.45 0.83 3.09 0.84 79.12 69.93
13 18960  Tryvasshggda 0.73 2.88 0.84 2.60 0.84 77.34 71.07
14 19400 Fornebu 0.73 3.75 0.81 3.41 0.82 80.13 68.03
15 19480 Dgnski 0.69 4.08 0.77 3.77 0.81 79.86 65.27
16 19710 Asker 0.06 3.54 0.82 3.09 0.15 87.58 2.27
17 21680 Vest-torpa 0.70 4.58 0.73 421  0.85 94.76 72.46
18 23420 Fagernes 0.68 5.58 0.75 5.13 0.8 86.74 64.11
19 23500 Lgken 0.65 5.84 0.72 5.24 0.82 93.06 66.77
20 24880 Nesbyen 0.68 6.29 0.72 5.78 0.79 83.55 61.91
21 25590 Geilo 0.70 4.48 0.80 3.97 0.83 82.86 69.17
22 25840 Finse 0.22 4.42 0.80 3.72  0.32 80.09 10.35
23 27410 Makergy 0.56 3.23 0.86 2.78 0.70 81.71 49.60
24 27500 Feerder 0.74 2.60 0.89 2.16 0.83 74.77 69.36
25 28370 Kongsberg 0.69 4.81 0.77 4.41  0.82 80.94 66.71
26 28800 Lungdal 0.69 5.12 0.77 4.64 0.82 82.67 67.63
27 2950 Magnor 0.73 4.74 0.78 443 0.84 80.18 71.37
28 31620 Moesstrand 0.18 3.60 0.82 3.19 0.36 85.08 13.18
29 35860 Lynger 0.73 2.82 0.87 2.39 0.83 74.94 69.01
30 36200 Torungen 0.73 2.67 0.88 222 0.84 74.49 70.15
31 36560 Nelaug 0.57 3.98 0.82 3.52 0.73 79.48 52.84
32 37230 Tveitsund 0.69 4.18 0.83 3.6 0.82 80.04 67.7
33 38140 Landvik 0.68 3.82 0.81 3.37 0.83 85.80 69.21
34 39040 Kjevik 0.72 3.54 0.83 3.10 0.83 78.43 69.11
35 39100 Oksgy 0.74 2.50 0.89 2.04 0.85 76.06 71.58
36 39690 Byglandsfjord 0.69 3.58 0.82 3.15 0.82 77.20 67.34
37 41770 Lindesnes 0.75 2.23 0.91 1.79 0.85 73.16 71.49
38 42160 Lista 0.75 2.35 0.90 1.92 0.85 75.37 72.25
39 42920 Sirdal 0.14 4.67 0.78 4.17 0.26 81.01 6.71
40 43500 Ualand 0.73 2.81 0.85 239 0.84 76.57 71.00
41 44080 Obrestad 0.78 2.43 0.89 1.98 0.87 77.34 76.24
42 44560 Sola 0.75 2.58 0.87 2.18 0.86 75.97 73.37
43 46200 Suldal 0.69 3.91 0.78 3.51 0.82 84.93 66.55
44 46510 Midtlaeger 0.36 2.89 0.83 2.61 0.56 90.94 31.47
45 46610 Sauda 0.70 3.56 0.78 3.24 0.83 81.83 68.62

These remarks go along with what has already been noted for rainfalls and so reinforce the fact that the
two approaches are complementary and should be considered simultaneously.

Table 3 also presents the results for the weigthed version of the analog method (columns r.anm.w
and rmse.w). As for rainfalls, the weights were assigned to the eigenvalue of each EOF. The results
give evidence for a significant improvement of the previous model. Not only is the rmse lower but also
the correlation coefficients have increased significantly. For many stations (41 out of 91 i.e 45%), the
results evidence an even better fit than the linear model, which is particularly relevant for the stations
previously quoted. *

An illustration of the performance of the analog method is given in Figure 7. The second graph
shows that the time series of observations and analogs vary coherently. The method is able to reproduce
the trend and the different oscillations of temperature with a reasonable error (Figure 7(b)).

*Prestebakke, Asker, Finse, Moesstrand, Sirdal, Midtleger, Upsangervatn, Eidfjord, Hellisgy, Krakenes, Flisa, Tafjord,
Ona, Vinjgera, Selbu, Namdalseid, Nordgyan, Leka, Evenstad, Sgrnesset.
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TABLE 3 continued...

n station location r.anm rmse r.anm.w rmse.w r.m var.anm var.lm
46 46910 Nedre 0.73 2.91 0.84 243 0.85 79.99 73.00
47 47300 Utsira 0.75 1.70 0.90 1.40 0.86 73.39 74.20
48 4780 Gardermoen 0.72 4.33 0.82 3.85 0.83 79.91 68.07
49 48330 Slattergy 0.74 1.75 0.88 1.46 0.86 75.85 74.80
50 48390 Upsangervatn 0.16 2.47 0.86 2.13 0.16 94.77 2.45
51 49580 Eidfjord 0.18 3.00 0.78 2.65 0.24 84.83 5.71
52 50130 Omastrand 0.71 2.37 0.83 2.04 0.84 79.42 69.82
53 50300 Kvamskogen 0.73 3.11 0.83 2.71  0.85 79.68 71.78
54 50500 Flesland 0.76 2.27 0.88 1.88 0.87 76.2 75.29
55 50540 Bergen 0.76 2.28 0.86 1.93 0.87 79.66 76.49
56 51590 Voss 0.74 4.60 0.80 4.09 0.84 80.57 70.43
57 51670 Reimegrend 0.54 3.64 0.81 3.2 0.74 87.49 55.06
58 52290 Modalen 0.71 3.44 0.79 3.13 0.83 86.08 69.06
59 52530 Hellisgy 0.11 1.73 0.89 1.46 0.07 89.44 0.48
60 52860 Takle 0.76 2.19 0.86 1.94 0.87 78.97 75.62
61 53100 Vangsnes 0.61 2.50 0.81 2.18 0.77 83.59 59.82
62 54130 Leerdal 0.71 3.83 0.78 3.46 0.82 83.16 66.79
63 55160 Fortun 0.74 3.92 0.82 3.5 0.82 81.55 67.83
64 55290 Sognefjell 0.78 3.37 0.85 2.86 0.89 82.7 78.49
65 59100 Kréakenes 0.14 1.67 0.87 1.44  0.22 99.09 4.85
66 59800 Svingy 0.79 1.56 0.87 1.37 0.89 80.73 79.53
67 6040 Flisa 0.49 5.54 0.80 491 0.67 82.43 45.5
68 60500 Tafjord 0.18 3.19 0.75 298 0.35 94.27 11.92
69 60990 Vigra 0.78 1.88 0.85 1.68 0.88 82.58 77.68
70 61170 Hjelvik 0.76 2.55 0.83 232 0.87 82.29 75.37
71 61770 Lesjaskog 0.72 5.83 0.78 5.16 0.83 80.85 69.68
72 62480 Ona 0.10 1.64 0.88 1.38 0.16 85.91 2.55
73 64550 Tingvoll 0.70 3.49 0.76 3.23 0.82 84.51 67.92
74 65110 Vinjeoera 0.11 3.39 0.79 299 0.21 89.38 4.54
75 65940 Sula 0.52 1.77 0.86 1.64 0.71 83.12 50.59
76 66730 Berkaak 0.70 3.91 0.77 3.47 0.86 84.22 73.93
s 68340 Selbu 0.23 3.75 0.83 3.22 0.37 81.91 13.65
78 69100 Vaernes 0.74 3.89 0.82 3.44 0.85 78.86 71.45
79 69330 Meraker 0.72 4.89 0.81 4.26 0.83 80.06 69.42
80 7010 Rena 0.71 5.85 0.79 5.20 0.82 81.33 67.04
81 71550 @rland 0.77 2.56 0.84 2.31  0.86 78.09 74.56
82 71850 Halten 0.75 1.91 0.84 1.82 0.85 76.98 72.6
83 71990 Buholmrasa 0.79 2.35 0.84 2.28 0.86 78.56 74.76
84 72100 Namdalseid 0.07 4.24 0.81 3.78 0.13 102.70 1.75
85 73620 Harran 0.69 5.43 0.76 5.04 0.83 81.32 69.52
86 75410 Nordgyan 0.21 2.24 0.82 2.24 0.22 102.43 4.62
87 75550 Sklinna 0.75 2.27 0.80 224 0.85 79.58 72.60
88 75600 Leka 0.35 3.05 0.79 2.96 0.55 80.18 30.48
89 77750 Susendal 0.68 6.46 0.72 6.24 0.81 80.76 65.81
90 8130 Evenstad 0.32 5.73 0.74 5.28 0.44 79.38 19.11
91 8710 S@rnesset 0.19 5.72 0.76 5.17  0.32 83.6 10.31

Figure 8 shows a comparison between the empirical distribution functions (e.d.f) of the observations
and of the corresponding predictions. It reveals a very good fit to GPD for both distributions using the
90th percentile as a threshold. Even more than for rainfall (see paragraph 3.2.2), they show very similar
behaviours.

The same remarks apply when considering a GEV model. The resulting return values for both
observations and predictions can then be seen in Figure 9 which provides graphical diagnostics such as
a quantile plot, a density plot and a return level plot. In Figure 9, predictions appear in blue whereas
observations are in black. Both the density and the quantile plot suggest that the quality of the GEV is
not very good when fitting predictions and observations. This can be accounted for by the fact that the
tests were based on only 39 values, which is quite poor.

However, the comparison of the return level plots (Figure 8) shows that the shape for observations
and predictions is the same. It is bounded shape, which is significant of a negative shape parameter for
a GEV distribution and suggest that extrapolation to any level will lead to a finite limit (Coles, 1999).

Thus, both GEV and GPD lead to evidence a similarity between the prediction and observation-
based return values and this suggest that the analog method is able to reproduce the distributions of
the observations, even in the extremes.
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Figure 8. A comparison between extreme distributions for daily December-February absolute minimum temper-
ature observations and predictions from the analog method at station Tromsoe. Generalized Pareto Distribution
for (a) observations, (b) predictions. Return value plots for (c) observations, (d) predictions.

4 Downscaling

One advantage of downscaling techniques is that they can be used to provide local information for the
study of climate change. Here, the downscaling was based on the same common EOF framework that
has been evaluated and tested by Benestad for a linear model (Benestad, 2002, 2003c,b). The analog
method has proved to be able to reproduce skillfully observations, even in the extremes, and it is then
interesting to compare downscaled results when using the two statistical approaches. This is done by
numerical tests and by fitting predictions to GEV and GPD distributions.

The different tables produced are presented in the appendix.

4.1 Precipitation

Table 4 (Appendiz) gives a summary of the performance of the analog method (r and var) and shows
some results on local climate change in southern Norway for the DJF season (95 quantile).

Column 6 lists the percentage of the variance accounted for by the multiple regression. This gives an
indication on how well the empirical downscaling can reproduce the December-February precipitation
using the two different model approaches: linear and analog. The linear model then shows a better fit
than the analog method, which can once more be accounted for by the fact that it is made in a way to
optimize correlation in terms of the Pearson correlation.

On the other hand, the analog model yields more realistic variance levels (column 11). The ratio of
variance between the control and the scenario periods (var(Tsce)/var(Tey)) ranges between 0.79 and
1.31, and is close to 1 for all the stations, indicating that the method reproduces skillfully the variance.
Figure 10 makes it very clear. The blue circles which give the changes in variance for the analog method
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Figure 9. A comparison between GEV distributions for absolute minimum daily winter temperature and pre-
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vations. (d) Density for predictions. (e¢) Return level plot for observations. (f) Return level plot for predictions.
Observations appear in black whereas predictions are on blue.
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Figure 10. (a) Comparison of the percentage of variance reproduced by the analog method and a linear model.
(b) Geographical repartition of the change in large rainfalls between a control period (ctl) and a scenario (sc).
The study was on daily DJF precipitation (mm) in southern Norway.

appear indeed included in a 80%-120% tube, for all the station except one.
On the contrary, the red circles suggest that the linear model reproduces very poorly the variance levels.

Thus, the two methods have different strengths and weaknesses and the choice of one method rather
than the other will depend on what is expected from the analysis.

From the results listed in column 9, it appears that the average amount of precipitation (Arr =
mean(sc) — mean(ctl)) generally increases from the control period to the scenario, the trend being
negative for only 23% of the stations. This general increase is also suggested when looking at the changes
in the extremes as it is illustrated in figure 10(b). No obvious pattern can be drawn from the comparison
of the 95 percentile for the control and the scenario periods (respectively noted q95ctl and q95sc). 26
stations experiment an increase in the largest amount of rainfalls, as for Prestebakke, Byglandsfjord,
Ualand or Takle for instance, whereas 12 stations evidence lower precipitations.

4.2 Temperature

A detailed summary of the downscaled scenarios for DJF temperature and using the analog method is
presented in Table 6 (Appendiz). This table can be compared to the one in Benestad (2003a) where the
downscaling was applied to the same stations but with a linear model.

When comparing the Pearson correlation (R?), it appears that the two different model approaches
generally show a good fit. Here, it is to mention that this coefficient was multiplied by 100 and rounded
so that they are presentated like percentages. The linear model shows again an even better fit than
the analog method. Stations with a low R? (Prestebakke, Skabu, Asker, Finse, Moesstrand, Sirdal,
Midtlaeger, Upsangervatn, Eidfjord, Reimegrend, Hellisgy, Krakenes, Flisa, Tafjord, Ona, Vinjgera, Sula,
Selbu, Namdalseid, Nordgyan, Leka, Evenstad, Sgrnesset) appear to be the same already pointed out in
the paragraph 3.2.3. * It also interesting to note that the percentage of the local variance reproduced
by the empirical downscaling is higher than 70% at all the stations, which is what was also obtained by

*low data quality or a weak relationship between the large-scale features and local temperature.
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Figure 11. Empirical downscaling for daily winter temperature in Tromsoe.(a) Comparison between observations
and predictions using a linear model.(b) Comparison between observations and predictions using the analog
model.

Benestad when using a linear model. A proportion of more than 1 (e.g Rygge, Jelgy, Fornebu, Dgnski,
...) indicates that the model estimates a variability higher than the one of the control period. With a
mean of variance ratios equal to 0.96, the analog method reveals once again to be a better model than
a linear model to reproduce variablity.

However, conclusions are similar for both approaches apply when considering the changes in temper-
ature ranges determined by the quantity var(Ts..)/var(Tey). As for the linear model indeed, the results
suggest a reduction in the temperature range. This decrease is statistically significant as the p-value
associated with the Student’s test suggests it. The p-value is indeed lower than the confidence level, set
to 0.05, which reveals that the means in temperature are significantly different from the control period
to the scenario.

As for the evolution of the highest and lowest temperatures (respectively represented by the 95
percentile and the 5 percentile), they evidence some differences with Benestad’s study. Column 12 gives
the difference q95(sc)-q95(ctl) and positive values then indicate an increase in the warmest temperatures.
The same applies for the coldest temperatures given by the 5 percentile. It is still true that the minimum
temperature increases faster than the maximum temperature but this is the case for less stations than
with the linear model and with lower values. The mean for the 95 percentile is 0.57 wheareas it is 0.86
for the 5 percentile and a wilcoxon test reveals that this difference is statistically significant.

An illustration of this is given in Figure 11 in which downscaled results produced by the clim.pact
package are depicted for the linear model (a) and the analog method (b). Here, ERA-15 temperature
field was used to study Tromsg. The regression model successfully describes the local variations with the
two approaches.

Analysis of extremes is also provided in Figure 12 and the Generalized Pareto Distributions of
the downscaled results for December-February daily temperature in Tromsg were compared for the two
statistical approaches. Predictions based on the analog method then appear in the two first graphs at
the top whereas predictions from downscaling using a linear model are at the bottom. The distributions
as well as the return level plots evidence very similar behaviour and both reveal to have a good fit.

However, for some stations, the analog method appears to reproduce more skillfully the trend of
the extreme values than the linear model does. As an illustration of this, a comparison can be drawn
between the return level plots for observations and predictions in Alta (Figures 13 and 14). Here indeed,
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Figure 12. Generalized Pareto Distribution for daily winter absolute minimum temperature predictions in Trom-
soe using the analog method (top) and a linear model (bottom).

predictions from downscaling with a linear model is not able anymore to capture the shape of the return
value plot for observations, what the analog method can.
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Figure 14. Generalized Pareto Distribution and return value plots for DFJ daily temperature predictionsin Alta,
using the analog method (top) and a linear model (bottom).
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Figure 15. ecd for daily DJF predictions for Im, anm and a combined anm-lm method (cbnd) (a) Oslo, (b)Bergen,
(c) Nesbyen, (d) Tromsoe.

4.3 Future prespectives

The previous tables give some evidence of climate change, which many studies have already pointed out
(Houghton et al., 2001; Stott et al., 2001). Changes in the extremes especially are likely to occur and it
was shown that temperature especially should increase in the future. This can be taken into account for
the previous analysis based on the analog method in order to get more realistic predictions.

To achieve this, two methods can then be thought of. The first of them is to include the whole year in
the calibration period. Warming implies indeed that spring (March-May) climatic conditions for instance
will get close to March-June period in the next years and this method permits to deals with this problem
by looking for analogs in a wider range of climatic patterns.

This way of proceeding can be repeated for autum and winter, the only problem being for summer as
no warmer months can be found.

Another method to take into account climate change is to combined the analog method and a linear
model, now having in hand the performances of both of them. The idea is to use the trend from the linear
model (Im) to scale the predictions from the analog approach. The trend is expressed by the change in
mean between the predictions for the scenario and for the control period period. The Im trend, refered
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as DT.lm, is then added to anm predictions after removing the anm trend (noted DT.anm), as follows:
predictions = anm.predictions — DT.anm + DT.Im

A first approach to analyse the results can be to look at the empirical cumulative distribution functions
(e.c.d.f) of the linear model (Im) as well as of the anm (anm) and combined methods (cbnd). They are
compared in Figure 15, together with the observations.

Four stations from different geographical and meteorological patterns in Norway were used to study
daily DJF temperatures: Oslo for southern Norway, Bergen for the western coast, Nesbyen for the inland
mountains and Tromsoe for the northern part.

The plot shows that both the analog and the combined methods get close to the observations in the
extremes and this, in a better way than the linear model. Future work is planned to analyse more deeply
the performance of the combined method and to compare it with the approach consisting in taking the
whole year as a calibration period.

Conclusion

The analog method has been presented and applied to daily winter rainfall and temperature, mainly in
southern Norway. The results reveal the performance of the technique and its insuffiencies.

The relationships between the observations and the reconstructed time series reveal that the tech-
nique is able to reproduce skillfully temperatures but that the results are not so significant when looking
at rainfalls. In terms of correlation, the fit is better with a linear model whose main characteristic is to
optimize the Pearson coefficient. However, the analog method always proves to be able to return realistic
climatic variation and in this respect, presents a relevant advantage to a linear model. In some studies,
the variance reproductibility can be a more deciding criterium than the correlation and, in this case, the
analog method will then be prefered. One method is then not better than the other, it is the type of the
analysis itself which will determine the one to choose.

The study of temperatures and rainfalls in the extremes also suggest the good performance of the
analog model and proves that it can be applied to future climate, keeping in mind its weaknesses and
strengths. Statistical approaches based on the analog method have then been thought of to deal in
a better way with this. Two of them have already been developped, one using the whole year as a
calibration period and the other one using the trend from a linear model. Future work is planned to
analyse more deeply the results.

However, what was suggested by all the results is that predicting values requires to consider several
model approaches in order to get a more realistic description of the observed series and to anticipate
correctly future changes.
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TABLE 4. A summary of the downscaled scenarios for the different stations in DJF season. The downscaling was
applied on precipitations (mm) using the analog method as a statistical approach. The columus list the longitude
(°E), latitude (°N), altitude (m. a.s.l), the variance accounted for by the multiple regression (%), estimated

precipitation change (°C) and the 95 percentile for both the control period and the scenario period.

location station Ton lat alt r2 rr.chng var q95ctl  q95sc

1  Rgros 10400.00 11.38 62.57 628.00 5.00 0.09 1.14 —0.63 9.37
2  Prestebakke 1130.00 11.54 58.99 157.00 5.00 0.65 1.12 —3.41 27.39
3 (stre 11500.00 10.87 60.70 264.00 3.00 0.28 131 —0.06 12.84
4 Lillehammer 12680.00 10.48 61.09 114.00  15.00 —-0.06 0.86 —1.17 13.83
5 Venabu 13420.00 10.11 61.65 930.00 6.00 0.00 0.99 —0.91 14.99
6 Skabu 13670.00 9.38 61.52 890.00 3.00 —-0.20 0.96 —0.41 12.89
7  Gjeilo 15540.00 8.45 61.87 378.00 3.00 0.04 0.85 0.25 5.25
8 Brata 15720.00 7.86 6191 712.00 21.00 060 115 —0.52 17.68
9 Fokstua 16610.00 9.29 62.11 386.00 4.00 0.07 1.06 —0.48 6.02
10 Rygge 17150.00 10.79  59.38 205.00 14.00 041 1.04 —3.03 20.17
11 JelQy 17290.00 10.59 59.44 12.00 6.00 0.21 0.99 —1.43 19.57
12 Oslo 18700.00 10.72  59.94 380.00 13.00 0.73 1.24 —1.97 23.03
13  Tryvasshggda  18960.00 10.69 59.99 528.00 8.00 0.72 119 —1.64 27.56
14  Fornebu 19400.00 10.62 59.89 10.00 12.00 0.34 1.09 —1.47 19.63
15  Dgnski 19480.00 10.50 59.90 59.00 16.00 0.54 1.09 —1.88 17.12
16 Asker 19710.00 10.44 59.86 163.00 15.00 0.11 0.98 —1.59 18.41
17 Vest—torpa 21680.00 10.04 60.94 542.00 11.00 0.17 1.14 0.30 12.60
18  Fagernes 23420.00 9.24  60.99 365.00 5.00 -0.31 0.79 —0.62 12.48
19 Lgken 23500.00 9.07 61.12 525.00 6.00 -0.29 0.91 —-0.61 12.79
20 Nesbyen 24880.00 9.12  60.57 70.00 14.00 —-0.03 0.91 —0.67 6.43
21 Geilo 25590.00 8.20 60.52 353.00 13.00 0.11 1.21 —1.52 9.68
22  Finse 25840.00 7.50 60.60 1224.00 28.00 0.19 1.10 —-1.49 22.61
23  Makergy 27410.00 10.44 59.16 43.00 5.00 0.12 1.05 —1.61 15.89
24  Feaerder 27500.00 10.53  59.03 6.00 8.00 0.52 1.06 —2.45 19.95
25 Kongsberg 28370.00 9.65 59.66 168.00 12.00 —0.08 0.92 —-0.36 14.14
26  Lungdal 28800.00 9.52 59.91 142.00  23.00 —-0.06 0.89 —1.32 13.38
27  Magnor 2950.00 12.21  59.97 154.00 2.00 0.32 110 —0.65 11.55
28  Moesstrand 31620.00 8.18 59.84 388.00 22.00 —0.06 0.87 —2.26 13.64
29  Lynger 35860.00 9.15 58.63 4.00 7.00 0.84 114 —0.64 18.26
30 Torungen 36200.00 8.79  58.38 12.00 7.00 1.26 1.28 —1.59 23.61
31 Nelaug 36560.00 8.63 58.66 142.00 18.00 0.84 129 —226 36.64
32  Tveitsund 37230.00 8.52  59.03 124.00  26.00 0.77 118 —-3.03 29.17
33 Landvik 38140.00 8.52 58.33 6.00 10.00 0.54 1.14 0.07 18.57
34  Kjevik 39040.00 8.07 58.20 23.00 15.00 1.49 1.24 —4.06 37.54
35  Oksgy 39100.00 8.05 58.07 9.00 5.00 1.47 1.27 —1.64 27.86
36 Byglandsfjord 39690.00 7.80 58.67 212.00 24.00 1.62 1.29 —2.85 44.55
37 Lindesnes 41770.00 7.05 57.98 13.00 6.00 0.51 1.03 —2.37 22.63
38 Lista 42160.00 6.57 58.11 14.00 10.00 097 111 —3.48 25.92
39  Sirdal 42920.00 6.85 58.89 242.00  34.00 1.19 112 -7.72 51.78
40 Ualand 43500.00 6.35 58.55 196.00 17.00 2.72 1.24 —5.39 84.11
41  Obrestad 44080.00 5.56  58.66 24.00 10.00 1.17 131 —-1.92 30.28
42 Sola 44560.00 5.64 58.88 312.00 10.00 0.85 1.27 —2.21 29.29
43  Suldal 46200.00 6.42  59.46 58.00 14.00 1.13 1.09 —1.47 59.03
44  Midtleeger 46510.00 6.99 59.83 1079.00 21.00 —-0.17  0.93 0.48 8.48
45 Sauda 46610.00 6.36  59.65 240.00  26.00 1.81 1.16 —4.44 49.56
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location station lon lat alt r2 rr.chng var q95ctl  q95sc
46  Nedre 46910.00 5.75  59.48 64.00 9.00 1.37 1.04 —2.72 44.58
47  Utsira 47300.00 4.88 59.31 55.00 8.00 0.52 1.22 —-2.68 28.62
48  Gardermoen 4780.00 11.08 60.21 202.00 13.00 0.51 1.11 -0.99 15.01
49  Slattergy 48330.00 5.07 59.91 15.00 7.00 1.03 1.19 —1.64 29.06
50 Upsangervatn  48390.00 5.77 59.84 60.00 4.00 0.72 1.10 -0.39 54.81
51  Eidfjord 49580.00 6.86 60.47 165.00 15.00 0.49 1.17 -1.50 52.90
52  Omastrand 50130.00 5.98 60.22 2.00 13.00 1.58 1.13 —-1.15 70.75
53  Kvamskogen 50300.00 5.91 60.39 210.00 30.00 1.33 1.12 —-6.19 67.81
54  Flesland 50500.00 5.23  60.29 48.00 13.00 0.60 1.18 —1.90 21.80
55  Bergen 50540.00 5.33  60.38 23.00 16.00 1.35 1.18 —3.78 42.02
56  Voss 51590.00 6.50  60.65 30.00 23.00 0.74 1.14 —-2.78 31.12
57  Reimegrend 51670.00 6.74  60.69 590.00 19.00 1.12  1.14 —-3.39 4991
58 Modalen 52290.00 5.95 60.84 114.00 23.00 3.04 1.17 —0.83 66.37
59  Hellisgy 52530.00 4.71  60.75 20.00 4.00 0.22 1.27 —1.03 16.77
60 Takle 52860.00 5.38 61.03 38.00 17.00 2.72 115 —-2.31 93.39
61  Vangsnes 53100.00 6.65 61.17 51.00 2.00 1.04 1.14 1.20 27.80
62 Leardal 54130.00 7.52  61.06 36.00 14.00 0.47 1.15 —-0.75 17.25
63  Fortun 55160.00 7.70  61.50 27.00 16.00 0.99 1.20 —-0.53 26.27
64  Sognefjell 55290.00 8.00 61.57 1413.00 16.00 —0.10 1.04 —1.11 11.19
65  Krékenes 59100.00 4.99 62.03 41.00 15.00 0.49 1.22 0.84 16.04
66  Svingy 59800.00 5.27  62.33 38.00 2.00 0.59 147 —-0.26 17.57
67 Flisa 6040.00 12.02 60.61 184.00 7.00 0.34 1.30 -0.64 8.80
68  Tafjord 60500.00 7.42  62.23 52.00 26.00 —0.06 1.07 —0.24 23.06
69  Vigra 60990.00 6.12  62.56 106.00  13.00 0.38 1.33 —1.12 19.38
70  Hjelvik 61170.00 721  62.62 21.00 13.00 0.38 1.11 0.53  36.43
71  Lesjaskog 61770.00 8.37 62.23 621.00 10.00 —0.24 0.85 1.19  14.99
72  Ona 62480.00 6.54  62.86 13.00 7.00 0.94 1.30 0.68  27.98
73  Tingvoll 64550.00 8.30 62.84 69.00 15.00 —0.08 1.07 1.61  22.51
74  Vinjeoera 65110.00 9.00 63.21 229.00 13.00 —-0.23 1.09 -0.30 40.30
75  Sula 65940.00 8.47 63.85 5.00 4.00 0.21 1.17 1.17 18.77
76  Berkaak 66730.00 10.02 62.82 231.00 19.00 —0.26 0.85 0.53 7.53
77  Selbu 68340.00 11.12 63.21 117.00 13.00 —-0.26 096 —0.11 7.89
78  Vaernes 69100.00 10.94 63.46 23.00 13.00 0.08 1.08 —0.18 18.12
79  Meraker 69330.00 11.70 63.44 145.00 7.00 —0.08 0.98 0.24 16.55
80 Rena 7010.00 11.44 61.16 240.00 9.00 0.47 1.18 —0.24 13.86
81 Qrland 71550.00 9.60 63.70 10.00 6.00 0.17 1.21 —-0.15 27.85
82  Halten 71850.00 9.41 64.17 16.00 6.00 —0.02 1.02 1.27  14.17
83 Buholmrésa 71990.00 10.45 64.40 18.00 2.00 0.20 1.04 1.58  14.38
84 Namdalseid 72100.00 11.20 64.25 86.00 14.00 0.02 1.04 1.36  19.86
85 Harran 73620.00 12.51 64.59 118.00 14.00 —0.08 0.99 0.88  20.08
86 Nordgyan 75410.00 10.55 64.80 33.00 2.00 0.27 1.14 0.84 15.84
87  Sklinna 75550.00 11.00 65.20 23.00 2.00 —0.01 0.92 0.88 12.68
88 Leka 75600.00 11.70  65.10 47.00 7.00 —0.19  0.99 1.69 17.19
89  Susendal 77750.00 14.02 65.52 265.00 24.00 —-0.35 1.14 —1.06 22.04
90 Evenstad 8130.00 11.14 61.41 255.00 14.00 —0.15 0.83 —1.61 25.89
91  Sgrnesset 8710.00 10.15 61.89 739.00 1.00 0.24 1.15 —0.53 10.97

29



The analog method applied to downscaling of climate scenarios

30

TABLE 5. A comparison between the performance of the analog method (anm) and the linear model (Im). The
columns list the Pearson correlation coefficient and the proportional change in variance between the scenario
and the control intervals. The analysis was on December-February daily temperature for stations in southern

Norway.

n station  location r.aanm r.Jm var.anm var.lm
1 10400 Rgros 0.71 0.84 84.76 70.22
2 1130 Prestebakke 0.40 0.58 83.31 33.26
3 11500 Dstre 0.69 0.83 87.25 69.60
4 12680 Lillehammer 0.74 0.84 83.69 70.61
5 13420 Venabu 0.70 0.84 78.47 69.90
6 13670 Skabu 0.61 0.76  82.89 58.30
7 15540 Gjeilo 0.72 0.83 93.67 69.19
8 15720 Brata 0.72 0.83 81.71 69.40
9 16610 Fokstua 0.75 0.86  80.09 74.67
10 17150 Rygge 0.74 0.84 78.93 70.10
11 17290 Jelgy 0.76 0.85 78.33 72.21
12 18700 Oslo 0.73 0.84 79.12 69.93
13 18960 Tryvasshggda  0.73 0.84 77.34 71.07
14 19400 Fornebu 0.73 0.82 80.13 68.03
15 19480 Dgnski 0.69 0.81 79.86 65.27
16 19710 Asker 0.06 0.15 87.58 2.27
17 21680 Vest-torpa 0.70 0.85 94.76 72.46
18 23420 Fagernes 0.68 0.8 86.74 64.11
19 23500 Lgken 0.65 0.82 93.06 66.77
20 24880 Nesbyen 0.68 0.79 83.55 61.91
21 25590 Geilo 0.70 0.83 82.86 69.17
22 25840 Finse 0.22 0.32 80.09 10.35
23 27410 Maékergy 0.56 0.70  81.71 49.6
24 27500 Feerder 0.74 0.83 74.77 69.36
25 28370 Kongsberg 0.69 0.82 80.94 66.71
26 28800 Lungdal 0.69 0.82 82.67 67.63
27 2950 Magnor 0.73 0.84 80.18 71.37
28 31620 Moesstrand 0.18 0.36  85.08 13.18
29 35860 Lynger 0.73 0.83 74.94 69.01
30 36200 Torungen 0.73 0.84 74.49 70.15
31 36560 Nelaug 0.57 0.73 79.48 52.84
32 37230 Tveitsund 0.69 0.82 80.04 67.7
33 38140 Landvik 0.68 0.83  85.80 69.21
34 39040 Kjevik 0.72 0.83 78.43 69.11
35 39100 Oksgy 0.74 0.85 76.06 71.58
36 39690 Byglandsfjord  0.69 0.82 77.20 67.34
37 41770 Lindesnes 0.75 0.85 73.16 71.49
38 42160 Lista 0.75 0.85 75.37 72.25
39 42920 Sirdal 0.14 0.26 81.01 6.71
40 43500 Ualand 0.73 0.84 76.57 71.00
41 44080 Obrestad 0.78 0.87 77.34 76.24
42 44560 Sola 0.75 0.86 75.97 73.37
43 46200 Suldal 0.69 0.82 84.93 66.55
44 46510 Midtlaeger 0.36 0.56  90.94 31.47
45 46610 Sauda 0.70 0.83 81.83 68.62
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TABLE 5 continued...

n station location ranm rIm var.anm var.Im
46 46910 Nedre 0.73 0.85 79.99 73.00
47 47300 Utsira 0.75 0.86 73.39 74.20
48 4780 Gardermoen 0.72 0.83 79.91 68.07
49 48330 Slattergy 0.74 0.86 75.85 74.8
50 48390 Upsangervatn  0.16 0.16  94.77 2.45
51 49580 Eidfjord 0.18 0.24 84.83 5.71
52 50130 Omastrand 0.71 0.84 79.42 69.82
53 50300 Kvamskogen 0.73 0.85 79.68 71.78
54 50500 Flesland 0.76 0.87 76.2 75.29
55 50540 Bergen 0.76 0.87 79.66 76.49
56 51590 Voss 0.74 0.84 80.57 70.43
57 51670 Reimegrend 0.54 0.74 87.49 55.06
58 52290 Modalen 0.71 0.83  86.08 69.06
59 52530 Hellisgy 0.11 0.07 89.44 0.48
60 52860 Takle 0.76 0.87 78.97 75.62
61 53100 Vangsnes 0.61 0.77 83.59 59.82
62 54130 Laerdal 0.71 0.82 83.16 66.79
63 55160 Fortun 0.74 0.82 81.55 67.83
64 55290 Sognefjell 0.78 0.89 82.7 78.49
65 59100 Krakenes 0.14 0.22  99.09 4.85
66 59800 Svingy 0.79 0.89 80.73 79.53
67 6040 Flisa 0.49 0.67 82.43 45.50
68 60500 Tafjord 0.18 0.35 94.27 11.92
69 60990 Vigra 0.78 0.88  82.58 77.68
70 61170 Hjelvik 0.76 0.87 82.29 75.37
71 61770 Lesjaskog 0.72 0.83  80.85 69.68
72 62480 Ona 0.1 0.16 85.91 2.55
73 64550 Tingvoll 0.70 0.82 84.51 67.92
74 65110 Vinjeoera 0.11 0.21 89.38 4.54
75 65940 Sula 0.52 0.71 83.12 50.59
76 66730 Berkaak 0.70 0.86 84.22 73.93
77 68340 Selbu 0.23 0.37 81.91 13.65
78 69100 Vaernes 0.74 0.85 78.86 71.45
79 69330 Meraker 0.72 0.83  80.06 69.42
80 7010 Rena 0.71 0.82 81.33 67.04
81 71550 @rland 0.77 0.86 78.09 74.56
82 71850 Halten 0.75 0.85 76.98 72.6
83 71990 Buholmrésa 0.79 0.86 78.56 74.76
84 72100 Namdalseid 0.07 0.13  102.7 1.75
85 73620 Harran 0.69 0.83 81.32 69.52
86 75410 Nordgyan 0.21 0.22 102.43 4.62
87 75550 Sklinna 0.75 0.85 79.58 72.6
88 75600 Leka 0.35 0.55 80.18 30.48
89 77750 Susendal 0.68 0.81 80.76 65.81
90 8130 Evenstad 0.32 0.44 79.38 19.11
91 8710 Sernesset 0.19 0.32 83.6 10.31
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A summary of the downscaled scenarios for the different stations in DJF season. The downscaling

was applied on temperature using the analog method as a statistical approach. The columns list the longitude
(°E), latitude (°N), altitude (m. a.s.l), the variance accounted for by the multiple regression (%), estimated
temperature change (°C), corresponding t-test, the proportional change in variance between the scenario and
the control intervals, and the estimated change in the 95 and 5 percentiles (°C).

location station lon lat alt R2 p.val t.chng t.test var q95 q05

1 Rgros 10400 11.38 62.57 628.00 62.00 O 0.57 0.01 1.05 0.88 0.92
2 Prestebakke 1130 11.54 58.99 157.00 19.00 O 0.47 0.00 1.01 0.60 1.30
3 stre 11500 10.87 60.70 264.00 58.00 O 0.83 0.00 0.98 0.08 0.37
4  Lillehammer 12680 10.48 61.09 114.00 56.00 O 0.71 0.00 0.99 0.63 1.05
5 Venabu 13420 10.11 61.65 930.00 55.00 O 0.67 0.00 0.94 0.28 0.87
6 Skabu 13670 9.38 61.52 890.00 40.00 O 0.74 0.00 0.95 0.50 0.96
7  Gjeilo 15540 8.45 61.87 378.00 56.00 O 0.71 0.00 1.05 1.54 —0.68
8 Brata 15720 7.86 61.91 712.00 58.00 0 0.96 0.00 0.96 0.78 0.61
9  Fokstua 16610 9.29 62.11 386.00 60.00 O 0.91 0.00 0.99 0.54 0.67
10 Rygge 17150 10.79  59.38 205.00 59.00 O 1.14 0.00 0.98 1.02 1.85
11 Jelpy 17290 10.59 59.44 12.00 68.00 O 1.11 0.00 0.95 0.32 0.77
12 Oslo 18700 10.72 59.94 380.00 63.00 O 0.98 0.00 1.01 1.45 1.04
13 Tryvasshggda 18960 10.69  59.99 528.00 60.00 O 0.90 0.00 0.89 0.23 1.17
14  Fornebu 19400 10.62 59.89 10.00 62.00 O 1.01 0.00 0.96 0.32 1.20
15  Dgnski 19480 10.50  59.90 59.00 57.00 O 1.02 0.00 0.96 0.32 0.98
16 Asker 19710 10.44 59.86 163.00 2.00 O -0.19 0.28 0.96 —1.02 0.00
17 Vest—torpa 21680 10.04 60.94 542.00 54.00 O 0.62 0.00 0.98 —0.93 1.45
18  Fagernes 23420 9.24 60.99 365.00 51.00 O 0.85 0.00 0.98 0.62 1.95
19 Lgken 23500 9.07 61.12 525.00 55.00 O 0.86 0.00 0.94 0.46 0.69
20 Nesbyen 24880 9.12  60.57 70.00 50.00 O 1.06 0.00 0.99 0.77 0.61
21  Geilo 25590 8.20 60.52 353.00 55.00 O 0.84 0.00 0.99 0.93 0.69
22  Finse 25840 7.50 60.60 1224.00 7.00 O 0.12 0.50 1.01 0.21 0.08
23  Makergy 27410 10.44  59.16 43.00 37.00 0 0.57 0.00 1.03 1.11 0.22
24  Feerder 27500 10.53  59.03 6.00 64.00 O 0.86 0.00 0.96 0.65 0.29
25  Kongsberg 28370 9.65 59.66 168.00 58.00 0 1.05 0.00 1.02 1.26 0.71
26  Lungdal 28800 9.52 59.91 142.00 57.00 O 0.84 0.00 0.97 0.12 0.81
27  Magnor 2950 12.21 59.97 154.00 62.00 O 1.26 0.00 0.90 0.97 1.10
28  Moesstrand 31620 8.18 59.84 388.00 6.00 O 0.60 0.00 0.97 0.62 0.80
29 Lynger 35860 9.15 58.63 4.00 60.00 O 0.82 0.00 0.93 0.26 0.57
30 Torungen 36200 8.79  58.38 12.00 59.00 0 0.73 0.00 0.94 0.59 0.55
31 Nelaug 36560 8.63  58.66 142.00 36.00 O 1.03 0.00 0.97 1.13 1.68
32  Tveitsund 37230 8.52  59.03 124.00 54.00 O 1.13 0.00 0.91 0.97 1.24
33  Landvik 38140 8.52  58.33 6.00 50.00 O 0.85 0.00 0.85 0.24 0.88
34  Kjevik 39040 8.07 58.20 23.00 52.00 O 0.76 0.00 0.96 0.44 0.36
35  Oksgy 39100 8.05 58.07 9.00 57.00 O 0.68 0.00 0.95 0.53 0.46
36  Byglandsfjord 39690 7.80 58.67 212.00 53.00 O 0.97 0.00 0.87 1.00 1.57
37 Lindesnes 41770 7.05 57.98 13.00 58.00 O 1.65 0.00 0.89 0.56 0.28
38 Lista 42160 6.57 58.11 14.00 60.00 O 0.74 0.00 0.97 0.77 0.06
39  Sirdal 42920 6.85 58.89 242.00 5.00 O —0.06 0.68 0.98 —0.13 0.13
40 Ualand 43500 6.35 58.55 196.00 54.00 O 0.71 0.00 0.94 0.42 0.20
41  Obrestad 44080 5.56  58.66 24.00 61.00 O 0.81 0.00 0.97 0.44 0.99
42 Sola 44560 5.64  58.88 312.00 57.00 O 0.71 0.00 0.93 0.50 0.71
43  Suldal 46200 6.42  59.46 58.00 47.00 O 0.79 0.00 0.88 0.07 1.67
44  Midtleger 46510 6.99 59.83 1079.00 25.00 O 0.43 0.00 1.01 0.00 0.47
45  Sauda 46610 6.36  59.65 240.00 50.00 O 0.76 0.00 0.88 0.50 2.07
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location station lon lat alt R2 p.val t.chng t.test var q95 q05
46  Nedre 46910 5.75  59.48 64.00 54.00 O 0.80 0.00 0.99 0.65 0.87
47  Utsira 47300 4.88 59.31 55.00 58.00 O 0.53 0.00 0.97 0.47 0.36
48 Gardermoen 4780 11.08 60.21 202.00 62.00 0 1.21 0.00 0.93 0.45 1.40
49  Slattergy 48330 5.07 59.91 15.00 54.00 0 0.52 0.00 0.93 0.56 0.65
50  Upsangervatn 48390 5.77 59.84 60.00 2.00 0 —0.03 0.75 1.09 0.99 -0.25
51  Eidfjord 49580 6.86 60.47 165.00 4.00 0 0.07 0.48 1.01 0.27 0.27
52  Omastrand 50130 5.98 60.22 2.00 53.00 0 0.73 0.00 1.01 0.67 0.84
53  Kvamskogen 50300 5.91 60.39 210.00 57.00 0 0.88 0.00 0.94 0.55 1.21
54  Flesland 50500 5.23  60.29 48.00 58.00 0 0.76 0.00 0.98 0.62 0.58
55  Bergen 50540 5.33  60.38 23.00 55.00 O 0.69 0.00 1.00 0.54 0.73
56  Voss 51590 6.50 60.65 30.00 59.00 0 1.12 0.00 0.83 0.95 2.76
57  Reimegrend 51670 6.74  60.69 590.00 32.00 O 0.41 0.00 1.03 0.64 0.55
58 Modalen 52290 5.95 60.84 114.00 49.00 O 1.03 0.00 0.82 0.29 2.79
59  Hellisgy 52530 4,71  60.75 20.00 4.00 0 0.18 0.01 0.91 0.19 0.10
60 Takle 52860 5.38 61.03 38.00 58.00 O 0.74 0.00 0.98 0.50 0.58
61  Vangsnes 53100 6.65 61.17 51.00 44.00 0 0.54 0.00 1.04 0.74 0.14
62  Laerdal 54130 7.52 61.06 36.00 53.00 0 0.74 0.00 0.94 0.35 1.13
63  Fortun 55160 7.70 61.50 27.00 61.00 O 0.92 0.00 0.84 0.50 2.01
64  Sognefjell 55290 8.00 61.57 1413.00 60.00 O 0.96 0.00 1.10 1.19 —-0.12
65  Krakenes 59100 4.99 62.03 41.00 8.00 0 0.12 0.13 1.10 0.85 0.21
66  Svingy 59800 5.27  62.33 38.00 54.00 0 0.58 0.00 0.96 0.53 0.28
67 Flisa 6040 12.02 60.61 184.00 35.00 O 1.30 0.00 0.94 0.29 1.57
68  Tafjord 60500 7.42  62.23 52.00 10.00 O 0.08 0.49 1.05 0.15 —0.22
69  Vigra 60990 6.12 62.56 106.00 55.00 O 0.66 0.00 0.99 1.00 0.30
70  Hjelvik 61170 7.21  62.62 21.00 60.00 O 0.82 0.00 1.08 0.91 1.01
71  Lesjaskog 61770 8.37 62.23 621.00 54.00 O 1.01 0.00 0.99 0.98 2.17
72  Ona 62480 6.54 62.86 13.00 2.00 0 0.03 0.73 1.09 —0.09 0.28
73 Tingvoll 64550 8.30 62.84 69.00 54.00 0 0.77 0.00 1.01 1.28 1.52
74  Vinjeoera 65110 9.00 63.21 229.00 2.00 0 —0.10 0.48 1.05 —-0.01 -—0.28
75  Sula 65940 8.47 63.85 5.00 26.00 O 0.60 0.00 0.96 0.62 0.49
76  Berkaak 66730 10.02  62.82 231.00 55.00 O 0.83 0.00 1.07 0.89 0.92
77  Selbu 68340 11.12 63.21 117.00 7.00 0 0.38 0.03 1.07 0.43 0.12
78  Vaernes 69100 10.94 63.46 23.00 64.00 0 1.09 0.00 0.89 0.79 1.96
79  Meraker 69330 11.70 63.44 145.00 58.00 O 0.96 0.00 0.96 0.92 1.33
80 Rena 7010 11.44 61.16 240.00 60.00 O 1.16 0.00 1.00 0.80 1.30
81  @rland 71550 9.60 63.70 10.00 63.00 0 0.87 0.00 0.85 0.62 1.69
82 Halten 71850 9.41 64.17 16.00 60.00 0 0.84 0.00 0.81 0.51 0.90
83  Buholmrésa 71990 10.45 64.40 18.00 66.00 0 1.15 0.00 0.77 0.70 1.46
84  Namdalseid 72100 11.20 64.25 86.00 0.00 10.33 0.24 0.01 0.94 0.23 0.54
85 Harran 73620 12.51 64.59 118.00 56.00 O 1.31 0.00 0.86 0.55 3.77
86 Nordgyan 75410 10.55 64.80 33.00 4.00 0 —0.11 0.24 097 -0.19 0.04
87  Sklinna 75550 11.00 65.20 23.00 68.00 0 1.09 0.00 0.74 0.63 1.53
88 Leka 75600 11.70 65.10 47.00 15.00 0 0.88 0.00 0.96 0.68 0.76
89  Susendal 77750  14.02  65.52 265.00 63.00 0 1.82 0.00 0.86 0.70 2.15
90 Evenstad 8130 11.14 61.41 255.00 15.00 O 0.71 0.00 1.08 1.53 1.84
91  Sgrnesset 8710 10.15 61.89 739.00 5.00 0 0.23 0.16 1.20 091 —-1.95
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anm The Analog method
Description

anm is used to compute the analog method.

Usage

anm(formula,data,weights=NULL,cross.valid=NULL)

Arguments
formula
data
weights

cross.valid

a symbolic description of the model to be fit.
the data.frame containing the variables in the model.
an optional matrix of weights to be used in the fitting process.

an optional matrix of booleans. If not specified, a cross validation is used
in the fitting process.



2 anm

Detalils

Models for anm are specified symbolically. A typical model has the form predictand terms
where terms is a series of predictors whose specification can be of the for first + second.
anm calls the lower level function [clim.pact]anm.fit.

Value

An object of class "Janm”. An object of class "anm” is a list containing the following com-
ponents:

coefficients  a vector containing the values for the principal components corresponding
to the maximum among observations.

contrasts (not used).
call the matched call.
terms the terms object used.
model the model frame used.
x the matrix used for predictors.
y the predictand.
weights the matrix of weights.
cross.valid equals to True if the cross.validation will be used for the fitting process.
data the input data.frame.
Author(s)

Alexandra Imbert

References

URL http://www.R-project.org/

See Also
linkpredict.anm, linkstepANM

Examples

library(survival)
library(clim.pact)
data(temp.era)
data(susendal)
y<-susendal$V6 # temperatures
X<- eof$PC[,c(1,2)]
calibration <- c(susendal$V4>1979 & susendal$V4<1990 & (susendal$V3==1 | susendal$V3==2 | susendal$V3=
evaluation <- c((susendal$V4>1990 & susendal$V4<1993 | susendal$V4==1990) & (susendal$V3==1 | susendal
y.calib <- y[calibration]
y.eval <- y[evaluation]
eof .calib <- c(eof$yy>1979 & eof$yy<1990)
eof.eval <- c(eof$yy> 1990 & eof$yy<1993| eof$yy==1990)
period <- c(calibration, evaluation)
y.period <- y[(susendal$V4>1979 & susendal$V4<1993) & (susendal$V3==1 | susendal$V3==2 | susendal$V3==
test.data <-data.frame(y=y.period,
X1=X[eof$yy< 1993 & eof$yy> 1979,11,
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X2=X[eof$yy< 1993 & eof$yy> 1979,2],

yy=eof$yy [eof .calib | eof.evall,

mm=eof$mm [eof.calib | eof.evall,

dd=eof$dd [eof .calib | eof.evall)
anm(y ~ X1 + X2,data=test.data)

anm.fit Support function for anm

Description

Basic computing engine called by anm to implement the analog method. This should usually
not be used directly.

Usage
anm.fit(x, y, tol = 1e-07, ...)
Arguments
X design matrix of dimension n * p.
y vector of observations of length n.
tol if equal to 1, information is printed during the running of step.
cross.valid tolerance for the qr decomposition. Default is 1e-7.
currently disregarded.
Value

A list with components

coefficients vector containing the highest value among observations and the values of
the predictors at this date.

residuals n vector.

fitted.values n vector.

effects n vector.

rank integer, giving the rank.

df .residual degrees of freedom of residuals.

qr the QR decomposition, see qr.
Author(s)

Alexandra Imbert

References

URL http://www.R-project.org/

See Also

anm, predict.anm
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eof Daily common EOF.

Description

See [clim.pact]EOF

plotANM Plot Diagnostics for an anm Object.

Description
Three plots are provided: a plot of the minimum distances versus time, a plot comparing
the analogs from [clim.pact]EOF and observations and a plot of errors versus time.
Usage

plotANM(x,tmp,station,eof .file,leps)

Arguments
x the anm object inheriting from anm routine and for which prediction is
desired.
tmp True if the analysis is on temperature, False if on precipitation.
station the name of the station.
eof .file string giving the name of the eof file used for the study.
leps if true, postscripts are created for the plots.
Author(s)

Alexandra Imbert

See Also

anm, stepANM, predict.anm, print.anm

Examples

library(survival)

library(clim.pact)

data(temp.era)

data(susendal)

y<-susendal$V6 # temperatures

X<- eof$PC[,c(1,2)]

calibration <- c(susendal$V4>1979 & susendal$V4<1990 & (susendal$V3==1 | susendal$V3==2 | susendal$V3=
evaluation <- c((susendal$V4>1990 & susendal$V4<1993 | susendal$V4==1990) & (susendal$V3==1 | susendal
y.calib <- y[calibration]

y.eval <- y[evaluation]

eof.calib <~ c(eof$yy>1979 & eof$yy<1990)

eof .eval <- c(eof$yy> 1990 & eof$yy<1993| eof$yy==1990)
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period <- c(calibration, evaluation)
y.period <- y[(susendal$V4>1979 & susendal$V4<1993) & (susendal$V3==1 | susendal$V3==2 | susendal$V3==
test.data <-data.frame(y=y.period,
X1=X[eof$yy< 1993 & eof$yy> 1979,1],
X2=X[eof$yy< 1993 & eof$yy> 1979,2],
yy=eof$yy [eof .calib | eof.evall,
mm=eof$mm[eof .calib | eof.evall,
dd=eof$dd [eof .calib | eof.evall)
test.anm<-anm(y ~ X1 + X2,data=test.data)
plotANM(test.anm,TRUE, "Susendal","eof ERA-15_TEM_16E31E-64N73N_DJF" ,FALSE)

predict.anm Predict method for anm objects.

Description

Returns the predicted values based on the anm object.

Usage
predict.anm(object,newdata=NULL,se.fit=FALSE, ...)
Arguments
object the anm object inheriting from anm routine.
newdata an optional independant data. If specified, only the vector of predictions
is returned.
se.fit if false, only the vector of predictions is returned.
further arguments passed to or from other methods.
Value

A list with components

problem.dimension
the number of predictor variables.

period.length the time period.

d.min the vector of minimum distances.

date.min the vector containing the dates corresponding to the minimum distances.

analog the vector of predictions.

maxi.anlg monthly maxima values of predictions.

mini.anlg monthly minima values of predictions.

error vector of errors between predictions and observations at each date.

correlation correlation coefficient between predictions and observations.

rmse root mean square errors between predictions and observations.
Author(s)

R.E. Benestad and Alexandra Imbert
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References

URL http://www.R-project.org/

See Also
anm, stepANM

Examples

library(survival)
library(clim.pact)
data(temp.era)
data(susendal)
y<-susendal$V6 # temperatures
X<- eof$PC[,c(1,2)]
calibration <- c(susendal$V4>1979 & susendal$V4<1990 & (susendal$V3==1 | susendal$V3==2 | susendal$V3=
evaluation <- c((susendal$V4>1990 & susendal$V4<1993 | susendal$V4==1990) & (susendal$V3==1 | susendal
y.calib <- y[calibration]
y.eval <- y[evaluation]
eof.calib <- c(eof$yy>1979 & eof$yy<1990)
eof.eval <- c(eof$yy> 1990 & eof$yy<1993| eof$yy==1990)
period <- c(calibration, evaluation)
y.period <- y[(susendal$V4>1979 & susendal$V4<1993) & (susendal$V3==1 | susendal$V3==2 | susendal$V3==
test.data <-data.frame(y=y.period,
X1=X[eof$yy< 1993 & eof$yy> 1979,1],
X2=X[eof$yy< 1993 & eof$yy> 1979,2],
yy=eof$yy [eof .calib | eof.evall,
mm=cof$mm [eof .calib | eof.evall,
dd=eof$dd [eof .calib | eof.evall)
test.anm<-anm(y ~ X1 + X2,data=test.data)
res <- predict.anm(test.anm)

print.anm Print some components of an anm object.

Description

Prints the coefficients of an anm object.

Usage
print.anm(x, digits = max(3, getOption("digits") - 3), ...)
Arguments
X the anm object.
digits the vector defining the format of printing.
currently disregarded.
Author(s)

Alexandra Imbert
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References

URL http://www.R-project.org/

See Also

anm, predict.anm

Examples

library(survival)
library(clim.pact)
data(susendal)
data(temp.era)
y<-susendal$V6 # temperatures
X<- eof$PC[,c(1,2)]
calibration <- c(susendal$V4>1979 & susendal$V4<1990 & (susendal$V3==1 | susendal$V3==2 | susendal$V3=
evaluation <- c((susendal$V4>1990 & susendal$V4<1993 | susendal$V4==1990) & (susendal$V3==1 | susendal
y.calib <- y[calibration]
y.eval <- yl[evaluation]
eof.calib <- c(eof$yy>1979 & eof$yy<1990)
eof.eval <- c(eof$yy> 1990 & eof$yy<1993| eof$yy==1990)
period <- c(calibration, evaluation)
y.period <- y[(susendal$V4>1979 & susendal$V4<1993) & (susendal$V3==1 | susendal$V3==2 | susendal$V3==
test.data <-data.frame(y=y.period,
X1=X[eof$yy< 1993 & eof$yy> 1979,1],
X2=X[eof$yy< 1993 & eof$yy> 1979,2],
yy=eof$yy [eof .calib | eof.evall,
mm=eof$mm[eof .calib | eof.evall,
dd=eof$dd [eof .calib | eof.evall)
test.anm<-anm(y ~ X1 + X2,data=test.data)
print.anm(test.anm)

stepANM Choose a model by the analog method in a stepwise algorithm

Description
Performs the analog method step by step to select a model and plots on the same graph
both correlation and rmse at each step.

Usage

stepANM(anm.obj,trace=1,steps=8)

Arguments
anm.obj the anm object inheriting from anm routine.
trace if equal to 1, information is printed during the running of the stepwise
algorithm.
steps maximum number of steps, forced to the number of predictor variables if

steps exceeds it.
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Value

A list with components

Call the matched call.
PC the predictor variables selected.
anm.obj the anm object selected.

coefficients the coeffecients of the anm object.

step.min the number of steps which returns the minimum rmse.

model the model corresponding to the minimum rmse.

Rmse the minimum root mean square error.

correlation the correlation between predictions and observations for the selected model.
Note

The running of the stepwise algorithm can be quite slow especially if the number of steps
specified in the steps argument is high.

Author(s)

Alexandra Imbert

See Also

anm, predict.anm

Examples

library(survival)
library(clim.pact)
data(susendal)
data(temp.era)
y<-susendal$V6 # temperatures
X<- eof$PC[,c(1,2,3)]
calibration <- c(susendal$V4>1979 & susendal$V4<1990 & (susendal$V3==1 | susendal$V3==2 | susendal$V3=
evaluation <- c((susendal$V4>1990 & susendal$V4<1993 | susendal$V4==1990) & (susendal$V3==1 | susendal
y.calib <- y[calibration]
y.eval <- y[evaluation]
eof .calib <- c(eof$yy>1979 & eof$yy<1990)
eof .eval <- c(eof$yy> 1990 & eof$yy<1993| eof$yy==1990)
period <- c(calibration, evaluation)
y.period <- y[(susendal$V4>1979 & susendal$V4<1993) & (susendal$V3==1 | susendal$V3==2 | susendal$V3==
test.data <-data.frame(y=y.period,
X1=X[eof$yy< 1993 & eof$yy> 1979,1],
X2=X[eof$yy< 1993 & eof$yy> 1979,2],
X3=X[eof$yy< 1993 & eof$yy> 1979,3],
yy=eof$yy [eof .calib | eof.evall,
mm=eof$mm [eof .calib | eof.evall,
dd=eof$dd[eof .calib | eof.evall)
test.anm<-anm(formula=y ~ X1 + X2 + X3,data=test.data)
stepANM(test.anm, steps=3)
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susendal Daily Susendal record.

Description

A station record of daily mean temperature and daily precipitation from Susendal.

Usage

data(susendal)

Format

The dataset is a data.frame containing;:
V1 station number.
V2 a vector holding day of month.
V3 a vector holding the month.
V4 a vector holding the year.
V5 a vector holding daily precipitation in mm.

V6 a vector holding daily mean temperature in deg C.

Source

The Norwegian Meteorological Institute, Climatology division.

References

The Norwegian Meteorological Institute, P.O. Box 43, 0313 Oslo, Norway (URL http:
//www.met.no)

temp.era Daily winter common EOF.

Description

Common EOFs for daily December-February temperature.

Usage

data(temp.era)
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Format

EOF EOF patterns.
W Eigen values.
PC Principal components of common PCA.
n.fld Number of different predictors (see [clim.pact]mixFields).
tot.var Sum of all W squared.
id.t Time labels for the fields (see [clim.pact]catFields) - used in [clim.pact]DS.
id.x Spatial labels for the fields (see [clim.pact]mixFields) - used in [clim.pact]plotEOF.
mon Month (1-12) [season (1-4) for daily data] to extract.
id.lon Spatial labels for the fields (see [clim.pact]mixFields) - used in [clim.pact]plotEOF.
id.lat Spatial labels for the fields (see [clim.pact]mixFields) - used in [clim.pact]plotEOF.
region Describes the region analysed.
tim Time information (usually redundant).
lon Longitudes associated with EOF patterns.
lat Latitudes associated with EOF patterns.
var.eof Fractional variances associated with EOF patterns.
yy years.
mm months.
dd days.
v.name Name of element.
c.mon Month-season information.

f.name File name of original data.

Source

Rasmus E. Benestad rasmus.benestad@met.no.

References

Reference to methodology: R.E. Benestad (2001), A comparison between two empirical
downscaling strategies”, Int. J. Climatology, vol 210, pp.1645-1668. [DOI 10.1002/joc.703].
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