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Downscaling analysis for daily and monthly values using clim.pact-V.0.9.
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ABSTRACT

An analysis tool, clim.pact, has been developed for empirical downscaling and analysis of local and regional climate
on both a daily and a monthly basis. This tool is tested with both monthly and daily data and a number of different
scenarios are compared.

Empirical downscaling is carried out with clim.pact on January mean temperature in Bergen, Copenhagen, Helsinki,
Oslo, Stockholm, and Tromsg, using single field as well as mixed-field predictors and with predictors that cover different
regions. A comparison is made between the various results in order to study the robustness of the method. Furthermore,
the residuals from the model calibration are examined for remaining trends or biases.

The clim.pact package is used for downscaling of daily winter mean temperature and precipitation in Bergen and
Oslo. The statistical relationship between the regional climate and local variability is examined and future shifts in mean
and extreme values, suggested by the scenarios, are presented.
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1 Introduction

In 1896, Svante A. Arrhenius (Arrhenius, 1896) proposed that atmospheric CO> may have a warming
effect on Earth’s surface. There has been a gradual accumulation of the carbon dioxide concentrations in
the atmosphere (IPCC, 2001) as well as other so-called “greenhouse gases” since the industrial revolution.
This build-up leads to a perturbation in the energy balance between the incoming solar radiation and
the infrared radiation emitted from Earth’s surface, and there are concerns about the effects of such an
energy imbalance on our climate. A climate change has potentially severe consequences for the society,
and it is therefore important to be able to forecast future climatic trends. Although the nature of the
climate system is chaotic (Lorenz, 1967) and its exact trajectory cannot be deterministically predicted
years ahead, it may nevertheless be possible to predict the long-term climatic trends, given a systematic
change in the boundary conditions. Such predictions are based on coupled atmosphere-ocean general
circulation models (AOGCMs), which describe the large-scale dynamics and thermodynamics of the
climate systems. The term “climate scenarios” is used henceforth in order to emphasis the fact that
these climate models only can forecast plausible climatic trends and that the internal variations are
more arbitrary. Estimations of globally averaged temperature indicate warming over the past century
(IPCC, 2001). Although the global aspect of a climate change is important for monitoring purposes
and the understanding of our climate, it is the local climate shifts that will have direct effects on our
future. Therefore, it is important to consider which implications a global warming may have for regional
climates.

The most recent global coupled atmosphere-ocean general circulation models (AOGCMs) tend to
give a realistic description of the large-scale climatic features, such as the mean circulation patterns
(i.e. the Hadley Cell and westerlies in the mid-latitudes), the coupled ocean-atmosphere processes in the
tropics associated El Nifio Southern Oscillation (ENSO) (Collins, 2000), and the shifts in the air masses
often referred to as the North Atlantic Oscillation (NAO). But, the model topography has until now
been crude, and features such as the Norwegian mountain ranges have not been represented realistically
in these models (see Figure 1). It is then no surprise that even the most recent AOGCM cannot give
a good detailed description of regional climatic features. Analytical results from Grotch € MacCracken
(1991) may suggest that the global climate models cannot give a good description of features smaller
than sub-continental scales.

b

Figure 1. The land-sea mask for the Nordic countries used in the ECHAM4 model (a) and the ECHAM4 model
topography (b). [The figures were obtained from the IPCC Web site].

a

Despite the caveats about the grid-scale representation of climate, it may still be possible to use the
AOGCMs to describe local climate characteristics if the local climate is affected by large-scale features.
Moreover, there may be information in large-scale climate anomalies that can be used to infer local
climate variability. However, this requires extra knowledge about how the large-scale climatic features
relate to the local climate variables. So-called downscaling models, based on either physical considerations
(nested dynamical models used in dynamical downscaling (Bjgrge et al., 2000; Christensen et al., 1998))
or empirical studies (empirical or statistical downscaling) can be used to relate the large scale climatic
patterns to local scales. Here, we will focus on the empirical downscaling approach. Empirical models are
based on statistical relationships between the local climate variations and large-scale climate anomalies
(Zorita & von Storch, 1997; Kidson & Thompson, 1998; Heyen et al., 1996; Wilby et al., 1998; Crane &
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Hewitson, 1998). Empirical downscaling has often used principal component analysis (PCA) to reduce
the degrees of freedom. The PCA products are ideal for regression type analysis because the set of PCA
timeseries are mutually orthogonal. It is important to note that the empirical models assume that the
historical relations between large-scale and local climate anomalies also will be true for the future. This
“assumption of invariability” implies that there is some degree of uncertainty attached to the empirically
downscaled scenarios due to the possibility of future changes in the relationship between large and small
scales. This assumption can be tested to some degree through a two-step process: a) calibrating a
downscaling model on a subsection of the observations and using the remaining part of the record for
validation, and b) training the downscaling model on a subsection (“1860-1991”) of the AOGCM results
and a corresponding grid point value, then using the “1990-2049” for validation. Evaluations carried
out on the ECHAM4-GSDIO scenario by Benestad (2001b) suggests that the relationship between the
large-scale anomalies and local climate variations is only slightly non-stationary, and that empirical
downscaling will give realistic results.

Downscaling analysis can provide more than just the local scenarios. Depending on the downscaling
strategy, it is possible to incorporate a type of quality control by searching for the same spatial structures
in the model simulations as those identified in the actual climate to have an association with local climate
anomalies. Thus, by comparing the similarities of the spatial patterns, their spectral properties, and the
variance accounted by these, it is possible to make some assessment of the quality of the model results.
Downscaling based on common EQFs provides a measure for how realistically the climate model describes
the geographical distribution of the climate variables.

There are error sources other than the invariability assumption which increase the uncertainty
associated with the prediction of future climates. The sources of uncertainties may be classified as i)
uncertainties about future emission scenarios, i) climate model shortcomings, ii) internal variability,
and iv) additional errors introduced by the downscaling analysis.

The category “greenhouse gas emission” (i) is based on economics considerations and scenarios,
which are outside the scope of this study. Climate model shortcomings (i) may imply systematic biases,
for instance due to crude description of unresolved processes using statistical parameterisation schemes
(also commonly referred to as “model physics”). The imperfect description of clouds in the climate mod-
els is one of the most important sources of uncertainties (IPCC, 2001). Another example of such model
shortcomings is the artificial climate drift, which is a mismatch in the fluxes between the atmosphere and
oceans described by the atmospheric and oceanic models. Yet another example of possible climate model
shortcomings may involve the description of sea-ice (Meehl et al., 2000; Benestad et al., 2002). Parkinson
et al. (2001) conducted a series of experiments with a climate model and reported high sensitivity to vari-
ations in the sea-ice concentrations in the Arctic, and even errors in the satellite-derived sea-ice products
can lead to significant differences in model climates. A 66% reduction in the sea-ice concentration was
reported to give as much as 30°C increase in polar regions. Thus, different sea-ice conditions associated
with the different model climates may be one important source of uncertainty. Shindell et al. (2001)
found important differences between climate models which include and exclude a detailed description of
the stratosphere. Hence, the omission of stratospheric processes common among many climate models,
used for enhanced greenhouse gas studies, may increase the uncertainties associated with climate model
shortcomings. Finally, the invariability assumption also applies to all parameterisation schemes relying
on a statistical description of sub-grid point scales, and non-stationarity in the relationships described by
such schemes may in fact be a greater problem than for the empirical downscaling schemes. Furthermore,
any such non-stationarity may vary with the spatial resolution

Although empirical downscaling cannot address uncertainties stemming from possible errors in emis-
sion scenarios and climate model shortcomings (i-4), uncertainties associated with internal variations
(#3), or natural fluctuations, can be estimated from the standard error in slope estimate (Press et al.,
1989, eg. 14.2.9) which is usually available from standard data analysis tools. Furthermore, trend anal-
ysis may involve polynomial expressions (Benestad, 2002b) in order to describe slow variations in the
record, such as the rapid warming in northern Scandinavia during 1900-1930 and the slight cooling
during 1940-1960.

Although, the climate simulations bear a time stamp in form of the forcing record, the translation
between model dates and actual dates is not well defined due to poorly known climatic state in 1860 and
arbitrary spin-up processes. This matter is partly related to the strong natural variability on decadal
time scales in the high latitudes which affect the trend analysis. A distinction will therefore be made in
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this paper between the actual time and the model date by expressing the model dates in apostrophes.
Thus, the year 1960 means the real date with which historical observations may be associated, whereas
the model year “1960” denotes a year in the model simulations which is meant to describe a model
climate analogous to the actual 1960 climate.

This report evaluates and documents clim.pact, an analytical tool for empirical downscaling. This
tool has been developed in a data-processing language R* (a GNU product that is similar to S-plus). The
details of the empirical downscaling are given section (2) and the evaluation of this tool are presented in
section (3). The clim.pact is currently being evaluated in downscaling studies under the Arctic Climate
Impact Assessment (ACIA) project!, and is still under development. Version 0.9 of clim.pact contains
linear models for downscaling, but there are plans to incorporate additional functions, including neural
nets and possible analogue methods before version 1.0 is ready. It is also important to have clim.pact
thoroughly tested before version 1.0 is released.

2 Methods & Data

2.1 Methods

The clim.pact package contains a number of different functions and data sets. The downscaling is
carried out in two steps: (i) carry out a PCA; (ii) use the PCA products as predictors for the downscaling.
There are four different functions in clim.pact that carry out different varieties of PCA: (i) eof.c(),
(ii) eof .mc(), (iii) eof.dc(), and (iv) eof.dmc (). The two former are applied to monthly mean values
whereas the two latter are used for daily values (suffix starting with “d” denotes daily values). The
eof.c() and eof.dc() functions produce common EOFs (Flury, 1988; Sengupta € Boyle, 1993, 1998;
Barnett, 1999; Benestad, 2001b,c, 2002a) whereas eof .mc () and eof . dmc () produce mixed-field common
EOFs (Benestad et al., 2002). In the latter type, two fields, such as surface air temperature and sea level
pressure, are standardised (by the a common mean and standard deviation estimated from all the grid-
box values of the observations) and then combined at each time of observation to form a vector with
a length equal to the sum of the lengths of the individual grids. A geographical weighting function is
applied to ensure that the contribution of grid grid-box is proportional to its surface area. The data has
not been sub-sampled in time, as recommended by North et al. (1982). In the case of monthly mean
values, the PCA is applied to one month a year (e.g. January mean values), and there is little year-
to-year correlation. The daily values may have significant auto-correlation, but since the PCA is not
intended as the final product in a statistical analysis, but rather as a preliminary product used as input
for the downscaling, it is not important that each observation in time should be independent. PCA here
is merely used for the compression of information and to ensure that the downscaling is based on the
same spatial patterns in both the real world and the model simulations.

There are two main functions ds () and ds.dm() which carry out actual the downscaling (“ds” is an
abbreviation for downscaling, and the suffix “dm” refers to daily mean). The downscaling can be done
for temperature, rainfall, or any other variable or index that exhibit a real and significant statistical
relationship with the predictor. It is important that the presentation of the downscaling results are
accompanied by a discussion on plausible physical explanations for a relationship between the predictors
and the predictand.

The clim.pact also contains functions for plotting climate station data (plot.nordklim() which is
now more general than just plotting data from the Nordklim data set: time series and histogram /p.d.f.)
as well as data retrieval (getnacd() and getnordklim()). The data-retrieval functions usually assume
that the data is residing in a sub-directory (default “data/”). The manual for clim.pact is reproduced
in the appendix, giving the complete listing of functions and data sets contained in this package.

2.2 Monthly mean values

The monthly downscaling is based on a step-wise (R function step()) regression and is optimized when
the Akaike information criterion (AIC) (Wilks, 1995, 300-302) is minimized. The optimisation of the

*URL: http://cran.r-project.org.
thttp://www.iarc.uaf.edu/acia.html



6 R.E. Benestad

model is based on the 8 leading modes and the final selection depends on the combination that yields
the lowest AIC. Prior to the regression, the principal components corresponding to the observations and
the station record are de-trended (Benestad, 1999, 2001a) (the model data is of course not de-trended).
The downscaling on monthly data expresses climatic changes in terms of long-term trends. Both
linear and fifth-order polynomial trends are estimated using a regression against time (a time-index
is used which is vector that has the same length as the record, but with values between -1 and 1:
€ [-1, 1], (Benestad, 2002b)). The analysis also incorporates the residuals from the regression analysis
associated with the model calibration. Any “structure” (e.g. bias in distribution, preferred time scales,
autocorrelation, or trends) in the residual may indicate that the downscaling model does not give a good
representation of the local climate.

2.3 Daily mean values

The downscaling for daily values uses a regression approach similar to the monthly values, but the 20
of the leading modes are used in the step-wise screening. The reason for choosing a higher number of
modes for daily downscaling than for monthly downscaling is: (i) that weather systems of smaller spatial
scales may have a greater impact on shorter time scales and (ii) the length of the daily record is ~ 4000
observations, whereas corresponding the corresponding length for the monthly values ~ 100. The data
are not de-trended prior to the downscaling, but the variations associated with the annual cycle are
subtracted. The annual cycle is estimated as the best-fit of a regression of three annual harmonics to
the original data:

§(t) = co + ¢1 cos(wt) + o sin(wt) + c3 cos(2wt) + ¢4 sin(2wt) + c5 cos(3wt) + cg sin(3wt), 1)

where w = 27/(365.25days) and t is the Julian day. After the annual cycle has been reconstructed and
removed from the data (in eof.dc(), eof .dmc(), and ds.dm()), the data of a given season is extracted
(e.g. December—January values only) and used as inputs for the downscaling analysis.

The downscaling of daily values does not involve trend analysis because of following reasons: (i) the
daily data usually involve much larger data sets than monthly mean values; (i) the daily records are
usually much shorter than the monthly data; and (iii) the daily data often is given in the form of two
time-slices representing a control period and the future scenario. The function ds.dm() assumes that
the daily data contains two time slices, and automatically assigns the data with dates before year 2000
to the control period and the data with the time-stamp greater than year 2000 is assumed to be the
scenario.

One limitation of downscaling using linear empirical models is that the downscaled results must
have a similar distribution (Gaussian) as the predictors. The daily rainfall is non-Gaussian, but the time
series representing the large-scale anomalies tend to be approximately normally distributed. Furthermore,
least-squares optimisation algorithms often assume that the data is normally distributed. Thus, the
downscaling of daily precipitation is problematic when it is not normally distributed. A transformation is
carried out in the attempt to normalize (get a representation that is normally distributed) the data. Here,
a simple log-transformation is used, but in principle, and type of transformation can be used. Quantile-
quantile plots (qg-plots) are used for assessing how close the data are to being normally distributed.

The relationship between the local variability and the regional-scale climate can be examined
through the means of scatter plots showing the actual station record and the predicted values from
the model calibration. A good fit (tight clustering about the diagonal, high R? value and low p-value)
gives confidence in using the model. The residuals from the regression are also plotted in order to examine
whether the downscaling models fail to capture significant features.

The downscaling analysis incorporates a comparison between the distributions of control and sce-
nario data and fit Gaussian p.d.f.s to these. The downscaling of the daily values incorporates extreme-
value analysis, using the R-package gev to fit the tails of a general extreme value (GEV) distribution
function. An r-largest order statistics method (Coles, 1999) has been adopted where the 7 highest num-
bers are selected per year.
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2.4 Data

The predictor data for the monthly values used in these tests are based on the re-analysis from the
National Center for Environmental Prediction (NCEP) in USA (Kalnay et al., 1996) and model results
from the ECHAM4/OPYC3 GSDIO (IS92a greenhouse gases, direct and indirect effects of aerosols
(sulfur), and tropospheric ozone) experiment carried out by the Max-Planck Institute for Meteorology
(Hamburg, Germany). For daily predictor data, the predictors were derived from the European Centre for
Medium-range Weather Forecasts (ECMWF) re-analysis (ERA-15) (Gibson et al., 1997) and results from
dynamical downscaling of the ECHAM4/OPYC3 GSDIO scenario using the HIRHAM model (Bjgrge
et al., 2000) (carried out at the Norwegian Meteorological institute). The daily ERA-15 were estimated
taking the mean of instantaneous values at 00.00 06.00 12.00 18.00 UTC.

The predictand data for the monthly analysis were taken from the Nordklim data set (Tuomenvirta
et al., 2001) and the Norwegian Meteorological institute climate data base (Cuouddatmohkki) while the
daily data were all taken from the Norwegian Meteorological institute climate data base. The Nordklim
data are homogeneous and have been subject to thorough quality tests.

The daily station records contain 24-hour averages estimated for the daily intervals 18.00-18.00 UTC
(19.00-19.00 local time) for temperature, starting the “previous” day according to the day stamp. The
estimate of the mean value was based on 3 observations per day (18.00,06.00,12.00) based on a formula
by Kgppen: T,,, =Ty — k(Tf — Ty,). The symbol Ty is the mean of the temperature 3 measurements,
T, is the minimum temperature, and k is a function of location, season and observation times (the
Kgppen parameter). These data are met.no’s “official daily mean” values, taken from met.no’s climate
data archive*. For precipitation, the daily mean value is measured over the 24-hour period 06.00-06.00
UTC (readings made in the morning), starting the same day as indicated by the time stamp.

3 Results

3.1 Monthly mean temperature

3.1.1 Differences caused by different predictor area

Figure 2 shows the results from downscaling at Bergen (a), Copenhagen (b), Helsinki (c), Oslo (d),
Stockholm (e) and Tromsg based on surface air temperatures over most of the North Atlantic (Figure
3). A comparison between the downscaled values from the NCEP data and the actual data, and the
estimates for R? € [0.82,9,97] and a p-value ~ 0 from analysis of variance (ANOVA) suggest that the
downscaling models capture most of the variations in the January temperature at these locations. Figure
3 shows the geographical distribution of temperature anomalies associated with temperature variations in
Oslo, and the strongest anomalies are seen in the vicinity of Oslo in a good accord with the expectations.
The predictors in this case were taken from the region 60°W-40°E and 50°N-74°N. Figures 4-5 show
time-series and qq-plots of the residual. There are no clear signs of any structure in the residuals and
the residuals are close to being normally distributed. Hence, we may have some confidence in these
downscaling models.

The trend analysis, shown in Figure 6, shows the long-time tendencies (rate-of change) associated
with the best-fit linear and fifth-order polynomial expressions. The linear trend is also shown in Figure
2, suggesting a mean constant warming rate estimated for the period “1960”—"2049” in the range 0.01-
0.08°C/decade. The strongest warming is found in Oslo and the weakest warming is found in Helsinki,
however, these differences may not be statistically significant.

Figure 7 shows results from an analysis similar to that shown in Figure 2, but where the predictor
has been selected from a smaller region (smaller predictor domain: 0°E-40°Eand 55°N-69°N). The
geographical distribution of the surface air anomalies associated with the local temperature variations
and the six sites are shown in Figure 8. The ANOVA results suggest a better fit: R? is in the range
0.92-0.98 and a p-value of zero. The best-fit linear trends suggest warming rates of 0.01-0.10°C/decade,
with strongest warming in Stockholm and weakest warming in Tromsg (these differences may not be
statistically significant). The warming rates estimated using clim.pact are weaker than reported in

*There are also other definitions for “daily mean”, e.g. 07.00-07.00 local time, corresponding to the definition of a “day”
in hydrological modelling.
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Figure 4. Residuals (black) associated with local January temperature scenarios for Bergen (a), Copenhagen (b), Helsinki
(c), Oslo (d), Stockholm (e) and Tromsg (f) produced with the clim.pact function ds(). The predictor was NCEP T(2m)
field covering 60°W-40°Eand 50°N-74°N. The actual values are shown in grey.
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QQ-plots of residuals associated with local January temperature scenarios for Bergen (a), Copenhagen (b),
Helsinki (c), Oslo (d), Stockholm (e) and Tromsg (f) produced with the clim.pact function ds(). The predictor was

NCEP T(2m) field covering 60°W-40°Eand 50°N-74°N.
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