Empirical-Statistical Downscaling of Russian and Norwegian temperature series

Rasmus E. Benestad
Empirical-Statistical downscaling of monthly mean temperature has been carried out for a selection of Russian and Norwegian sites, based on the most recent global climate model simulations described in the Intergovernmental Panel on Climate Change (IPCC) fourth assessment report (AR4) from 2007. The downscaling analysis incorporated multi-model ensembles based on 47 integrations following the SRES A1b emission scenario, although poor results for some sites were discarded. All sites suggest a significant future warming, with seasonal mean temperatures increasing by 1.7–10.1°C by 2070–2099. For most of the Russian sites east of 80°E, the strongest projected warming is estimated for the autumn, whereas for the Norwegian and west Russian sites, winter or spring is expected to warm fastest.

Keywords
Empirical-Statistical downscaling, Russian temperature series, Climate change scenarios.
Contents

1 Introduction 4
 1.1 The problem ... 4
 1.2 Introduction to downscaling ... 4

2 Data 6
 2.1 Predictors: calibration .. 7
 2.2 Predictors: GCMs .. 7
 2.3 Predictand ... 7

3 Methods 7
 3.1 Related work .. 7
 3.2 ESD tool ... 9
 3.2.1 Common EOFs & ’finger printing’ 9
 3.2.2 ESD model ... 9
 3.2.3 Calibration & assessment .. 9
 3.2.4 Trend fits .. 10
 3.2.5 Known problems & fixes ... 10
 3.2.6 Quality check .. 11

4 Results 11
 4.1 Temperature ... 11

5 Discussion & Conclusions 33
1 Introduction

The objective of this report is primarily to document a set of calculations done for various International Polar Year (IPY\(^1\)) projects (e.g. EALAT\(^2\) and CAVIAR\(^3\)). The focus will be on the methodological details and the results. However, a short introduction to background is also provided for the readers who are new to the subject. The lay out of the report is as follows: a brief introduction, description of the data, methods, the results, discussion, conclusion and an appendix.

This report have much in common with Benestad (2008b,a); Engen-Skaugen et al. (2008, 2007). Hence, the introduction of this report is copied from these earlier reports.

1.1 The problem

Since the industrial revolution, the levels of atmospheric concentrations of long-lived greenhouse gases such as CO\(_2\) have risen (IPCC, 1995; Houghton et al., 2001; Solomon et al., 2007) and the most recent estimate suggests that the global mean surface temperature on Earth has increased by 0.74 \(\pm\) 0.18\(^\circ\)C over the last 100 years (Solomon et al., 2007). It has been well-known within the scientific community for a long time that the effect of raised levels of atmospheric CO\(_2\) will lead to a surface warming (Weart, 2003; Peixoto & Oort, 1992; Fleagle & Businger, 1980; Houghton, 1991; Solomon et al., 2007; Houghton et al., 2001; IPCC, 1995, 1990), and that future increases in the levels of greenhouse gases will warm the surface further (Meehls et al., 2007; Christensen et al., 2007a).

1.2 Introduction to downscaling

Global Climate models (GCMs) represent the most important tool for simulating Earth’s climate, but they do not give a realistic description of the local climate in general (Benestad et al., 2008)\(^4\).

Global climate models tend to have a coarse spatial resolution (Figure 1), and are unable to represent aspects with spatial scales smaller than the grid box size. The global climate models are also unable to account for substantial variations in the climate statistics within a small region, such as the temperature differences within a small region. Neither do the GCMs give a

\(^1\)http://www.ipy.org/
\(^2\)http://www.arcticportal.org/en/icr/ealat
\(^3\)http://www.cicero.uio.no/projects/detail.aspx?id=30170&lang=EN
\(^4\)Early version of the compendium also available at http://www.gvc2.gu.se/ngeo/rcg/edu/esd.pdf
Figure 1: An example of land-sea mask of a general circulation model (GCM) with \(\sim 2^\circ \times 2^\circ \) spatial resolution (T42). Notice that Italy and Denmark are not represented in the model.

perfect description of the real climate system, as they include ‘parameterisations’ that involve simple statistical models giving an approximate or ad-hoc representation of sub-grid processes.

It is therefore common to downscale the results from the GCMs, either through a (i) nested high-resolution regional climate model (RCM) (Christensen & Christensen, 2002; Christensen et al., 2001, 1998; Haugen et al., 2000; Haugen & Ødegaard, 2003) or (ii) through empirical/statistical downscaling (von Storch et al., 1993a; Rummukainen, 1997; Easterling, 1999; Benestad, 2004; Wilby et al., 2004; Hanssen-Bauer et al., 2005; Fowler et al., 2007; Benestad et al., 2008). The latter is henceforth referred to as ‘empirical-statistical downscaling’, or the abbreviation ‘ESD’.

Here we will define downscaling as the process of making the link between the state of some variable representing a large space (henceforth referred to as the ’large scale’) and the state of some variable representing a much smaller space (henceforth referred to as the ’small scale’).

Another view of ESD is that it basically is just an advanced statistical analysis of the model results.

The large-scale variable may for instance represent the circulation pattern over a large region whereas the small scale may be the local temperature as measured at one given point (station measurement).

It is important to keep in mind the limitations of statistical downscaling, especially when applied to model results from greenhouse gas (GHG) integrations using GCMs. The statistical models are based on historical data, and there is no guarantee that the past statistical relation-
ships between different data fields will hold in the future.

One should also be concerned about the uncertainties associated with the GCM results as well as those of the downscaling methods themselves (Wilby et al., 1998). It is well known that low resolution GCMs are far from perfect, and that they have problems associated with for instance cloud representation, atmosphere-ocean coupling, and artificial climate drift (Bengtsson, 1996; Anderson & Carrington, 1994; Treut, 1994; Christensen et al., 2007b).

Part of the problems are due to incomplete understanding of the climate system. The important mechanisms causing variability such as El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) for instance are probably still not completely understood (Sarachik et al., 1996; Anderson & Carrington, 1994; Philander, 1989; Christensen et al., 2007b). Due to discretisation and gridding of data, it is unlikely that the global GCMs will simulate regional details realistically (Crane & Hewitson, 1998; Zorita & von Storch, 1997; von Storch et al., 1993b; Robinson & Finkelstein, 1991).

However, because a wide range of global GCMs predict observed regional features (e.g. the NAO, ENSO, the Hadley Cell, atmospheric jets), it is believed that the GCMs may be useful for predicting large scale features.

2 Data

The multi-model ensemble of global climate model (GCM) simulations made with a range of different GCMs, used here and reported in Intergovernmental Panel on Climate Change (IPCC) fourth assessment report (AR4) (Meehl et al., 2007), are freely available from Program for Climate Model Diagnosis and Intercomparison\(^5\). This model ensemble includes both simulations for the 20th century (C20) and scenario runs for the 21st century following the Special Report Emission Scenarios (SRES) A1b\(^6\) (Nakicenovic et al., 2000). Some of the GCMs have been used to make several parallel runs, differing only by using different initial conditions (starting point).

\(^5\)PCMDI; https://esg.llnl.gov:8443/index.jsp

\(^6\)The A1 storyline and scenario family describes a future world of very rapid economic growth, global population that peaks in mid-century and declines thereafter, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The A1 scenario family develops into three groups that describe alternative directions of technological change in the energy system. The three A1 groups are distinguished by their technological emphasis: fossil intensive (A1FI), non-fossil energy sources (A1T), or a balance across all sources (A1B) (where balanced is defined as not relying too heavily on one particular energy source, on the assumption that similar improvement rates apply to all energy supply and end-use technologies). (source: http://www.ipcc.ch/ipccreports/tar/vol4/english/099.htm)
2.1 Predictors: calibration

Monthly gridded data from the ERA40 (Bengtsson et al., 2004; Simmons & Gibson, 2000) were used as predictors for training the statistical models.

2.2 Predictors: GCMs

The ESD was applied to the IPCC AR4 (Meehl et al., 2007) MMD (also referred to as 'CMIP3') GCM ensemble for both the 20th century and the 21st century simulations separately. Table 2 in the appendix provides a complete list of the GCMs and runs (integrations) included in this analysis. The choice of the GCMs was somewhat arbitrary, as (i) results from some models were not available on-line at the time of the downloads, (ii) there has been several rounds of fetching GCM data, (iii) the impact of adding further GCM results was not expected to add much new information about the inter-model spread, and (iv) there was no attempt to have a systematic strategy for a complete set of GCMs and runs (the reason - see points i–iii). Nevertheless, the selection of GCMs included in the present analysis represented the most complete set of simulations available at the time of the writing of this report, and most of the CMIP3 GCMs are included in the 'super-ensemble'.

2.3 Predictand

The station data (the predictand) provided by Pavel Svyashchennikov, Arctic and Antarctic research institute (AARI), St. Petersburg State University, Russia, and the locations of the sites are shown in Figure 2.

Some of the predictand data were taken from the Norwegian climate data archive (“KlimaDataVareHuset”), and retrieved using the function `KDH4DS` in the R-package `met.no` (see R Development Core Team (2004) for reference to R). The Norwegian stations used in the analysis were: 90450, 97250, 98550 and 99730.

3 Methods

3.1 Related work

The method on which these results are based has been used in several previous studies and is therefore well-documented. This study uses similar approach as those used in Benestad (2008a) to downscale Norwegian regional climate series and Engen-Skaugen et al. (2007) to downscale
Figure 2: Maps showing the location of the temperature measurements.

river run-off as well as similar analysis where catchment-scale temperature and precipitation were downscaled (Engen-Skaugen et al., 2008). Thus, the introduction of those reports are recited here.

The method and the implementation were similar to the work documented in Benestad (2005) for each GCM implemented, and performed for monthly mean values. Large-scale temperature was used to downscale the local temperature, as in Benestad et al. (2007).
3.2 ESD tool

The tool clim.pact (Benestad, 2003a, 2004; Benestad et al., 2008) was used to carry out the calculations, using a common empirical orthogonal function (EOF) based framework (Benestad, 2001) and linear multiple regression as a basis for the empirical-statistical model.

The ESD was based on a ‘finger-print’ type technique whereby spatial patterns describing the large-scale anomalies correlated with the local variations were identified in the gridded observations (re-analysis) and then matched with the same spatial structures found in the model results.

3.2.1 Common EOFs & ’finger printing’

A common EOF framework combined large-scale gridded temperature anomalies estimated from the ERA40 re-analysis with corresponding anomalies from a simulation performed by a GCM (interpolated onto the same grid as the former). An ordinary EOF analysis is applied to this combined data set. The common EOF framework yields both the spatial structures (referred to as ’EOFs’ or ’modes’) as well as weights describing their temporal evolution/variation (referred to as ’principal components’).

By combining anomalies rather than the total values, constant biases are removed, however, the constant level of the end results become more arbitrary. Thus, when analysing the final results, it is recommended to focus on trends and long-term transient behaviour rather than the initial level (e.g. the first 10 years) of the downscaled time series.

The principal components (PCs) describing the temporal variations of the different modes (dominant spatial temperature pattern) represent exactly the same spatial structures for GCMs and the ERA40.

3.2.2 ESD model

A step-wise regression analysis was employed that used the part of the PCs describing the ERA40 data together with the predictand (temperature series) to calibrate the model. This calibration returns R^2-statistics, describing how well the run-off can be reproduced with the statistical model if the ERA40 data is used as predictor.

3.2.3 Calibration & assessment

The clim.pact tool makes predictions based on the calibration data (here ERA40) as well as the GCM (here either 20th century or the 21st century). However, the ESD-results derived from
ERA40 are not independent and only serves as a visual check of the quality of the statistical downscaling model (not shown here except for in the appendix). The downscaling for the 20th century, on the other hand, provides independent data which can be used in the validation against the actual observations. This validation will test whether the ESD-model is good (here the R^2-statistic is also a measure of skill).

3.2.4 Trend fits

In order to ensure representative values, the downscaled scenarios were adjusted by ensuring that the starting point of the scenarios (SCE) match the final parts of the matching simulations i of the past (CTL). This adjustment was done on calendar month-by-calendar month m basis (e.g. first doing the adjustment for all January months, then for all February months, etc: $y_{i,m,\text{ESD}}(t) = y_{i,m,\text{SCE}}(t) - y_{i,m,\text{SCE}}(t) + y_{i,m,\text{CTL}}(t)$), and is performed as default in the ESD.results()-call in the met.no package version 1.1-0 (June 12 2008) or later. Those runs that did not have a 20th century match were pooled together, and the median of the 3 first years for entire set of unmatched runs were set to the median of the 3 last years of the entire set of 20th century runs.

Note that the adjustment done here differs to that done in Benestad (2008a), where rather than matching the 20th and 21st century runs, each of the future scenario runs were adjusted to have the same mean value over overlapping intervals (in Benestad (2008a): $y_{m,\text{SCE}}(t) = y_{m,\text{SCE}}(t) - y_{m,\text{SCE}}(t) + y_{m,\text{obs}}(t)$). Then trends were estimated for the observations and scenarios respectively, taking the best-fit to a fifth-order polynomial for the ensemble median or quantile for the confidence bounds (Benestad, 2003b).

3.2.5 Known problems & fixes

Some GCMs had the year wrong in the data files, which has been corrected for in met.no_1.1-0 (Version: June 12, 2008). The plume plots exclude those GCM runs that give a standard deviation outside the range of $[0.5, 3.0]$ of that of the corresponding observed standard deviation estimated for the time interval 2010–2091 (this is implemented in the met.no package version 1.1-0, as of Jun 12 2008).

The series for which there were corresponding runs (here both the GCM and run was matched) for 20th century and the future were stitched together so that the scenario started where the historical run ended.
3.2.6 Quality check

An additional quality control applied to the temperature, for which there was no matching series in the 20C run and the scenario, involved weeding out the time series for which the first mean of the 3 first years (each month was tested individually, thus involving three point averages) was more than 3 standard deviations away from the corresponding ensemble mean for the 3 last corresponding values from the 20C run.

Whereas the predictor domain for most of the stations was automatically defined from objective means within the location of the site ± 20° of longitude and the latitude 5° to the north and 15° to the south of the site (however, for some locations, these were relaxed to ± 50° of longitude and the latitude 10° to the north and 30° to the south).

The complete listing of the R-script used to make the computations presented here is given in the Appendix.

4 Results

The following figures are shown to provide a quick idea of the main features present in the downscaled results. These should be considered as part of the documentation of these results together with the tables. The results in the figures speak for themselves: there is a general tendency towards warmer climate in the future and there is a considerable spread in the values derived from the different GCM.

In Table 1, the estimated temperature changes (ΔTAM(2070–2099)) were taken as the difference between the observed 1961–1990 climatology and the projected ESD results (as opposed to the boxplots in the appendix, showing the difference between the 1961–1990 C20 simulations and the 2070–2099 SRES A1b values).

Here ‘winter’ is taken as December–February, ‘spring’ is March–May, ‘summer’ June–August, and ‘autumn’ is September–November.

4.1 Temperature
Figure 3: Plume plot for Dzalinda, showing the time evolution of the observed values (black), the 20th Century simulations (grey), and the future scenarios (blue). The light shading shows the minimum–maximum range for the ensemble, and the darker shading marks the inter-quartile range (25%–75%). The yellow symbols mark the ensemble mean values, and the thin red lines show best-fit polynomial to the 5 and 95 percentiles.
Figure 4: As in Figure 3, but for Dzhardzhan.
Figure 5: As in Figure 3, but for Kjusur.
Figure 6: As in Figure 3, but for Anadyr.
Figure 7: As in Figure 3, but for Oimakon.
Figure 8: As in Figure 3, but for Olenek.
Figure 9: As in Figure 3, but for Salekhard.
Figure 10: As in Figure 3, but for Tarko-Sale.
Figure 11: As in Figure 3, but for Tompo.
Figure 12: As in Figure 3, but for Yakutsk.
Figure 13: As in Figure 3, but for Zhigansk.
Figure 14: As in Figure 3, but for Lovozero.
Figure 15: As in Figure 3, but for Sojna.
Figure 16: As in Figure 3, but for Ust’-Tsilma.
Figure 17: Plume plot for Tromsø (national code 90450; WMO code 01026). Results from the NorACIA project.
Figure 18: As in Figure 17, but for Kautokeino (national code 93700; WMO 01047).
Figure 19: As in Figure 17, but for Karasjok (national code 97250; WMO 01065).
Figure 20: As in Figure 17, but for Vardø (national code 98550; WMO 01098).
Figure 21: As in Figure 3, but for Hammerfest (national code 94260; WMO 01053).
Table 1: Seasonal mean temperature (unit: °C): mean seasonal temperature over the reference climatology ('TAM(1961–1990)'), estimated for the future 2070–2099 interval ('TAM(2070–2099)'), and the difference between these two 30-year periods ('ΔTAM(2070–2099)'). Entries shown in parentheses ('(..)') have questionable quality, and a question mark ('?') indicate that the results definitely are unreliable.

<table>
<thead>
<tr>
<th>St. nr.</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANADYR</td>
<td>25563</td>
<td>-20.7</td>
<td>-12.3</td>
<td>8.5</td>
</tr>
<tr>
<td>DZALIN</td>
<td>21908</td>
<td>-36.5</td>
<td>-14.5</td>
<td>10.3</td>
</tr>
<tr>
<td>DZHARD</td>
<td>24143</td>
<td>-36.2</td>
<td>-12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>KJUSUJ</td>
<td>21921</td>
<td>-35.0</td>
<td>-14.1</td>
<td>9.8</td>
</tr>
<tr>
<td>LOVOZE</td>
<td>22127</td>
<td>-13.5</td>
<td>-3.2</td>
<td>11.0</td>
</tr>
<tr>
<td>OIMAKO</td>
<td>24688</td>
<td>-43.9</td>
<td>-14.3</td>
<td>11.5</td>
</tr>
<tr>
<td>OLENEK</td>
<td>24125</td>
<td>-35.9</td>
<td>-12.6</td>
<td>11.5</td>
</tr>
<tr>
<td>SALEKH</td>
<td>23330</td>
<td>-22.9</td>
<td>-8.9</td>
<td>11.1</td>
</tr>
<tr>
<td>SOJNA</td>
<td>22271</td>
<td>-11.5</td>
<td>-4.9</td>
<td>8.7</td>
</tr>
<tr>
<td>TARKO</td>
<td>23552</td>
<td>-24.0</td>
<td>-8.4</td>
<td>12.8</td>
</tr>
<tr>
<td>TOMPO</td>
<td>24671</td>
<td>-40.6</td>
<td>-10.4</td>
<td>13.1</td>
</tr>
<tr>
<td>UST-T</td>
<td>23405</td>
<td>-16.1</td>
<td>-2.8</td>
<td>12.6</td>
</tr>
<tr>
<td>YAKUTS</td>
<td>24959</td>
<td>-38.6</td>
<td>-7.0</td>
<td>16.4</td>
</tr>
<tr>
<td>ZHIGAN</td>
<td>24343</td>
<td>-36.8</td>
<td>-10.9</td>
<td>13.2</td>
</tr>
<tr>
<td>TROMSO</td>
<td>01026</td>
<td>-4.0</td>
<td>0.8</td>
<td>10.5</td>
</tr>
<tr>
<td>KAUTOK</td>
<td>01047</td>
<td>-16.0</td>
<td>-5.2</td>
<td>10.7</td>
</tr>
<tr>
<td>KARASJ</td>
<td>01065</td>
<td>-15.9</td>
<td>-3.2</td>
<td>11.3</td>
</tr>
<tr>
<td>VARDØ</td>
<td>01098</td>
<td>-4.7</td>
<td>-0.7</td>
<td>8.2</td>
</tr>
<tr>
<td>HAMMER</td>
<td>01053</td>
<td>-4.8</td>
<td>-0.7</td>
<td>9.9</td>
</tr>
</tbody>
</table>

TAM(2070–2099)

<table>
<thead>
<tr>
<th>St. nr.</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANADYR</td>
<td>25563</td>
<td>-13.1±6.9</td>
<td>-7.3±4.1</td>
<td>12.5±3.5</td>
</tr>
<tr>
<td>DZALIN</td>
<td>21908</td>
<td>-30.4±4.3</td>
<td>-10.3±3.2</td>
<td>13.8±3.1</td>
</tr>
<tr>
<td>DZHARD</td>
<td>24143</td>
<td>-30.3±3.6</td>
<td>-7.9±3.4</td>
<td>15.0±3.1</td>
</tr>
<tr>
<td>KJUSUJ</td>
<td>21921</td>
<td>-29.3±4.1</td>
<td>-11.5±3.0</td>
<td>12.7±3.3</td>
</tr>
<tr>
<td>LOVOZE</td>
<td>22127</td>
<td>-5.0±6.9</td>
<td>1.3±4.2</td>
<td>13.1±2.3</td>
</tr>
<tr>
<td>OIMAKO</td>
<td>24688</td>
<td>-39.3±4.6</td>
<td>-11.4±2.8</td>
<td>14.0±2.5</td>
</tr>
<tr>
<td>OLENEK</td>
<td>24125</td>
<td>-29.4±4.3</td>
<td>-8.8±3.2</td>
<td>14.7±3.1</td>
</tr>
<tr>
<td>SALEKH</td>
<td>23330</td>
<td>-15.9±5.9</td>
<td>-3.3±4.9</td>
<td>14.5±3.0</td>
</tr>
<tr>
<td>SOJNA</td>
<td>22271</td>
<td>-3.9±6.4</td>
<td>-0.8±3.7</td>
<td>11.9±3.0</td>
</tr>
<tr>
<td>TARKO</td>
<td>23552</td>
<td>-16.3±6.0</td>
<td>-3.1±4.7</td>
<td>16.4±3.0</td>
</tr>
<tr>
<td>TOMPO</td>
<td>24671</td>
<td>-35.7±3.8</td>
<td>-7.7±2.8</td>
<td>15.2±2.1</td>
</tr>
<tr>
<td>UST-T</td>
<td>23405</td>
<td>-7.1±8.1</td>
<td>1.7±4.6</td>
<td>15.6±2.8</td>
</tr>
<tr>
<td>YAKUTS</td>
<td>24959</td>
<td>-32.4±3.7</td>
<td>-3.5±2.9</td>
<td>19.1±2.5</td>
</tr>
<tr>
<td>ZHIGAN</td>
<td>24343</td>
<td>-31.5±3.0</td>
<td>-7.3±3.0</td>
<td>16.1±2.9</td>
</tr>
<tr>
<td>TROMSO</td>
<td>01026</td>
<td>-0.1±3.0</td>
<td>4.9±3.4</td>
<td>13.8±2.8</td>
</tr>
<tr>
<td>KAUTOK</td>
<td>01047</td>
<td>-5.2±8.4</td>
<td>1.5±5.4</td>
<td>14.6±2.8</td>
</tr>
<tr>
<td>KARASJ</td>
<td>01065</td>
<td>-5.6±8.5</td>
<td>2.5±4.9</td>
<td>14.9±2.9</td>
</tr>
<tr>
<td>VARDØ</td>
<td>01098</td>
<td>-1.5±2.5</td>
<td>2.7±2.8</td>
<td>10.7±2.1</td>
</tr>
<tr>
<td>HAMMER</td>
<td>01053</td>
<td>-0.9±2.6</td>
<td>4.0±3.7</td>
<td>13.6±2.9</td>
</tr>
</tbody>
</table>
Table 1 continued...

<table>
<thead>
<tr>
<th>Location</th>
<th>∆TA M(2070–2099)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ANADYR</td>
<td>25563</td>
<td>7.6±6.9</td>
<td>5.1±4.1</td>
<td>3.9±3.5</td>
</tr>
<tr>
<td>DZALIN</td>
<td>21908</td>
<td>6.0±4.3</td>
<td>4.2±3.2</td>
<td>3.4±3.1</td>
</tr>
<tr>
<td>DZHARD</td>
<td>24143</td>
<td>5.9±3.6</td>
<td>4.1±3.4</td>
<td>3.0±3.1</td>
</tr>
<tr>
<td>KJUSJU</td>
<td>21921</td>
<td>5.8±4.1</td>
<td>2.6±3.0</td>
<td>2.9±3.3</td>
</tr>
<tr>
<td>LOVOZE</td>
<td>22127</td>
<td>8.5±6.9</td>
<td>4.5±4.2</td>
<td>2.2±2.3</td>
</tr>
<tr>
<td>OIMAKO</td>
<td>24688</td>
<td>4.7±4.6</td>
<td>2.9±2.8</td>
<td>2.5±2.5</td>
</tr>
<tr>
<td>OLENEK</td>
<td>24125</td>
<td>6.5±4.3</td>
<td>3.7±3.2</td>
<td>3.2±3.1</td>
</tr>
<tr>
<td>SALEKH</td>
<td>23330</td>
<td>7.0±5.9</td>
<td>5.6±4.9</td>
<td>3.4±3.0</td>
</tr>
<tr>
<td>SOJNA</td>
<td>22271</td>
<td>7.6±6.4</td>
<td>4.1±3.7</td>
<td>3.2±3.0</td>
</tr>
<tr>
<td>TARKO-</td>
<td>23552</td>
<td>7.7±6.0</td>
<td>5.3±4.7</td>
<td>3.6±3.0</td>
</tr>
<tr>
<td>TOMPO</td>
<td>24671</td>
<td>4.9±3.8</td>
<td>2.7±2.8</td>
<td>2.1±2.1</td>
</tr>
<tr>
<td>UST' -T</td>
<td>23405</td>
<td>9.0±8.1</td>
<td>4.6±4.6</td>
<td>3.0±2.8</td>
</tr>
<tr>
<td>YAKUTS</td>
<td>24959</td>
<td>6.2±3.7</td>
<td>3.4±2.9</td>
<td>2.8±2.5</td>
</tr>
<tr>
<td>ZHIGAN</td>
<td>24343</td>
<td>5.2±3.0</td>
<td>3.6±3.0</td>
<td>2.9±2.9</td>
</tr>
<tr>
<td>TROMSO</td>
<td>01026</td>
<td>3.8±3.0</td>
<td>4.2±3.4</td>
<td>3.3±2.8</td>
</tr>
<tr>
<td>KAUTOK</td>
<td>01047</td>
<td>10.8±8.4</td>
<td>6.7±5.4</td>
<td>3.9±2.8</td>
</tr>
<tr>
<td>KARASJ</td>
<td>01065</td>
<td>10.4±8.5</td>
<td>5.7±4.9</td>
<td>3.5±2.9</td>
</tr>
<tr>
<td>VARDØ</td>
<td>01098</td>
<td>3.3±2.5</td>
<td>3.4±2.8</td>
<td>2.6±2.1</td>
</tr>
<tr>
<td>HAMMER</td>
<td>01053</td>
<td>3.9±2.6</td>
<td>4.7±3.7</td>
<td>3.7±2.9</td>
</tr>
</tbody>
</table>
5 Discussion & Conclusions

Results from the CMIP3 simulations following the SRES A1b scenario were used to derive local temperature evolution for a number of sites in Russia, based on empirical-statistical downscaling (ESD) similar to the analysis published by Benestad (2005). The downscaled results based on projections for the future suggest an accelerated warming in the future for all seasons. A rough estimate of the seasonal mean temperature increase between 1961–90 to 2070–99 is $\sim 2–11^\circ C$. The ESD seems to capture much of the variance of the monthly temperature data, and the results from the downscaling itself is considered to be robust. The projected warming for the Russian sites west of $80^\circ E$ is found to be strongest in winter, as in two of the Norwegian sites. For Tromsø and Vardø, the strongest estimated warming was derived for the spring season. For most of the sites in the eastern Siberia, the strongest future warming was computed to take place in during the autumn. However, the ESD results for Tompo and Anadyr suggested strongest warming in winter.

Acknowledgement

The Russian data was kindly provided by Pavel Svyashchenkov, Arctic and Antarctic research institute (AARI), St. Petersburg State University, Russia. I’m grateful for valuable discussions with Inger Hanssen-Bauer and Eirik Førland. This analysis was funded by the Norwegian Resource Council through the IPY projects EALAT and CAVIAR. This work is apart of IPY EALAT supported by Research Council of Norway, project IPY EALAT-RESEARCH: Reindeer Herders Vulnerability Network Study: Reindeer pastoralism in a changing climate grant-number 176078/S30 , Nordic Council of Ministeres and Norwegian Ministry of Foreign Affairs coordinated by Saami University College and International Centre for Reindeer Husbandry Kautokeino Norway.
References

Benestad, R.E., 2003a. Downscaling analysis for daily and monthly values using clim.pact-V.0.9. KLIMA 01/03. met.no, PO Box 43 Blindern, 0313 Oslo, Norway (www.met.no).

Appendix

Box-plots for temperature

The box-plot diagrams shown here correspond to the lower panels in Figures 3–8.
Figure 22: Box-plots showing estimated seasonal and annual mean change from 1961–1990 (CTL; the 20th Century runs) to 2070–2099 (SRES A1b). Light grey boxes show the spread of the 1961–1990 CTL around the mean value and dark boxes show the change from the 1961–1990 period. Blue boxes show the annual mean values. Each box shows the ensemble inter-quantile range (IQR; 25%–75%), and the horizontal lines within mark the ensemble median. The whiskers extend 1.5× IQR from the box boundary, and data points beyond this range are regarded as outliers (circular symbols).
Figure 23: Same as Figure 22.
Figure 24: Same as Figure 22.
Quality evaluation of downscaling of temperature

In order to get a feeling for uncertainties involved in the ESD, the R^2-statistics from the regression analysis was checked for two arbitrary selected regions. Figure 25 show how the R^2-statistics varies between GCMs (left) and the calendar month (right) for temperature regions 1 and 2. These results verify the impression from Figures 3–8 which show corresponding variance in the observations and the downscaled results (indicative of a high R^2-score).

Because the various GCMs may differ in their ability to provide an exact representation of the spatio-temporal structure of the temperature modes, the common EOFs may differ somewhat from GCM to GCM. Thus the R^2-statistics may vary with the GCM, although the variation in the R^2-statistics should be small for realistic GCMs (large deviations in the R^2-statistics may be an indicator of model problems).

Additional quality control ensuring smooth variation in the trend estimates throughout the year was not used here (Benestad, 2004), but the change in the trend characteristics through the year can then be used to assess the quality of the results. In other words, Figure 25–26 suggest that the results for Yakutsk is of high quality.
Figure 25: Diagnostics from the downscaling at Yakutsk for the whole year: (a) the downscaled time series, (b) distribution of residuals, (c) the residual time structure, and (d) the variation of trend estimates over the year. The blue curve in panel d shows the R^2 statistics from the regression, indicating values greater than 80% for all months.
Diagnostics from the downscaling of January and July months at Yakutsk.
Table 2: List of the GCMs and the scenario simulations used as input for the ESD-based scenario production. The choice of runs was arbitrary in the sense that only those results that were available at the time of the downloading were selected. The GCMs iap_fgoals1_0_g and cccma_egcm3_1 were excluded from the present analysis, due to questionable results.

<table>
<thead>
<tr>
<th>GCM</th>
<th>SRES A1b</th>
<th>c20</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcc_cm1</td>
<td>run 1–2</td>
<td></td>
</tr>
<tr>
<td>bccr_bcm2_0</td>
<td>run 1</td>
<td>run 1</td>
</tr>
<tr>
<td>cnrm_cm3</td>
<td>run 1</td>
<td>run 1</td>
</tr>
<tr>
<td>csiro_mk3_0</td>
<td>run 1</td>
<td></td>
</tr>
<tr>
<td>gfdl_cm2_0</td>
<td>run 1</td>
<td>run 1</td>
</tr>
<tr>
<td>gfdl_cm2_1</td>
<td>run 1</td>
<td>run 1–3</td>
</tr>
<tr>
<td>giss_aom</td>
<td>run 1–2</td>
<td>run 2</td>
</tr>
<tr>
<td>giss_model_e_h</td>
<td>run 1–3</td>
<td>run 1–5</td>
</tr>
<tr>
<td>giss_model_e_r</td>
<td>run 1–5</td>
<td></td>
</tr>
<tr>
<td>inmcm3_0</td>
<td>run 1</td>
<td>run 1</td>
</tr>
<tr>
<td>ipsl_cm4</td>
<td>run 1</td>
<td>run 1</td>
</tr>
<tr>
<td>miroc3_2_hires</td>
<td>run 1</td>
<td></td>
</tr>
<tr>
<td>miroc3_2_medres</td>
<td>run 2,3</td>
<td></td>
</tr>
<tr>
<td>miub_echo_g</td>
<td>run 1,3</td>
<td></td>
</tr>
<tr>
<td>mpi_echam5</td>
<td>run 1–3</td>
<td>run 1–3</td>
</tr>
<tr>
<td>mri_cgcm2_3_2a</td>
<td>run 1–5</td>
<td></td>
</tr>
<tr>
<td>ncar_ccsm3_0</td>
<td>run 1,2,3</td>
<td>run 1,3,6,9</td>
</tr>
<tr>
<td>ncar_pcm1</td>
<td>run 1–3</td>
<td>run 2,3,4</td>
</tr>
<tr>
<td>ukmo_hadcm3</td>
<td>run 1</td>
<td>run 1,2</td>
</tr>
<tr>
<td>ukmo_hadgem1</td>
<td>run 1</td>
<td></td>
</tr>
</tbody>
</table>

List of GCMs
List of Stations

<table>
<thead>
<tr>
<th>WMO</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation</th>
<th>Name</th>
<th>Date_started</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>22127</td>
<td>68.05</td>
<td>94.80</td>
<td></td>
<td>Loveozero</td>
<td>1936</td>
<td>Kola_peninsula</td>
</tr>
<tr>
<td>22271</td>
<td>67.88</td>
<td>44.13</td>
<td></td>
<td>SCimu</td>
<td>1936</td>
<td>Hemets_AA</td>
</tr>
<tr>
<td>23406</td>
<td>66.43</td>
<td>52.17</td>
<td></td>
<td>Ust'-Tsilma</td>
<td>1899</td>
<td>Republic_Komi</td>
</tr>
<tr>
<td>23652</td>
<td>64.92</td>
<td>77.02</td>
<td></td>
<td>Tarko-Sale</td>
<td>1936</td>
<td>Jamalnemets_AA</td>
</tr>
<tr>
<td>23242</td>
<td>67.42</td>
<td>72.54</td>
<td></td>
<td>Noviy-Port</td>
<td>1924</td>
<td>Jamalnemets_AA</td>
</tr>
<tr>
<td>23330</td>
<td>66.32</td>
<td>66.32</td>
<td></td>
<td>Salekhard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21921</td>
<td>70.41</td>
<td>127.24</td>
<td></td>
<td>Kjusjur</td>
<td>1888</td>
<td>Republic_Sakha</td>
</tr>
<tr>
<td>21921</td>
<td>70.41</td>
<td>127.24</td>
<td></td>
<td>Kusur</td>
<td>1888</td>
<td>Republic_Sakha</td>
</tr>
<tr>
<td>24343</td>
<td>66.46</td>
<td>123.24</td>
<td></td>
<td>Zhigansk</td>
<td>1936</td>
<td>Republic_Sakha</td>
</tr>
<tr>
<td>24143</td>
<td>68.44</td>
<td>124.00</td>
<td></td>
<td>Dzhardzhan</td>
<td>1936</td>
<td>Republic_Sakha</td>
</tr>
<tr>
<td>21908</td>
<td>70.05</td>
<td>113.88</td>
<td></td>
<td>Dzalinda</td>
<td>1947</td>
<td>Republic_Sakha</td>
</tr>
<tr>
<td>24952</td>
<td>66.27</td>
<td>143.14</td>
<td></td>
<td>Ust-Niga</td>
<td>1937</td>
<td>Republic_Sakha</td>
</tr>
<tr>
<td>25400</td>
<td>66.44</td>
<td>150.54</td>
<td></td>
<td>Zyrlianka</td>
<td>1936</td>
<td>Republic_Sakha</td>
</tr>
<tr>
<td>25325</td>
<td>66.33</td>
<td>169.25</td>
<td></td>
<td>Ust-Oloi</td>
<td>1936</td>
<td>Chukchi_AA</td>
</tr>
<tr>
<td>25551</td>
<td>64.41</td>
<td>170.25</td>
<td></td>
<td>Markovo</td>
<td>1894</td>
<td>Chukchi_AA</td>
</tr>
<tr>
<td>25563</td>
<td>64.47</td>
<td>177.34</td>
<td></td>
<td>Anadyr</td>
<td>1896</td>
<td>Chukchi_AA</td>
</tr>
<tr>
<td>01066</td>
<td>69.46</td>
<td>25.50</td>
<td></td>
<td>Karasjok</td>
<td>1877</td>
<td>Finnmark_Norway</td>
</tr>
<tr>
<td>24125</td>
<td>68.50</td>
<td>112.43</td>
<td></td>
<td>Olenek</td>
<td>1936</td>
<td>Republic_Sakha?</td>
</tr>
<tr>
<td>24688</td>
<td>63.26</td>
<td>143.15</td>
<td></td>
<td>Gimakon</td>
<td>1952</td>
<td>Republic_Sakha?</td>
</tr>
<tr>
<td>24671</td>
<td>63.98</td>
<td>136.97</td>
<td></td>
<td>Toppu</td>
<td>1960</td>
<td>Republic_Sakha?</td>
</tr>
<tr>
<td>24969</td>
<td>62.05</td>
<td>129.75</td>
<td></td>
<td>Yakutsk</td>
<td>1958</td>
<td>Republic_Sakha?</td>
</tr>
<tr>
<td>01047</td>
<td>69.00</td>
<td>23.03</td>
<td></td>
<td>Kautokeino</td>
<td>1889</td>
<td>Finnmark_Norway</td>
</tr>
<tr>
<td>01098</td>
<td>70.37</td>
<td>31.08</td>
<td></td>
<td>Vardø</td>
<td>1829</td>
<td>Finnmark_Norway</td>
</tr>
<tr>
<td>01026</td>
<td>69.65</td>
<td>18.93</td>
<td></td>
<td>Tromsø</td>
<td>1920</td>
<td>Troms_Norway</td>
</tr>
<tr>
<td>01063</td>
<td>70.68</td>
<td>23.67</td>
<td></td>
<td>Hammerfest</td>
<td>1857</td>
<td>Finnmark_Norway</td>
</tr>
<tr>
<td>01065</td>
<td>69.00</td>
<td>23.03</td>
<td></td>
<td>Karasjok</td>
<td>1889</td>
<td>Finnmark_Norway</td>
</tr>
</tbody>
</table>
R-script

Listing of the R-script used to derive these results (file name is deEALAT.R):

```r
rm(list=ls())
source("de_one.R")
source("net.no.R/ESD_results.R")

s2m <- function(t) {
  spc <- nchar(t) + nchar(t)
  n1 <- strip(t)
  n2 <- substring(t, spc[length(spc)] + nchar(t))
  (as.numeric(n1), as.numeric(n2))
}

read.ealat <- function(name, verbose=TRUE, param="TAM") {
  header <- readLines(name, n=5)
  location <- substr(header[1], 6, nchar(header[1]))
  coln <- nchar(header[4])
  lcn <- scan(header[4], ncol=2)
  lon <- lcn[1] + lcn[2]/60
  lat <- lcn[3] + lcn[4]/60
  alt <- as.numeric(substr(header[8], nchar(header[8]), nchar(header[8])))
  wmo <- as.numeric(substr(header[2], nchar(header[2]), nchar(header[2])))
  ccol.names<-switch(param, "TAM"=c("year", "month", "day", "TAM", "TAX", "hourflag", "TAX", "hourflag", "TAM"),
                   "SIM"=c("year", "month", "day", "SIM"))
  t2m <- read.fwf(name, width=c(5,6,3,6,6,6,1,5,1), skip=17, col.names=col.names)
  nt <- length(t2m$year)

  if (param="TAM") {
    t2m$TAM <- as.numeric(t2m$TAM); t2m$TAX <- as.numeric(t2m$TAX); t2m$TAX <- as.numeric(t2m$TAX)
    t2m$TAM[abs(t2m$TAX)>100] <- NA
    t2m$TAX[abs(t2m$TAX)>100] <- NA
    tax <- station.obj[,c(2,3,4,5,6,7), where=t2m$day, name=t2m$month, yy=t2m$year,
                               obs.name=c("mean 2-meter air temperature",NA), unit=c("degrees Celsius",NA),
                               location=location, wmo.no=wmo,
                               start=NULL, yyO=WULL, country="Russia",
                               ref="EALAT; private communication Pavel (svyashchennikov@mail.ru)"
    tax <- station.obj[,c(2,3,4,5,6,7), where=t2m$day, name=t2m$month, yy=t2m$year,
                               obs.name=c("maximum air temperature",NA), unit=c("degrees Celsius",NA),
                               location=location, wmo.no=wmo,
                               start=NULL, yyO=WULL, country="Russia",
                               ref="EALAT; private communication Pavel (svyashchennikov@mail.ru)"
    tan <- station.obj[,c(2,3,4,5,6,7), where=t2m$day, name=t2m$month, yy=t2m$year,
                               obs.name=c("minimum air temperature",NA), unit=c("degrees Celsius",NA),
                               location=location, wmo.no=wmo,
                               start=NULL, yyO=WULL, country="Russia",
                               ref="EALAT; private communication Pavel (svyashchennikov@mail.ru)"
    tan <- station.obj[,c(2,3,4,5,6,7), where=t2m$day, name=t2m$month, yy=t2m$year,
                               obs.name=c("minimum air temperature",NA), unit=c("degrees Celsius",NA),
                               location=location, wmo.no=wmo,
                               start=NULL, yyO=WULL, country="Russia",
                               ref="EALAT; private communication Pavel (svyashchennikov@mail.ru)"
    obs.dm <- switch(param, "TAM"=tax, "TAX"=tax, "TAX"=tan)
    obs <- daily2month.station(obs.dm)
  } else if (param="SIM") {
    t2m$SIM <- as.numeric(t2m$SIM)
    sim <- station.obj[,c(2,3,4,5,6,7), where=t2m$day, name=t2m$month, yy=t2m$year,
                               obs.name=c("daily snow depth measured in centimeters",NA), unit=c("cm",NA),
                               location=location, wmo.no=wmo,
                               start=NULL, yyO=WULL, country="Russia",
                               ref="Anders Oskar"
    obs <- daily2month.station(sim)
  }
  if (verbose) print(summary(t2m))
}
```

48
invisible(obs)

computeEALAT <- function(param="TAM", start=1, last=NULL, LINPACK=FALSE) {
 else <- switch(param, "TAM"=101, "R"=601, "SN=601")
 pattern <- switch(param, "TAM"="T.txt", "SN"="S.txt")
 a <- list.files("/klimadata/rasmurb/EALAT_Russia\n","pattern=pattern.full.names=TRUE)
 if (is.null(last)) last <- length(a)

 for (i in start: last) {
 print(a[i])
 elat.data <- read.ealat(a[i], param=param)
 if (param="TAM") {
 # TAM <- dailymonthly.station(elat.data$tam)
 TAM <- elat.data
 TAMA <- anomaly.station(TAM)
 TAM$val[abs(TAM$val)>10] <- NA
 # TAM <- dailymonthly.station(elat.data$tax)
 # TAX$val[abs(TAX$val)>10] <- NA
 # TAM <- dailymonthly.station(elat.data$tax)
 # TAX$val[abs(TAX$val)>10] <- NA
 # TAM <- daily2monthly.station(elat.data$tax)
 # TAX$val[abs(TAX$val)>10] <- NA
 if ((sum(is.element(TAM$yx,1960:2000))>20) & (sum(is.finite(TAM$val))>20+12)) {
 print(paste("Downscaling",a[i],list.location))
 ds.<-ele-1,2,c=1:12,2,1:11,2,leave=TRUE, d.alb=TRUE, d.xpc=0,
 qc=FALSE,station=TAM, predictand="elat.tan", cp.path="/klimadata/rasmurb/EALAT",
 lon=1801lon+c(-20,20), lat=1801lat+c(-15.5,15.5), LINPACK=LINPACK)
 # ds.<-ele-1,2,2,1:11,2,leave=TRUE, d.alb=TRUE, d.xpc=0,
 # qc=FALSE,station=TAX, predictand="elat.tan", cp.path="/klimadata/rasmurb/EALAT",
 # lon=TAX$lon+c(-20,20), lat=TAX$lat+c(-20,20), LINPACK=LINPACK)
 # ds.<-ele-1,2,2,1:11,2,leave=TRUE, d.alb=TRUE, d.xpc=0,
 # qc=FALSE,station=TAX, predictand="elat.tan", cp.path="/klimadata/rasmurb/EALAT",
 # lon=TAX$lon+c(-20,20), lat=TAX$lat+c(-20,20), LINPACK=LINPACK)
 }
 }
 else if (param="SN") {
 SN <- dailymonthly.station(elat.data)
 d <- dim(SN$val)
 sn <- c(t(SN$val)); SN.1 <- sn[1]; sn <- c(NA,diff(sn))
 SN$val <- t(as.matrix(sn[2],d[1]))
 ds.<-ele-1,2,2,1:11,2,leave=TRUE, d.alb=TRUE, d.xpc=0,
 qc=FALSE,station=SN, predictand="elat.tan", cp.path="/klimadata/rasmurb/EALAT")
 }
 while (dev.cur()>1) dev.off()
 #remove .ndata.files(.path="output")
 }
 }

Figures <- function(path="/klimadata/rasmurb/EALAT/", pattern="elat.tan", minus=8, start=1) {
 elat.meta <- read.table("EALAT-list.txt", header=TRUE)
 ele <- switch(pattern,"elat.tan"=101,"elat.tan"=122)
 param <- switch(pattern,"elat.tan"="TAM", "elat.tan"="TAX", "elat.tan"="TA")
 a <- list.files("/klimadata/rasmurb/EALAT_Russia\n","pattern=pattern.full.names=TRUE)
 locations <- list.files(path=pattern.path, locations=TRUE)
 n <- length(locations)
 locs <- reg("NA,"n) #print(lower.case(substr(locations,10,14))); print(lower.case(as.character(elat.meta$Name),1,5))
 for (ireg in start:n) {
 i1 <- grep(lower.case(substr(locations[ireg],10,14)), lower.case(as.character(elat.meta$Name),1,5))
 print(as.character(elat.meta$Name[i1]))
 i11 < grep(elat.meta$Name[11], a)
 locs[ireg] <- substr(locations[ireg],10,nchar(locations[ireg])-8)
 obs.<- paste("read.ealat\n","i11",".",verbose=FALSE,param="",param,"\"",sep="")
 print(obs.<)
 # The reading removes all data at Tarko-Sale - switch off reading for this location...
 if (ireg==10) rm.bad.start <- FALSE; remove.bad.sd <- FALSE else
 { rm.bad.start <- TRUE; remove.bad.sd <- TRUE }
 end <- finalPlot(path=pattern.predictand="elat.tan", status=locs[ireg], ele=ele.obs.get.obs.get.
 remove.bad.sd=remove.bad.sd, rm.bad.start=rm.bad.start)
 }
}
for (station in c(90450, 93700, 97250, 98540)) {
 obs <- KDW4DS(station)
 r <- sin(pi * (90 - obs$lat) / 180)
 x <- r + sin(pi * obs$lon / 180)
 y <- -r + cos(pi * obs$lon / 180)
 points(x, y, pch=19, cex=0.7)
 text(x=-0.02, y=cex-0.4)
}

elat.meta <- read.table("ELAT-list.txt", header=TRUE)
r <- sin(pi * (90 - elat.meta$latitude) / 180)
x <- r + sin(pi * elat.meta$longitude / 180)
y <- -r + cos(pi * elat.meta$longitude / 180)
points(x, y, pch=19, cex=0.7)

dev.copy2eps(file="kart.epd")
}

checkSS <- function(file="/klimdata/rasmub/ELAT/etal.tanYAKUTsk24959101/ds_cne_AR4.etal.tanYAKUTsk24959101.ukmo_hadcm3r
load(file)
plotDSobj(dr.station)
plotDS(dr.station$Jan)
plotDS(dr.station$Jul)
for (i in 1:8) {dev.copy2eps(file=paste("checkSS","i",".eps",sep="")); dev.coff()}
}

tables <- function(inflation=FALSE.period=2070:2099.absolute=TRUE.prop.chng=FALSE.pattern="etal.tan".
path="/klimdata/rasmub/ELAT\", minus=8) {

 elat.meta <- read.table("ELAT-list.txt", header=TRUE)
 ele <- switch(pattern, "etal.tan"=101, "etal.tax"=112, "etal.tan"=122)
 param <- switch(pattern, "etal.tan"="TA", "etal.tax"="TAX", "etal.tan"="T\n")
 a<-list.files("/klimdata/rasmub/ELAT_Russia\", pattern="T\.txt", full.names=TRUE)
 locations <- list.files(path=pattern, pattern=pattern)
 seasons <- matrix(c(12, 1, 2, 3, 3, 4), 3)
 dig <- switch(as.character(ele), "101"=1, "601"=0)
 param <- switch(as.character(param), "T\n"="T\n", "601"="601")
 M <- rep(NA, 101+4); dim(M) <- c(101, 4); Q1 <- M; Q2 <- M
 m <- rep(NA, 101+4); dim(m) <- c(101, 4); q1 <- m; q2 <- m
 trend <- rep(NA, 101+4); dim(trend) <- c(201, 4)
 n <- length(locations)
 clim <- rep(NA, n+4); dim(clim) <- c(n, 4)
 colnames(scc.2000.2040) <- c("Winter", "Spring", "Summer", "Winter")
 colnames(clim) <- c("Winter", "Spring", "Summer", "Winter")
 a<-list.files("/klimdata/rasmub/ELAT_Russia\", pattern="T\.txt", full.names=TRUE)

 locs <- rep("?", n)
 for (i in 1:n) {
 t <- 2000:2100
 locs[i] <- substr(locations[i], 10, nchar(locations[i])-n)
 print(paste("locs[i]="locs[i]))
 ii <- grep(lower.case(substr(locations[i], 10, 14)), lower.case(substr(as.character(etal.meta$Name), 1, 6))
 if (length(ii)>0) {
 print(as.character(etal.meta$Name[i]))
 ii <- grep(as.character(etal.meta$Name[i]), a)
 obs.get <- paste("/read.etal("a[ii], ", verbose=FALSE.param="", sep=""))
 end <-show1(locations[i], predictand=pattern, ele=ele, plot=TRUE, path="/klimdata/rasmub/ELAT\",
 case=TRUE, obs=get, obs)
 obs <- end$plume$obs
 N <- length(end$scen.files.alb)
 z <- rep(NA, N+4); dim(z) <- c(101, N, 4)
 X <- obs$yy
 for (icm in 1:N) {
 for (is in 1:4) {
 if (ele=101) {

51
"}
```r
y <- cclMeans(end$sce[igcm.seasons[,is],])
clim[i,is] <- mean(obs$val[i.element(obs$yy,1961:1990),seasons[,is]],na.rm=TRUE)
} else if (ele==601) {
y <- cclSums(end$sce[igcm.seasons[,is],])
clim[i,is] <- mean(rownames(obs$val[i.element(obs$yy,1961:1990),seasons[,is]],na.rm=TRUE)
obs$unit <- "mm/season"
}
x <- end$yy.21c
if (ele==601) 
  if (y[y < 0] < 0 )
    ii1 <- is.element(x,2000:2100)
    ii2 <- is.element(x,2000:2100)
else
  z[ii1,igcm.is] <- y[ii2]
}
for (is in 1:4)
  for (it in 1:101) {
    M[it,is] <- median(z[it,is],na.rm=TRUE)
    q1[it,is] <- quantile(z[it,is],0.05,na.rm=TRUE)
    q2[it,is] <- quantile(z[it,is],0.95,na.rm=TRUE)
    trendM1 <- ln(M[it,is] - t + I(t^2) + I(t^3) + I(t^4) + I(t^5))
    trendQ1 <- ln(q1[it,is] - t + I(t^2) + I(t^3) + I(t^4) + I(t^5))
    trendQ2 <- ln(q2[it,is] - t + I(t^2) + I(t^3) + I(t^4) + I(t^5))
    good <- c(is.infinite(M[,is]))
    m[good,is] <- round(predict(trendM1),2)
    q1[good,is] <- round(predict(trendQ1),2)
    q2[good,is] <- round(predict(trendQ2),2)
  }
print(c(length(t),NA,dim(m)))
intv <- is.element(t,period)
for (is in 1:4)
  if (!absolute & (!prop.chng)) sce.2000.2040[i,is] <- paste(round(mean(m[intv,is]),dig),"\n",round(0.5*(mean(q2[intv,is])-mean(q1[intv,is])),dig),sep="")
else if (!absolute & (!prop.chng)) sce.2000.2040[i,is] <- paste(round(mean(m[intv,is])-clim[i,is],dig),"\n",round(0.5*(mean(q2[intv,is])-mean(q1[intv,is])),dig),sep="")
else if (absolute & (prop.chng)) sce.2000.2040[i,is] <- paste(round(100*(mean(m[intv,is])-clim[i,is]),dig),"\n",round(50*(mean(q2[intv,is])-mean(q1[intv,is]))/clim[i,is],dig),sep="")
  # not really used...
paste(round(100*(mean(m[intv,is])-clim[i,is])/clim[i,is],dig),"\n",round(50*(mean(q2[intv,is])-mean(q1[intv,is]))/clim[i,is],dig),sep="")
  # not really used...
}
rownames(sce.2000.2040) <- substr(lcs.1,6)
rownames(clim) <- substr(lcs.1,6)
write.table(sce.2000.2040,file=paste("End",ele,"\n\n\n",min(period),"\n","max(period)",",text",sep=""),quote=FALSE,sep="\t")
write.table(round(clim,dig),file=paste("End",ele,"\n\n\n",min(period),"\n","max(period)",",text",sep=""),quote=FALSE,sep="\t")
invisible(sce.2000.2040)
```