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Abstract 
This study provides an overview on how waves and ice interacts in the ocean. The most relevant ice 
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mathematical methods. Nevertheless, there are some simple fundamental principles that can be applied 
for modeling the wave energy in ice conditions. It is concluded that met.no has the capacity to 
implement a wave-in-ice model although it may require a considerable effort. 
The authors suggest that there is a mismatch between the theoretical developments describing wave ice 
interactions, and observational and laboratory studies. Interlinked studies using dedicated field 
experiments, laboratory experiments, and numerical models targeting realistic physical system are 
needed for advancing the present state-of-the-art knowledge of wave ice interaction. 
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Executive summary 
This study provides an overview on how waves and ice interacts in the ocean. The most 
relevant ice characteristics found in the ocean is described, and their role on the wave 
dynamics is outlined. The impacts of the waves on the ice field are also described to some 
extent. Two different models for wave ice interaction, namely the “standard” mathematical 
model describing wave scatter due to ice floes, and a model describing waves in slush ice are 
presented in some detail. Energy transport models applying a Boltzman type of scattering are 
also briefly described. 
It is concluded that wave ice interaction is challenging to describe in detail, and mathematical 
models describing wave ice interaction are often very complicated mathematically and 
employ advanced mathematical methods. Nevertheless, there are some simple fundamental 
principles that can be applied for modeling the wave energy in ice conditions. It is concluded 
that met.no has the capacity to implement a wave-in-ice model although it may require a 
considerable effort. 
The authors suggest that there is a mismatch between the theoretical developments describing 
wave ice interactions, and observational and laboratory studies. Interlinked studies using 
dedicated field experiments, laboratory experiments, and numerical models targeting realistic 
physical system are needed for advancing the present state-of-the-art knowledge of wave ice 
interaction. 
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1 Introduction 
StatoilHydro runs several operations in areas that is covered with ice or having a risk of being 
affected by ice. For safe operations in these areas it is advantageous to have precise 
knowledge of wave and ice conditions. Today there is no comprehensive forecasting system 
that deals with the wave-ice system albeit the crucial role of the wave-ice climate for planning 
operations in ice-covered areas. To provide further information on the possibility for 
launching an operational wave-in-ice service, StatoilHydro has asked the Norwegian 
Meteorological Institute (met.no) to provide a state-of-the-art description of the present 
knowledge of wave ice interaction and the modeling of waves in ice, and the result of this 
literature study is presented in this report. 
The coupling between waves and ice involve fluid mechanics and its coupling to floating 
objects, which also have certain flexibility, and is extremely complex. The complexity of the 
physical system implies that the mathematical models must be equally complex. Many of the 
basic physically realistic scenarios cannot be solved even using the most advanced 
mathematical and numerical methods as of today. There exist a wide literature on wave and 
floating object interaction applicable to wave ice interaction. However, many of these studies 
are mathematically complex, and it may be difficult to apply the idealizations needed for a 
geophysical usable model. Furthermore, theoretical frameworks describing wave transition 
through non-homogenous media (such as electromagnetic radiation through various media) 
can be used for describing wave transition through an ice field. Again it may be stated that 
these models are complex and are not readily applicable into a model describing waves in a 
geophysical context. 
The ice field has a clear impact on the wave field, but the wave field also has a strong impact 
on the ice field. The mutual interactions between the wave field and the ice characteristics add 
further to the complexity of the system. The ice field respond quickly to an incoming wave 
field, the ice is cracked into smaller floes creating an entirely new ice field within hours. In 
addition to the mutual interactions between the wave and ice fields, the wave and ice fields 
have a distinct influence on ocean currents and the atmospheric flow adding to the complexity 
of the geophysical system involving the wave-in-ice characteristics. 
It is concluded that wave ice interaction is very complex and mathematical theories describing 
the system are complex. However, certain properties of the system suggest that it can be 
predicted using fairly simple models; for instance, the energy decreases exponentially from 
the ice edge albeit the length scale of the decline varies with ice characteristics. However, the 
ice field is a strong function of the wave field, and the wave field is a strong function of the 
ice field. If this implies that the final model will be more reliable or not is still an open 
question but the possibility exists. 
One of the obstacles in developing a forecasting system for describing waves-in-ice is that the 
model needs to be validated. Today, there are only a few studies that can be used to validate a 
wave-in-ice model. Further observations may be needed. Another difficulty with accurate 
predictions of the coupled wave-ice system is the small scales of the system. The wave-ice 
zone has scales of order 1-50 km and it changes rapidly with changing forcing conditions. 
Such small scales in combination with high variability will certainly push any geophysical 
model to its limits. 
It is concluded that met.no has the basic operational models (i.e., atmospheric, ocean, ice and 
wave models) needed for a wave-in-ice forecasting system. However, the wave model and the 
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ice model will need substantial revisions to accommodate the wave-in-ice dynamics. 
Furthermore, some theoretical development must also be considered. The models will also 
require higher resolutions to be able to make accurate prediction of the wave-in-ice system. 
During this literature study it has become clear that there are at least three different aspects of 
the coupled wave-ice system that is relevant for predicting the wave and ice climate in a 
region.  

• The wave amplitude that is affected by ice coverage and ice thickness. 
• Ice dynamics and ice coverage, which to a large extent is determined by the wave 

forcing. 
• The possibility to use observations on wave parameters, e.g., by SAR radar or 

satellites, to estimate the ice thickness [Nagurny, et al., 1994; Wadhams, et al., 2002; 
Wadhams, et al., 2004]. 

The first two items are indeed intimately coupled; however, in most studies there is no direct 
coupling such that there are no holistic studies of the wave-ice system as of today1. The third 
aspect is not directly a part of the study presented here: however, it is an important application 
that can shed some light on the ice thickness, which is an important parameter for the wave-
ice coupled system 
This report focuses on the more practically oriented description of waves in ice-covered areas 
and therefore we neglect a number of research articles that are considered to focus more on 
the mathematical details of the ice-wave interaction than on the more practical issues of the 
problem. Here some choices have to be made and the authors certainly have neglected studies 
that are important for the subject but nevertheless have been overlooked due to the ignorance 
from the present authors side. More detailed reviews can be found elsewhere [Lavrenov, 
2003; Squire, 2007; Squire, et al., 1995; Wadhams, 2000]. 

Some basic physics on waves in ice 
For waves in the open water gravity is the dominant restoring force and hence the name 
gravity waves. In an ice covered sea the stiffness of the ice will contribute to the returning 
force of the sea surface and the waves under stiff sea ice are called flexural-gravity waves. It 
should be acknowledged that variable ice-thickness, and the corresponding variability in 
flexural force from the ice cover, will affect the wave speed and thus the direction of 
propagation2. Furthermore, waves for a given frequency tend to be longer under sea ice than 
in open water conditions, and their group velocity becomes smaller such that the wave 
amplitude increases (see Appendix A). Besides the direct influence of the ice cover on the 
restoring force of the water-ice surface, in-homogeneities in the ice cover, such as ridges, 
cracks in the ice, and open water, will give rise a certain scatter of the waves, which will 
influence the wave height (see Appendix B). Over the last few years there have been a large 
number of theoretical studies on these scattering processes; however, most studies are more 
devoted to the mathematical description of the scattering process rather than towards a real 

 
1 This is of course not entirely true but most studies tend to focus on either of the two aspects. 

2 Snells law predicts that waves that experience a change in propagation speed will bend with respect to the 

normal; there will also be some scattering of the wave at a sudden change of the phase speed. 
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life applications. Accordingly, many of these studies are not easy to access for scientist 
outside the field of applied mathematics. 
Another track in describing waves under the influence of ice takes the limit that the ice is 
represented by very small particles such that the ice is fully diluted into a water-ice 
suspension. The water-ice suspension (or slush) is very viscous due to the interaction of the 
ice particles diluted in the water; furthermore, the water-ice slush is very buoyant such that it 
floats and forms a relatively homogenous upper layer. The high viscosity of the water-ice 
slush implies that waves are rapidly damped by viscous affects; here scattering of waves are 
not considered. One framework describing this system is described in Appendix C. 
Summarizing, in the literature two types of ice-wave theories are encountered:  

• The presence of flexible or solid ice floes. 
• The case when ice is treated as ice slush, such that the ice can be treated as viscous 

fluid layer. 
In natural conditions, either of the two types of ice is seldom observed and it appears that 
most ice conditions have some mixture of flexible ice floes and small slush ice. Today, there 
are no studies where both these features are described in a common way. 
The main summary of the wave propagation in ice covered areas is given in Section 2. Sec. 
2.1 describes field studies of both ice properties and wave-in-ice dynamics. Laboratory 
experiments are covered in 2.2, while theoretical studies are summarized in Sec 2.3. Section 
2.3.1 outlines the ”standard” mathematical description used to model scatter from ice floes. 
The viscous slush ice model is described in Sec. 2.3.2, while energy transport models 
employing wave scatter from ice floes is described in Sec. 2.3.3. Section 3 is devoted to 
geophysical models. 3.1 outlines the spectral wave models that are used in geophysical 
context, a brief presentation of a wave model where wave ice interaction is included is given 
in 3.1.1. The most relevant operational model at met.no is outlined in Sec. 3.2. Section 4 
provides an overview of processes that must be included into a forecasting system, and the 
possibility to include wave-in-ice characteristics into the met.no operational system is 
discussed in 4.2. Section 4.3 gives some suggestions for future studies. Appendix A outlines 
some general wave characteristics while Appendix B gives a more thorough outline of the 
“standard” model for describing wave scattering. Appendix C discusses the basic outline of a 
viscous model for slush ice.  



 

 9

2 Summary of literature regarding wave propagation into sea ice 
In this section we will categorize different works as field studies, laboratory studies, or 
theoretical studies. Of course, not all works can be categorized in such way and different 
studies may appear in more than one section. Most of what we know on ice field 
characteristics, and its response to wave action, comes from field experiments, which are 
describe in section 2.1. This section also gives short presentations of the most pertain ice 
types that are relevant for waves-in-ice. Some relevant laboratory experiments are described 
in section 2.2; section 2.3 is devoted to theoretical description of wave-in-ice dynamics. In 
section 2.4 the possibility to use observations on waves to estimate the ice thickness is briefly 
described; the section also contains a discussion on energetic waves that may appear in solid 
ice. 

2.1 Field studies  
Field studies represent the most straightforward way to obtain new understanding of the 
wave-ice interaction. However, the problems in obtaining a useful dataset should not be 
underestimated; this is clear from the relatively few useful observations that have been made. 
The most comprehensive measurements were made by Scott Polar Institute at University of 
Cambridge in the mid seventies [Squire, 1984; 1995; Squire, et al., 1995; Squire and Moore, 
1980; Wadhams, 1973; 2000; Wadhams, et al., 1987; Wadhams, et al., 1986; Wadhams, et al., 
1988; Wadhams, et al., 2006]; albeit there have been new observations since these early 
measurements they have not advanced our knowledge in any dramatic way. However, we start 
by describing ice types that are important for this study. 

2.1.1 Various ice types discussed in this study 
When considering ice there are several types of ice and here we consider a short outline of 
some ice characteristics that are relevant for this study. It should be recognized that when ice 
forms in the ocean small pockets of sea water will become trapped in the ice. Thus, as salt 
water has a lower freezing point these small pockets will not freeze altogether. The 
physical/mechanical behavior of sea ice may thus behave somewhat different as compared to 
ice created from freshwater. 

2.1.1.1 Grease ice 
As the water cools and starts to reach the freezing temperature small ice crystals are formed, 
mainly in the form of small discs with size of order 2-3 mm [Martin and Kauffman, 1981]. In 
calm conditions these floats on the surface, while a more turbulent or wavy environment 
(which is the normal state of the upper ocean) implies that these crystals are suspended deeper 
into the sea. The discs tend to stuck to each other to minimize their thermodynamics energy 
and water with high concentrations of small ice crystals is therefore very viscous [Martin and 
Kauffman, 1981]. This type of ice is usually called grease ice or frazil ice and the thickness of 
the ice slush grease may exceed 1 meter under right conditions [Martin and Kauffman, 1981; 
Wadhams, 2000]. 

2.1.1.2 Pancake ice 
When freezing continues the grease ice concentration increases and it finally reaches a 
transition point where ice crystals start to form small cakes. The size of the cakes depends on 
the turbulent or wave motions at the surface and is probably governed by the wave-induced 
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cyclic compression of the suspension [Wadhams, 2000]. The cakes will continually crash into 
neighboring cakes, and the cakes will become round. The freezing continues along the cake 
edges and eventually the pancakes will reach a diameter of 3-5 m and 50-70 cm thickness, see 
Fig. (2.1) and (2.2) [Doble, et al., 2003; Doble and Wadhams, 2006; Wilkinson, 2006]. 
Furthermore, strong wave action may force the pancakes to a thick layer where the pancakes 
float on top of each other creating a thick layer of pancake slush [Dai, et al., 2004]. It should 
be noted that the presence of pancake ice often implies that sea water is abundant all the way 
to the surface, with high temperatures at the surface, and subsequent very high heat losses 
from the surface. Once more solid ice forms the rate of ice freezing becomes much lower 
[Wadhams, et al., 1987]. 
There are some evidences that it is mainly the wave action that prevents the pancakes to 
become attached to each other. In areas with large wave amplitudes such as the outer rim of 
the Antarctic sea ice and in the Greenland Sea there are large areas of pancake ice [Wadhams, 
2000; Wilkinson, 2006]. However, it is also notable that pancake ice damp waves such that if 
the area with pancake ice is large enough solid ice will start to form in the calmest part of the 
pancake ice area: This is clearly seen around the Antarctic sea ice where the pancake zone can 
be up to 270 km wide [Doble, et al., 2003; Doble and Wadhams, 2006; Wadhams, 2000; 
Wadhams, et al., 1987]. 

  
Figure 2.1 Typical pancake field in the outer ice region: Left panel is from Antarctica [Wadhams, et al., 1987] 

and right panel is from the Odden ice tongue in the Greenland Sea, here the pancakes are about 1-2 m (the 
stick on lower left is 1.5 m) [Wadhams, et al., 2002] 
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Figure 2.2 Typical pancake field in the outer ice region [Wadhams, et al., 1987]. The picture on the right panel 

has a side of 35 m and the pancakes are about 2-4 m wide. 

2.1.1.3 Solid ice 
In cold calm conditions the pancake ice will start to form a homogenous solid pack ice: Of 
some interest for wave modeling purposes is that the solid ice that forms from pancake ice can 
be very rough with a roughness of say, 3 times the mean ice thickness, under intense wave 
conditions [Wadhams, et al., 1987]. However, in areas with a less intensive wave climate such 
as in the Arctic Mediterranean the ice will be smoother. Furthermore, the thermodynamic 
growth and melting process tends to even out in-homogeneities such that ice that spent time in 
calm areas tend to be relatively homogenous [Wadhams, 2000]. 
For solid ice there is usually a distinction between first year ice (created this season) and 
multi-year ice (created at least the last season). As the freezing process is slow, solid ice with 
thickness over one meter tends to be multiyear ice. First year ice also tends to be saltier than 
the multiyear ice (the ice is slowly drained of salt), which implies that first year ice may have 
different mechanical properties than multi-year ice. 
The solid ice is not homogeneous in any way, and there are a large number of discontinuities 
in the pack ice. In situations with divergent wind stress the ice will split up displaying open 
water areas (or leads) within the pack ice. These areas will start to freeze and we accordingly 
find areas with thin ice cover. There are also small areas with thick ice (peculiar enough, thick 
ice stems from areas with thin ice cover that has been crashed by ice movements); these are 
called pressure ridges and they have a keel that is about 4 times as deep as the sail (they are 
wider below the water interface than above). The pressure ridges can be over 50 m thick 
although most ridges are about 10-30 m thick [Wadhams, 1981; 2000; Wadhams, et al., 1987; 
Wadhams, et al., 2006]. However, again it should be noted that the freezing/thawing process 
in itself tends to make the ice cover more homogenous; it is some kind of mechanical actions 
that makes the ice cover inhomogeneous. Near the shore the ice coverage may extend all the 
way onto the land; and this type of ice is called land-fast ice [Divine, et al., 2003]. It should be 
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noted that changes in ice thickness are associated with changes in waves speed, and leads and 
pressure ridges will thus affect the wave propagation in solid ice. 

2.1.1.4 Scattered floes and the Marginal Ice Zone (MIZ) 
At some circumstances, for instance during intensive wave action or during divergent wind 
situations, the solid ice will breaks up into small pieces with sizes ranging from a few meters 
to several hundred meters. In most cases the ice floes will appear in the vicinity of the pack 
ice and the area with the ice floes are named the Marginal Ice Zone (MIZ). The MIZ is most 
characteristic in areas with strong wave action such as the Antarctica, Bering Sea, Greenland 
Sea, and to some extent the Barents Sea [Wadhams, 2000]. Some of the characteristic of the 
MIZ is displayed in Figures (2.3 and 2.4). 
The MIZ is highly variable and represent a zone where waves, ice and atmospheric forcing 
interacts in a complicated way. Under strong wave conditions the wave can break up ice such 
that the MIZ becomes 70 km thick whereas it may be essentially vanishing under calm 
conditions [Wadhams, 2000]. Furthermore, the MIZ can move more that 50 km during a 
single day [Perrie and Hu, 1996], mainly as a response to wind forcing but wave forcing and 
ocean currents can also play important roles. Here it should be noted that waves impinging on 
a MIZ will force the ice floes towards the ice margin by the waves radiation stress [Longuet-
Higgins, 1977; Perrie and Hu, 1997; Wadhams, 2000]. In situations where wind is blowing 
over the MIZ towards the open ocean ice will drift towards the sea in well-defined bands 
parallel to the ice edge, the waves generated by wind between the bands will put a pressure on 
the back side of the ice band (the side towards the MIZ and the wind generated waves) thus 
keeping the band together [Wadhams, 1983; 2000]. It should be noted that the MIZ often 
respond very differently to on-ice wind as compared to off-ice wind. As a final notice on the 
importance of ice for the MIZ we notice that severe wave forcing may in principle pulverize 
the ice creating a slush ice layer [Frankenstein, et al., 2001]. In addition to the large scale 
wind pattern there may also be local wind cells driven by the contrast in air temperature over 
ice and over water [Chu, 1987]. 
We may conclude that the dynamics of the MIZ and the wave characteristics in the MIZ is 
very difficult to model. This is unfortunate as this zone that is probably the most interesting 
zone for an operational wave-ice model. 
There are some valuable observations on the size distribution and geometry of the ice floes in 
the MIZ. Some of these observations suggest that there is a zonal distribution of ice floes, 
with small floes in the outer MIZ, a flat medium size distribution in the interior zone and large 
floes near the solid ice edge [Lu, et al., 2008; Squire and Moore, 1980]. It has been suggests 
that the distribution of ice floe size and geometry follow some type of distribution law [Lu, et 
al., 2008], i.e., 
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where N is the cumulative number of floes with size smaller than L; N0 is the total number of 
floes and L0 (scale coefficient) and γ (shape coefficient) are two parameters that can be fitted 
to data. The value of these observations for wave-in-ice studies has not been utilised to any 
major extent. 
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Figure 2.3 Solid ice field that have been broken up by swell from a distance storm, Left panel is from the ice 

edge during the MIZEX experiment in the Greenland Sea 1984 [Wadhams, et al., 1986]. The right panel is 
from Antarctica, the size of the picture is 300 m [Wadhams, et al., 1987] 

 
Figure 2.4. Aerial photograph of Greenland Sea MIZ sea ice, with the 50-m-long ship Polarbjørn near the center. 

The photograph was taken during the 1983 Marginal Ice Zone Experiment [Meylan and Squire, 1994]. 
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2.1.2 Observations on wave characteristics in ice 
Let us consider a typical situation that may appear in a real case scenario. Wave and ice 
conditions are very variable but some characterization is possible; however, it should be 
remembered that there are many exceptions. Starting from the open ocean and moving into 
the ice we have the following areas where each area have different physical characteristics 
with respect to wave dynamics [Lu, et al., 2008; Squire and Moore, 1980; Wadhams, 2000]: 

• Open ocean: At some distance from the ice edge we will have open ocean water, and 
waves will have typical open water characteristics. 

• Edge zone with scattered ice floes (i.e., the outer zone less than 5 km from open 
ocean): In the outer MIZ region there are relatively few floes such that the floes do not 
interact with each other. When wave reaches an ice floe the floe movement will 
become a part of the wave motion. If the floe is large enough, i.e., it is of same size, or 
larger, than the wave length, the wave propagation will be altered due to the flexural-
gravity forces of the ice floe (here both the stiffness and the added mass of the ice are 
considered, see Appendix B). The wave velocity accordingly changes and these 
changes are associated with a certain scatter of the wave energy according to Snell's 
law. Waves tend to break large ice floes into smaller pieces and therefore only small 
floes are found in the edge zone in cases with energetic waves.  

• Transition zone has frequent ice floes of intermediate size. The transition zone is 
characterized by being rather homogenous with respect to ice conditions. The breaking 
of ice floes into smaller floes exist but is it does not have an overall importance in the 
transition zone. The scattering of waves due to the wave ice-floe interaction are 
important; however, the high frequency of ice floes implies that the floe-floe 
interaction, or collisions, also becomes very important, or even dominant [Squire, et 
al., 1995]. It has been shown that the rate of the collision depends on the floe 
concentration and to some extent on the wave amplitude [Squire, et al., 1995]. The 
interface between the transition zone and the outer edge is often characterized by the 
breaking of ice floes into smaller pieces due to the action of waves. As of today there 
is no clear and homogenous picture of the role of floe floe collisions and how the rate 
of the collisions depends on external forcing. It is still an open question how well the 
“standard” wave scattering model (Appendix B, Sec. 2.3.1) will describe the dynamics 
of this region (one fundamental assumption in the scattering model is the floe-floe 
interaction is negligible). 

• Interior MIZ. The interior zone is closest to the solid pack ice and the largest ice 
floes are found here. The waves that appears here has very weak amplitude (as the 
wave energy has been scattered as the waves travel towards the inner zone) and have 
long wavelength (shorter waves are scattered more efficient implying that only the 
long waves can penetrate deep into the MIZ). If more energetic waves enter the 
interior zone, the ice floes start to break up. However, the waves will also create new 
ice floes by breaking up the solid pack ice upholding the interior MIZ zone. 

• Solid ice. In solid ice waves tend to propagate almost unperturbed and can travel long 
distances. The major dissipation of wave energy comes from scattering due to leads 
and pressure ridges (which alters the wave speed through the flexural-gravity forces), 
viscous dissipation at the wave-water interface, and creep within the ice [Liu and 
Mollo-Christensen, 1988; Wadhams, 1973]. The attenuation of waves under solid ice 
has not received much attention as compared to the wave ice-floe scattering process. 
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In addition to these categories we also have wave propagation in the following “media” 
• Grease ice: Grease ice is very viscous and frictional affects become important for 

describing the wave propagation. As the grease ice float on the top of the ocean this 
system can be viewed as a two-layer system with a high-viscosity grease-ice slush on 
top of a low viscosity water layer [Weber, 1987]. 

• Slush ice: During strong wave conditions the ice floes are rapidly broken into small 
pieces, and these pieces constantly crush into each other. The result is a mixture of 
small ice floes and small ice particles dissolved in the water, and can thus be 
considered as slush ice [Frankenstein, et al., 2001]. Thus, small waves (with size 
corresponding to the size of the pancakes) with be affected by scattering processes: 
Large waves will not be affected by scattering and it seems reasonable that there are 
some strong similarities with wave propagation in grease ice and in dense pancake ice 
(i.e., wave propagation in very viscous two-layer fluid). 

• Pancake ice: Pancake ice fall in-between grease ice and ice with dense floe 
concentration. To some extent it is also close to slush ice as described above. 
Observations in pancake ice indicate the waves passing through dense fields of 
pancake ice has certain similarities with waves passing through grease ice [De Carolis 
and Desiderio, 2002; Fox and Haskell, 2001; Wadhams, et al., 2002; Weber, 1987].  

2.1.3 Attenuation of waves in ice 
The energy of the waves will in general decay exponentially from the edge of the MIZ and 
inwards to the solid ice. The main conclusions are [Dixon and Squire, 2001; Fox and Haskell, 
2001; Fox and Squire, 1990; Frankenstein, et al., 2001; LaRouche and Cariou, 1992; Meylan 
and Squire, 1994; Perrie and Hu, 1996; Schulz-Stellenfleth and Lehner, 2002; Squire, 1984; 
1995; 2007; Squire, et al., 1995; Squire and Moore, 1980; Wadhams, 1973; 2000; Wadhams, 
et al., 2002; Wadhams, et al., 2004; Wadhams, et al., 1986; Wadhams, et al., 1988] 

• The scattering and the dissipation of wave energy depends on the energy of the wave. 
• The scattering at the outer ice edge is normally a few percent, even in cases with a 

compact ice edge. 
• The wave energy decays exponentially with an attenuation coefficient that varies 

between 2×10-4 m-1 for long waves to 8×10-4 m-1 for 8-9 s waves, correspond to e-
folding distances of about 5-1.2 km [Wadhams, 2000; Wadhams, et al., 1988]. These 
value values are based on “mean” values and it should be noted that there is great 
uncertainties about the exact values of the attenuation coefficient and how it depend 
on the ice state [Frankenstein, et al., 2001; Squire and Moore, 1980]. 

• The attenuation rate may depend on the temperature (due to the mechanical properties 
of ice near the melting point) and very high attenuation rates (4-1×10-3 m-1 for wave 
periods of 6 to 12 sec) was obtained for near melting temperatures [Squire, 1984].  

• There is a “roll-over” effect for the shortest wave periods (say 6-8 s), where wave 
damping is weak. The exact reason for the roll-over effect remains unclear (it has been 
suggested that these short waves are created by the ice-floe movements, by local wind 
generation, etc.). 

• The scattering process reflects waves in many directions due to the irregularity of the 
floe shapes. The result is that the original uni-directional waves are scattered such the 
wave field becomes omi-directional at some distance into the ice field [Schulz-
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Stellenfleth and Lehner, 2002; Wadhams, et al., 1986]. Short wave are quickly 
scattered and the spectra initially tends towards the longer uni-directional swell; 
however, deeper into the MIZ the scattering process takes over and a more 
homogenous wave spectra is observed. 

• For the simple case when the floe is much larger than the wave length and assuming 
that there are no floe-floe interactions and that the floe edge is perpendicular to the 
incoming wave direction it is reasonable to assume that each floe scatters a certain 
fraction of the incoming wave energy [Kohout and Meylan, 2008a]. 

• Frictional affect are important. Wave energy is continuously pumped into the MIZ; 
albeit scattering process will change the direction of propagation, the total energy is 
conserved. By observation we know that the wave energy diminishes as we travel into 
the MIZ implying that there must be a significant damping of the wave field by 
viscous processes [Wadhams, et al., 1988]. 

• There may be a very strong attenuation of waves in slush ice [Frankenstein, et al., 
2001], while the attenuation is relatively weak for swell in pancake ice [Wadhams, et 
al., 2002; Wadhams, et al., 2004]. 

The attenuation of wave energy depend on the energy itself such that we can write [Wadhams, 
2000; Wadhams, et al., 1988] 

E
x
E α−=
∂
∂  (2.2) 

where α is the attenuation coefficient. This equation has the solution 
xeEE α−= 0  (2.3) 

where E0 is the energy of the waves at x=0 (i.e., the ice edge). The attenuation coefficient 
depends on the scattering process of each ice floe that is encountered; for a specific ice-floe 
class it can be written 

i

ii
i d

rp
=α  (2.4) 

where αi, pi, ri, di, are the scattering coefficient, fractional coverage, energy reflectivity, and 
diameter of the ice class i respectively. Taking the sum of all ice floes classes and their 
scattering efficiency we may write [Wadhams, 2000; Wadhams, et al., 1988] 

∑= iαα  (2.5) 

Another formulation is that the scattering depends on the number of ice floes that are 
encountered such that 

naeEE −= 0  (2.6) 

where n is the number of floes and a is the scatter coefficient for each floe [Kohout and 
Meylan, 2008a]. The basis of this model is the theoretical predictions that the scattering 
depends linearly on the number of ice floes that are encountered. This confirms the hypothesis 
above that the scattering from each ice class can be summarized to obtain an overall scattering 
coefficient (i.e., Eq. 2.5). Let us assume that a class of ice floes will have a scattering of 4 % 
(see Fig. 2.9 where it should be remembered that energy scattering is the square of R shown in 
the figure) after encountering 25 ice floes the energy have decreased by e-1, or about 80%. If 
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we assume that the floes are 100 m wide and the concentration is 50% we find an exponential 
length scale for wave energy decay of 5 km, in fair agreement with observations. 

2.1.4 Ice in wave fields 
For many of the theories describing the wave dynamics under ice condition the ice is either 
considered as solid or as slush, which both are considered to be horizontal homogenous. This 
is of course an oversimplification although it is useful for mathematical purposes. There have 
not been many studies outlining the importance of floe floe interaction for its impact on the 
wave scattering and energy dissipation. However, it is clear the floe floe interactions are 
important and is easily observed in field experiments [Fox and Haskell, 2001; Martin and 
Becker, 1987; 1988; Martin and Drueker, 1991; McKenna and Crocker, 1992; Rottier, 1992; 
Squire, 2007; Wadhams, 2000]. 
Moving ice floes have six degrees of freedom for rigid-body movements: three types of 
movement, surge, heave, and sway; and three types of rotations, pitch, roll and yaw. All these 
movements can be studied using accelerometers. Observations using accelerometers show that 
vertical movements are much stronger than the horizontal accelerations. However, there are 
certain strong spikes in the horizontal acceleration that can be interpreted as collisions of the 
ice floes with surrounding ice floes. On average, each collision event appears to be associated 
with about 0.01 m displacement over a 10 s period, giving a characteristic velocity of about 
0.001 m/s. Each of these collisions will create some ice crushing (although the collisions may 
be damped when the concentration of small ice particles become high). The collision rate is 
about a few per minutes [McKenna and Crocker, 1992; Rottier, 1992] but may vary greatly 
with wave and ice conditions; the collision rate appears to be difficult to relate to observed 
parameters making modeling of the occurrence troublesome. However, using basic physical 
arguments it is reasonable to assume that strong wave fields will create stronger impacts, and 
probably also more frequent collisions. The concentration of ice floes is of course also an 
important parameter. It is likely that a strong wave field will create large concentrations of 
very small ice particles such that the water will take some resemblance on slush ice 
[Frankenstein, et al., 2001]. 

2.1.4 Observations on dispersion/wave length 
The dispersion relation describes the relation between the wave period and the wavelength, if 
these quantities are known the phase speed and the group velocities can be calculated. 
Furthermore, the dispersion relation depends on the type of ice that is present and the ice 
thickness. It is not simple to make observations on the dispersion relation under sea ice; 
nevertheless, there exist certain observations [Fox and Haskell, 2001; Liu and Mollo-
Christensen, 1988; Schulz-Stellenfleth and Lehner, 2002; Wadhams, et al., 2002; Wadhams, et 
al., 2004]. 
Fox and Haskell made observations using accelerometers placed on small, say 5 m diameter, 
ice floes [Fox and Haskell, 2001]. One of their main results were that that the measured wave-
number was consistently larger (i.e., shorter wave-lengths) than those estimated for open 
ocean conditions: The best fit was given by the function 41.2ω∝k . These observations are not 
consistent with the added mass theory (see Appendix B1.2) or the flexural gravity wave 
finding, which predicts that the wave number should be lower in ice covered areas as 
compared to open water conditions. 
Wadhams et al. [2002] made some estimates on the wave dispersion in frazil-pancake ice-
fields using SAR images. One of the results from this study is that the estimated wave-number 
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again were consistently larger (i.e., shorter wave-lengths) under ice conditions than estimates 
for open ocean conditions. This is not consistent with the frequently used mass-load model to 
describe waves in pancake ice (see Appendix B and Eq. B 17 b). Wadhams et al [2002] also 
conclude that the amplitude is smaller under the sea ice than for the open ocean conditions. 
When attempting to invoke the ice thickness from observed changes in wave properties, too 
high ice thicknesses were obtain using the mass loading theory (i.e., estimated thickness of 
2.1 m but observed thickness was 50 cm). A comparison with a viscous slush ice model 
[Weber, 1987] gave somewhat more consistent results albeit a very high viscosity had to be 
used to fit model toward data. It was noted that the unknown nature of the viscosity that has to 
be used within this model implies that it is probably difficult to invoke ice thickness from 
observations on wave variables using this model. One note of interest is that for the one case 
where the waves passed through the ice field into open water, the wave regained its original 
wave amplitude. Thus, the reduction in wave height seems to be coupled to the presence of 
frazil-pancake ice. 
Liu and Mollo-Christensen [1988] did not make direct measurement on the dispersion 
relation, but they did estimate the relation between wave frequency and wave length for a case 
with intensive wave field deep inside the Antarctic pack ice. The conclusion was that the 
observed dispersion follow predictions from a flexural-gravity model based on Bernoulli-
Euler thin plate theory (see Appendix B). Furthermore, the authors presented convincing 
evidence that the group velocity became very slow due to the flexural ice cover (which 
implies that the wave amplitude increases, Appendix A), and this could explain the sudden 
appearance of energetic waves deep inside the pack ice. After the solid ice cover was ruptured 
by the waves, the dispersion relation could be explained by the dispersion relation typical for 
open water theory. 

2.2 Laboratory work 
It is often difficult to make detailed observations during field studies, and it also is difficult to 
control the conditions. Laboratory experiment thus provides a fruitful way to study the system 
under controlled conditions and using dedicated probes that cannot be used in the field. A 
caveat of laboratory work is that many of the natural conditions cannot be simulated; the 
problem with replicating the size of the natural problem is the most severe shortcoming of the 
laboratory experiments. Nevertheless, laboratory studies of mainly slush, or grease, ice has 
been important to advance our understanding of wave and ice interaction. 

2.2.1 Slush ice experiments 
Slush ice can be created by using a wave tank in a cold-room. By continuously creating waves 
and keeping the room temperature at, say, -10oC, a homogenous slush ice layer with small ice 
disc (order mm large) are formed. A typical experimental setup is shown in Fig. (2.5). The 
most obvious observations in these types of experiments are [Martin and Kauffman, 1981; 
Newyear and Martin, 1997]: 

• It is clear that the wave action suppresses the sintering of ice crystals into larges ice 
objects confirming the hypothesis that waves are important for maintaining the slush 
ice. 

• The slush layer is homogenous and has a clear vertical extent; furthermore, the wave 
forces the slush ice towards the opposite end of the wave tank as the result of the 
induced wave drift and the radiation stress exerted by the wave field [Martin and 
Kauffman, 1981]. Here it may be noted that waves carries a certain momentum and 
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when the wave amplitude decreases the wave momentum will also decrease: However, 
momentum is a conserved quantity and the access momentum will affect the 
surroundings as a certain radiation stress [Longuet-Higgins and Stewart, 1960; 1964]. 

• The waves are quickly damped by the slush ice, and the wave amplitude declines 
exponentially with distance from the wave generator. The observed wave amplitude 
and the thickness of the slush layer can be modeled using a two-layer model where the 
upper layer represents the buoyant and viscous slush ice layer whereas the bottom 
layer is ordinary sea water [De Carolis and Desiderio, 2002; Newyear and Martin, 
1997; Weber, 1987] (See also Sec. 2.3 and Appendix C). All studies clearly show that 
frictional affects must be included to explain laboratory experiments using slush ice. 

 
Fig 2.5 A typical laboratory experiment for studying the wave-slush ice interaction [Newyear and Martin, 1997]. 

Note that the wave forces the slush ice away from the wave generator such that a thicker slush ice layer is 
found at the other end of the tank. 

2.2.2 Experiment with solid obstacles 
It is expected that small floating objects to some extent will behave as buoyant water-object 
mixture: the described scenario accordingly show some resemblance to the situation with 
small pancake ice in the sea. Observations show that ice pancakes may float on top of each 
other in wave conditions [Dai, et al., 2004]. Laboratory experiment with small and thin plastic 
plates confirms the hypothesis that the waves may force the pancakes on top of each other 
[Dai, et al., 2004]. Visual observations of the thickness of ice-object mixture and the rate of 
wave damping shows that this type of experiments have similarities with the experiments 
using slush ice described above. 

2.2.3 Experiment with solid ice 
When waves encounter solid ice there will be a certain reflection of the wave energy. 
Furthermore, the wave will propagate as flexural gravity waves under the ice cover. The strain 
induced in the ice will break the ice if the strain is large enough. Some experiments to verify 
the theoretical predictions have been considered, qualitative agreements were found but due to 
some experimental problems a thorough comparison between experiments and theory could 
not be done [Squire, 1984]. 

2.3 Theoretical studies on wave-in-ice 
During this study it has become clear that there exist a very large literature on the theoretical 
aspects of waves in ice conditions. The main focus has been on deriving mathematical 
methods for describing the wave scattering from ice floes. There are also some works on 
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describing the situation with high-viscosity slush-ice on top of ordinary sea water. Here we 
will only describe the models briefly but a more thorough derivation of the equations can be 
found in Appendix B (for the scattering model) and Appendix C (for the two layer slush-ice 
sea-water system. Here a very brief description of the scattering models are give and more 
compete pictures can be found in review articles [Squire, 2007; Squire, et al., 1995]. 

2.3.1 Studies of scattering processes from sea ice 
Here we give a brief description of the commonly used wave ice-floe scattering model. A 
more detailed derivation can be found in Appendix B. Let us consider a situation where open 
water waves enter from left (i.e., from x=-∞) and that they encounter an ice floe extending 
from x=0 to x=L having thickness h. The wave will propagate under the ice cover: However, 
as the wave speed is different under the ice cover there will be a certain reflection of the wave 
energy due to the ice cover, and only a certain part of the wave energy will propagate through 
the ice cover over to the open water at the other side of the ice floe. An important assumption 
in this theory is that there are no floe floe interactions. A schematic picture of the situation is 
outlined in Fig. (2.6).  

 
Figure 2.6 Schematic picture of the physical situation when a wave encounters an ice floe. 

2.3.1.1 Outline of the most frequently used mathematical model 
Here we will assume that the wave field can be described through a velocity potential φ(x,z,t) 
such that ywxu ∂∂=∂∂= φφ   , : The equation for the interior of the fluid is given by 

02 =∇ φ . (2.7) 
Surface boundary conditions are (assuming p=0 at the surface) 
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Here the first term in (2.8b) reflects the flexural strength of ice, while the second term 
describes the added mass due to the ice cover. Constants are 

)1(12 2

3
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= , which is the flexural rigidity of ice, where E=6·109 N m-2 is the 

Young’s modulus of elasticity for ice, and s=0.3 is the Poisson’s ratio for ice. 

ρi is the density of the ice, and the second term represents the added mass due to ice. 
Matching conditions at the edge of the ice floe are (the bending moment and the shear must 
vanish and there must be a continuity in the velocity potential) 
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Bottom boundary condition reads 

0=
∂
∂

−= Hzz
φ . (2.11) 

Equations (2.8)-(2.1) represent the “standard” set of equations used to describe the scattering 
of waves that encounter an ice floe. A schematic view of the equations and the boundary and 
matching conditions are outlined in Fig. (2.7).  
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Figure 2.7 A schematic view of the equation and boundary and matching conditions that has to be applied for 
deriving the wave field when waves encounter an ice floe. The figure also shows the schematic solution 
where an incoming wave is scattered by the ice floe. 

The methods used to solve the above set of equations are rather complex. The first solutions 
were sketched in 1968 using the Weiner-Hopf method [Evans and Davies, 1968] but this 
solution could not be used in a practical way; the first applicable approximate solutions were 
derived in early seventies [Wadhams, 1973], although this solution have been criticized for 
being too simple [Meylan and Squire, 1994; Squire, et al., 1995]. Exact solutions (albeit 
numerical to some degree) were derived in the early 1990’ties [Fox and Squire, 1990; 1991b; 
1994; Meylan and Squire, 1993; Meylan and Squire, 1994]. A wide range of mathematical 
methods have been deployed involving methods from complex variable theory such as the 
Wiener–Hopf method, Fourier analysis using variational (numerical) methods of estimating 
matching constants [Fox and Squire, 1990; 1991a], residue calculus, Green’s functions and 
integral equations [Meylan and Squire, 1993; Meylan, 2002; Meylan and Squire, 1994], 
Rayligth-Ritz method in combination with variational calculus [Bennetts, et al., 2007], 
eigenfunction expansions [Kohout and Meylan, 2008a; Kohout, et al., 2007], and by 
numerical methods [Lavrenov and Novakov, 2000]. None of these models are, however, easily 
accessible and have not been used in combination with numerical wave modeling. 
During the last few decades here has been a very intensive development on the mathematical 
treatment of the problem outlined above [Squire, 2007]. The latest developments are mainly 
focusing on  

• Mathematical models of multiple ice floes [Kohout and Meylan, 2008a; Kohout and 
Meylan, 2008b; Kohout, et al., 2007]. 

• Description of in-homogeneities in the ice floe thickness [Bennetts, et al., 2007; 
Squire, 2007; Squire and Dixon, 2001; Squire and Williams, 2008; Williams and 
Squire, 2006; 2008]. 

Again it should be emphasized that many of these studies use advance mathematical methods 
that are not easy to access for non-mathematicians. 
Albeit there have been an intense research on the mathematical modeling of wave ice-floe 
interaction, there have not been the same intensity in experimental and observational research. 
Thus, today it is stated that the absence of observational and experimental data is the main 
obstacle for advancing the research on wave ice-floe interaction [Kohout and Meylan, 2008a; 
Squire, 2007]. 

2.3.1.2 Sketching one possible solution 
The solution to the mathematical problem outlined (2.7-2.11) is not straightforward: However 
using Green functions the solution may be written as [Meylan and Squire, 1994] 
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 (2.12) 

The transmission and reflection coefficients are complex integral functions that can be written 



 

 23

( ) ( ) ( )

( ) ( ) ( ) ,0,,0,1

,0,,0,

0 0

0 0

ξςςφςξβξφ

ξςςφςξβξφ

ξ

ξ

ddgeikT

ddgeikR

L L
ik

L L
ik

∫ ∫

∫ ∫

⎥
⎦

⎤
⎢
⎣

⎡
++=

⎥
⎦

⎤
⎢
⎣

⎡
+= −

 (2.13a, b) 

where 

( ) ( ) ( )[ ] ( ) ( ) ( ) ξςςφςξβξφξξφ ddgxkixGkex
L L

ikx ∫ ∫ ⎥
⎦

⎤
⎢
⎣

⎡
+−++=

0 0

0,,0,cos0,;0,0, . (2.14) 

Here, g is the Green function representative of the boundary condition (2.9 b) 
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where δ is a non-dimensional parameter [Meylan and Squire, 1994]. The boundary conditions 
are 
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This solution is non-trivial such that we have only sketched the solution in this study. 
It may be noted that the solution outlined above is complex: furthermore, when considering 
multiple ice floes or in-homogeneities in the ice cover the complexity of the mathematics 
increases significantly [Dixon and Squire, 2000; 2001; Kohout and Meylan, 2008a; Kohout 
and Meylan, 2008b; Kohout, et al., 2007; Meylan and Masson, 2006; Squire, 2007; Squire 
and Williams, 2008; Williams and Squire, 2006; 2008]. 

2.3.1.3 Energy transmission 
Before taking a look on the solutions we recall that the main parameter we need to study is the 
transmission of energy, which is 

2Tt = ; (2.17) 

furthermore we expect that (since energy is conserved in a scattering model) 

122 ≡+ TR . (2.18) 

As mention above, the solutions are not trivial and we have not derived any solutions our self 
in this study. Instead we have copied results from earlier studies to outline the structure of the 
transmission of energy. The transmission coefficient T as a function of the ice-floe length for 
different ice thicknesses is shown in Fig. (2.8), while the transmission is outlined as a function 
of wave frequency in Fig. (2.9). The figures shows some typical characteristics that is 
common among most theoretical models for scattering of waves by ice floes. 

• There are a number of ice floes sizes that give zero reflection, or in other words a 
perfect transmission. This is probably a result of the simplified geometry of the 
outlined model [Vaughan, et al., 2007] and in a more natural situation it is not likely 
that perfect transmission is important for the wave propagation in an ice field. 

• The transmission increases as the ice gets thinner. 
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• Short waves (high frequency) tends the have higher reflectance than long waves (low 
frequency). 

 
Figure 2.8 The reflection coefficient for different size of the ice floe [Meylan and Squire, 1994]. Physical 

parameters are h=0.5 m (solid curve), h=1 m (dashed curve), h=5 m (dash-dotted curve), and the wave length 
is 100m.  

 
Figure 2.9 The reflection coefficient for different wave periods [Meylan and Squire, 1994]. Physical parameters 

are h=1 m and the size of the ice flow is 100m. 

2.3.1.4 Ice strain 
The strain that the waves impose on the ice is the main reason for the rapture of ice into 
smaller pieces. It is thus an important parameter for understanding how waves influence the 
ice [Squire, et al., 1995]. The surface strain on the ice sheet, ε, can be estimated by the 
expression 
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hfx
∂
∂

=
ηε  (2.19) 

The maximum strength as a function of the wave frequency is shown in Fig. (2.10-2.13). We 
see that short waves induces a strong strain in the ice, which is thus likely to break. We 
conclude that ice floes hit by short energetic waves will probably rapture very quickly; this 
explains the small ice floes observed in the edge zone of the MIZ. However, the short waves 
are attenuated quickly; since the longer remaining waves produces a significantly weaker 
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strain the ice will not rapture after the shortest waves has dissipated. This explains the 
relatively constant conditions of the transition zone in the MIZ. 
 

Wave period Critical amplitude 
5-10 s 0.09 m 
15 s 0.28 m 
>25 s 1 m 

Table 1 The critical wave amplitude that will lead to a fracturing of the ice due to strain for an ice thickness of 1 
m.  

Some numbers on the critical amplitude that will cause a fracture in ice with a thickness of 1 
m is provided in table 1. Wee see that the critical amplitude increases rapidly with wave 
period. The strain induced by the waves represents a complicated interaction between the 
incoming wave and evanescent scattering wave component. One result of this interaction 
among wave component is that the maximum strain rate lies some distance into the ice, Figure 
2.10 [Langhorne, et al., 1998; Squire, 1983; Squire, et al., 1995]. The maximum strain as 
function of wave period is illustrated in Fig. (2.11), while the maximum strain and the 
position of the maximum strength is visualized in Fig. (2.12). The ice will probably break 
where the strain has the maximum and the ice floes that result from wave action is initially 
very homogenous (see Fig. 2.13). The process where wave break ice is very rapid as can be 
revealed from field campaigns for studying breakup of ice, where these campaign had to be 
abandoned under “controlled panic” before the measurements could be started [Squire, 1983; 
1984]. 

 
Figure 2.10 The maximal strain in the ice coefficient as a function of distance for the ice edge. The water depth 

is 100 m and the figure shows model prediction for a 1 m thick ice for different wave periods [Fox and 
Squire, 1991b]. Note that the maximum strain appears at some distance into the ice. 
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Figure 2.11 The maximal strain in the ice coefficient for different wave periods [Meylan and Squire, 1994]. 

Physical parameters are h=1 m and the size of the ice flow is 100m. 

 
Figure 2.12 Plot of maximum strain vs. penetration at ice thicknesses of 0.5 m, 1 m, 2 m, and 5 m. The greatest 

strain attained for 0.5 m ice is at a penetration of 27.7 m by a 5.5 s period wave, 47.9 m for 7.25 s in 1 m of 
ice, 81.5 m or 9.5 s in 2 m of ice, and 170.9 m for 14.5 s in 5 m of ice [Squire, 1983; Squire, et al., 1995] 

 
Figure 2.13 Ice floes after the ice has been broken up by an incoming wave field. Note the very regular ice floes 

that are broken up by the waves, this can be explained by the distance of the maximum strain induced by the 
waves, see fig 2.11. From www.wikiwaves (Picture taken by V.A. Squire [Squire, 1984]. 

http://www.wikiwaves/
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2.3.2 Scattering model in transport form 
To describe the wave energy is it convenient to introduce the intensity function I describing 
the rate of flow of energy traveling in any given direction, and to describe how this function 
depends on the material that the waves travel through [Dixon and Squire, 2000; 2001; Masson 
and LeBlond, 1989; Meylan and Masson, 2006; Meylan, et al., 1997; Perrie and Hu, 1996]. 
This formalism is based on a wide literature on waves in scattering media. If scatter and 
dissipation are included the general equation for energy propagation through a scattering 
medium is 
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where r=(x,y), θ is the angular direction, β(r,θ) is the dissipation of energy and S(r,θ,θ’) is the 
scattering kernel reflecting the physical situation. The major problem is to find the appropriate 
scattering kernel, and this is a challenge for the case with wave ice interaction. Masson and 
LeBlond [1989] outlined a scattering kernel based on theories describing the movement of 
solid circular ice objects in a wave field. However, an extension of the problem to flexural ice 
objects has recently been provided [Meylan and Masson, 2006]. For the wave-ice system the 
equations can be written 

( ) ( ) )'(''')'('ˆ1 2

0

2
2

0

2 θσθθθθθθθθ
ππ

I
A
fidD

A
fidID

A
fiII

tc f
a

ffg
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−−=∇⋅+

∂
∂

∫∫   

 (2.21) 
where fi is the fraction of the area covered by ice, Af is the average area of the floe, τa is the 
absorption cross section area. ( ')θθ −D  is the scattering amplitude, and determining 
( ')θθ −D  is the main challenge in this framework [Masson and LeBlond, 1989; Meylan and 

Masson, 2006; Meylan and Squire, 1996; Perrie and Hu, 1996]. Further description on the 
scattering kernel and the application of this model is given in Sec. 3.2. Another relevant study 
is outlined by Dixon and Squire [2000, 2001] who used the Bethe-Salpeter equation to 
describe the transport of energy in an elastic plate with random material properties. The 
scattering model will be described in some more detail in Section 3.2. 

2.3.3 Waves in viscous fluid 
In the previous sections, the ice floes are considered to be solid. However, a different path 
may be taken where it is assumed that all ice particles are embedded into the ice such that the 
ice is considered to be a highly buoyant and viscous fluid that floats on top on ordinary water. 
The physical background is that the presence of strong wave motions implies that small ice 
particles (order mm) cannot attach to each other such that larger pieces of ice cannot be 
formed [Martin and Kauffman, 1981]. Under freezing conditions with intense wave action 
very viscous and buoyant ice slush is created. Another physical situation of great interest is 
the pancake ice field characterized by many small (order 0.1-1m but with cakes up to 10 m 
size) ice floes surrounded by slush ice. Furthermore, parts of the MIZ may under certain 



 

 28

circumstances be characterized by very small ice floes and with a high density of ice pieces 
that can be described as “slush ice” [Frankenstein, et al., 2001]3. 
To describe this situation, a model based on a two layer system can be outlined to describe the 
most pertain parts of the slush ice system [De Carolis and Desiderio, 2002; Weber, 1987]: the 
model is further described in Appendix C. The upper layer consists of viscous and buoyant 
slush ice while the lower layer consists of water. A schematic picture of the physical scenario 
that we consider is presented in Fig. (2.14). This type of system was initially described by 
Weber [1987] using a Lagrangian approach; however, as this mathematical framework is not 
common to most geophysical fluid scientists we outline a similar model based on the more 
standard Eulerian framework in Appendix C. 

 
Figure 2.14 Schematic picture of the model for slush ice. 

2.3.3.1 Outlining the viscous two-layer model 
The basis of the model is the linear Navier-Stokes equations where friction is accounted for; 
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The velocities are described in terms of the velocity potential, φ, and the stream function, ψ,  
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3 Notably, slush ice is used for a water-ice mixture of very small ice crystals; water-ice mixture with larger 

ice pieces of order cm to m appears not to have any specific name to the authors knowledge 
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The governing equations can thus be written [Lamb, 1932] 
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where ϕ is the potential arising from the gravity. The solutions can be written as [De Carolis 
and Desiderio, 2002; Lamb, 1932] 
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where the dispersion relation reads (applying 2.22c) 

υ
ωα ik −= 22 . (2.26) 

The solutions in 2.25 should be applied at both layers and there is thus eight constant that 
have to be determined using eight boundary conditions (see appendix C). The constants has 
not yet been determined analytically and some type of numerical solutions needs to be used 
[De Carolis and Desiderio, 2002]: however, it should be noted that an approximate analytical 
expression has been found using a Lagrangian approach to the problem [Weber, 1987]. 
The two layer slush ice model has been used to explain the wave attenuation in both 
laboratory experiment [Newyear and Martin, 1997], see Fig. (2.15), and wave attenuation in 
pancake ice (Fig. 2.16) [Wadhams, et al., 1988]. Furthermore, there are evidence that the 
viscous model describe wave dynamics (i.e., it can explain observations on the dispersion 
relation) in pancake ice or in ice conditions with scattered ice conditions [Wadhams, et al., 
2002]. It should be noted that the model can give accurate description of wave attenuation 
rates and on predicting the dispersion relation for not-so-solid ice; however, very different 
values of the viscosity of the ice slush layer has to applied for each application reducing the 
usefulness of the model for practical and prognostic applications. Dimensional analysis have 
been used to derive a model for estimating the viscosity of the slush layer [Liu, et al., 1991] 
but no thorough framework has been presented to the authors knowledge. 
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Figure 2.15 Comparison between model results and laboratory experiment carried out with waves in slush ice 

[Newyear and Martin, 1997]. Left figure shows the dispersion relation and the right figure displays the 
attenuation coefficient. The viscosity of the upper layer was used to fit data and left figure uses νi=2.94 10-2 
m2 s-1 while the right panel uses νi=3.68 10-2 m2 s-1, in lower layer νi=1.8 10-6 m2 s-1 were used [De Carolis 
and Desiderio, 2002]. 

 
Figure 2.16 Comparison of data from Greenland 4 September 1979 [Wadhams, et al., 1988] and curves with the 

Weber model (dash dot line) and the viscous two-layer model presented here. The viscosity was used to fit 
model with data and νi=1.95 10-3 m2 s-1 was used for the present model while Weber used νi=1.95 10-3 m2 s-1 
[De Carolis and Desiderio, 2002]. 
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2.4 Miscellaneous on waves in ice 

2.4.1 Estimating ice thickness from wave observation 
The ice thickness in itself is a parameter that is difficult to measure; ice thickness cannot be 
observed directly by remote sensing and the high irregularity in ice thickness makes it 
laborious to measure by taking discrete samples e.g., using ship or helicopter [Wadhams, et 
al., 1987]. A relatively clear picture of the ice thickness can be obtained using submarines 
[Wadhams, 1981; 2000] or underwater vehicles such as Automatic Underwater Vehicle 
(AUV) [Hayes, et al., 2007; Wadhams, et al., 2006] or Remotely Operated underwater 
Vehicle (ROV). However, these methods require expensive equipment and are costly in the 
long run. 
It is unfortunate that sea ice thickness is very difficult to measure as it is one of the major 
parameters for planning shipping or other offshore activities in ice covered areas. However, if 
accurate measurements of wave characteristics in ice, such as wave length and wave period, 
could be performed with remote sensing, for instance by satellites or aircraft, and the ice-
wave interaction would be known to sufficient degree, this types of measurements could be 
used to find the ice thickness over large areas [Nagurny, et al., 1994]. The idea is to observe 
certain wave properties in the ice using some kind of remote sensing, if the relation between 
the wave properties and the ice thickness is known these observations on the wave properties 
can be used to estimate the ice thickness. Schematically we can write the dispersion relation 
for waves in ice as 

0),( =hkω  

where ω is its angular frequency, k is the wave number, and h is the ice thickness. If we can 
make observations on ω and k (e.g., by satellite observation), it will become possible to 
calculate h if the above relation is well known. The thickness of a pancake ice field was has 
been estimated with some success [Wadhams, et al., 2002; Wadhams, et al., 2004]; however, 
there are still some questions on the reliability of these estimates. The major uncertainty is 
most likely the fundamental uncertainty how wave propagate through different ice fields such 
as, slush ice, pancake ice, broken ice, and solid ice. 

2.4.2 High amplitude waves in solid ice: RV Polarstern in Weddell Sea 1986 
The present description is based on Liu and Mollo-Christensen [1988]. In 1986 the research 
vessel RV Polarstern were steaming through sea ice with thickness of roughly 0.8 m and they 
were about 560 km from the ice and open-water border. Suddenly waves with period 18 s 
(and estimated length of 250 m) and a wave amplitude of about 1 m appeared. At the same 
time as these waves appeared, the ice and the sea became more vibrant with significant rafting 
taking place during a short period of time, and there were numerous new ice ridges with 
thicknesses up to 2 m. Furthermore, within a few hours the original continuous ice cover were 
broken up in small floes, with the majority of the floes being smaller than 50 m. With three 
machines running, RV Polarstern had some difficulties of maneuvering through the new ice 
conditions. The rapid appearance of a wave field and the associated new ice field were not 
foreseen and represented a surprising and uncomfortable situation. 
A note of some interest here is that the estimated wave lengths were significantly smaller as 
compared to waves of similar frequencies in open water. Apparently, the presence of stiff sea 
ice altered the wave length significantly. Another interesting observation is that after the wave 
broke the ice into small floes such the stiffness of the ice were broken, the wave length 
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increased toward the open ocean value. Thus, it may be concluded that even though RV 
Polarstern was way inside the pack ice, which is an area characterized by calm wave and ice 
conditions, the ice cover itself amplified the small amplitude waves that reached the position 
of RV Polarstern. It may be concluded that the ice thickness were of correct magnitude to 
slow down the propagation of wave energy such that high wave amplitudes are created locally 
from low amplitude waves moving into the area [Liu and Mollo-Christensen, 1988]4. 
Furthermore, it can be shown that that the non-linear wave-wave interaction described by the 
non-linear Schrödinger equation can become very rapid under an ice cover such that the wave 
amplitude of wave packages can increase very rapidly [Liu and Mollo-Christensen, 1988].  
The sudden appearance of the high energetic waves deep inside a pack ice has not been 
observed scientifically before or after this incident (to the authors knowledge). The rareness 
of these events implies that they are difficult to study, and it is difficult to make a solid 
statement of what caused the high amplitude waves and the violent ice cracking that was 
observed. Furthermore, it may be concluded that the described phenomena is rare; however, 
the rareness of such phenomena cannot be estimated representing one uncertainty in operating 
in ice covered areas in vicinity (say 500 km) of open water. 
 

 
4 Here it should be noted that the transport of wave energy depends on the wave energy itself, i.e., the square 

of the wave amplitude, and the group velocity of the wave. When the group velocity becomes small the wave 

amplitude must increase to keep the wave energy transport constant, see Appendix A. 
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3 Present status of modeling waves in sea ice 

3.1 Review of model systems 

3.1.1 Wave models 
It is common scientific knowledge that waves are generated by the wind, and that they 
dissipate by friction or wave breaking [Cavalieri, 2007; Komen, et al., 1994; Phillips, 1977]. 
Furthermore, different wave lengths are affected differently by wind forcing and dissipation 
such that there is a spectrum of wave lengths (or wave frequencies) that evolves due to wind 
action and dissipation. It is also well known that waves with different wave length interact 
and there is a continuous exchange of energy between waves of different wavelengths. Thus 
some waves grow while other decline, and in such manner that the total energy of the wave 
spectrum is conserved. There are different types of non-linear wave-wave interactions but the 
most important interaction involves four different wavelengths5. The net outcome of the 
interaction is that long waves gain energy while shorter waves loose energy. Furthermore, the 
non-linear wave-wave interaction implies that the wave spectrum tends to a well-defined 
shape under homogenous conditions [Komen, et al., 1994; Komen, et al., 1984; Lavrenov, 
2003; Phillips, 1977]. 
The frequent characterization of wave models into first, second, and third generation wave 
models are based on how the models treat the non-linear wave-wave interactions. 

• First generation models do not describe the non-linear wave-wave interactions. 
• Second generation models use a highly parameterized estimate of the non-linear wave-

wave interactions. 
• Third generation models calculates the non-linear wave-wave interactions according to 

first principles, although some simplifications are made to speed up the numerical 
calculations. The most well-known third generation wave models are WAM 
[Hasselmann, et al., 1988; Komen, et al., 1994], SWAN [Booij, et al., 1999] 
WaveWatch [Tolman, 1991; 2002], TOMAWAK [Benoit, et al., 1996], and CREST 
[Ardhuin, et al., 2001]. At met.no WAM and SWAN are used. 

The main quantity we want to know from a wave model is the energy, E, as a function of 
wave frequency, f, and the wave direction, ϕ, i.e., we want to know E(f,ϕ). However, for 
modeling purposes it turns out that wave action density A=E/f is a more appropriate quantity 
to model as its evolution can be described in a simple way. (The energy E is not conserved if 
the frequency varies due to e.g., changes in the current velocity; however E and f varies in 
such way the E/f is conserved). 

3.1.2 Prognostic equation for action density (i.e., wave spectra) 
The prognostic equation for the wave action density for open water is 

( ) dissnlinhg SSSAcU
t
A

++=∇⋅++
∂
∂

 (3.1) 

                                                 
5 Note that this type of wave-wave interaction does not describe the rapid development of so called freak 

waves; freak waves are generally modeled through the non-linear Schrödinger equation 
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where 

• U, cg are ocean current speed and the group velocity, respectively. 

• Sin is the input of energy, essentially from wind. 

• Snl represents the non-linear wave-wave interactions. 

• Sdiss is the dissipation of wave energy by wave breaking, and frictional and 
turbulent forces. 

The non-linear wave-wave interaction is considered to be well-known today albeit there is an 
intense research on finding more efficient numerical methods to evaluate the expensive 
calculations. The wave input and the dissipation are both based on ad hoc parameterizations: 
the input of waves is considered as relatively well known while there are more uncertainties 
regarding the wave dissipation (e.g., wave breaking is an important parameter that is difficult 
to study and parameterize). In any way, wave input and wave dissipation are areas of active 
research. However, wave models have been thoroughly validated and there is no reason to 
question the order of magnitude of the parameterizations [Cavalieri, 2007]. 

3.2 Wave modeling in ice covered areas 
In ice conditions the formulation becomes more uncertain but it seems reasonable to consider 
the following prognostic equation for wave action density [Masson and LeBlond, 1989; 
Perrie and Hu, 1996] 

( ) ( )[ ] ( ) iceii
i
nlidissnlinhiigiig SAASASSSAAcUAcU

t
A

++−++=∇⋅++−++
∂
∂

− )1()1(

 (3.2) 
where (in addition to the above equation) 

• Ai is the fraction of the area covered by ice 
• i

nlS  is the non-linear wave-wave interaction under ice cover [Polnikov and Lavrenov, 
2007]. It may be noted that using a “standard” wave-wave interaction model will not 
give severely wrong results; nevertheless, there are certain affects of the ice cover. 

• Sice is the scattering and dissipation from ice floes, ice ridges etc and includes 
dissipation under ice conditions. 

There have not been many attempts to run wave models using the above configuration. 
However, one study exists [Perrie and Hu, 1996] and some description of this model has been 
reproduced here: We do not intend to give a full description of the model, rather we want to 
give an impression of the complexity of the model. The model is based on an extension of the 
energy scattering model described by Masson and LeBlond [1989]; however it should be 
recognized that this model is based on the movement of solid objects such that features 
depending on the flexural properties of the ice are not described. 
It have been suggested [Masson and LeBlond, 1989; Perrie and Hu, 1996] that the ice term 
can be written in terms of a transformation tensor ij

ftT  such that 

ij
flice TfES ),( ϕ= , (3.3) 

where 
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( )[ ]2222 )()()0(1)()( παϕπδαϕδϕϕβ DDDAT cijcijij
ij
fl −+++Δ= . (3.4) 

Here δ is the Dirac delta function and Δϕ is the angular increment in ϕi and jiij ϕϕϕ −= . 

The parameter αc is the coherent scattering coefficient and depends on the distance between 
ice floe centers Dav and floe radius a and is described by 
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The coefficient β is a cumulative expression for the effective density of wave scatters, ρe(r), 
and is defined as 
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If the scattering process is limited to some time period Δt it follows 
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where Rmax is the maximum distance travelled by waves during time period Δt. The effective 
density of ice floe scatters, ρe(r), radiating waves to position r, is  
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where fi represents ice cover concentration. The coefficient A is defined as 
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for a rigid ice floe array [Masson and LeBlond, 1989]. 
The cross section scattering coefficient )( ijD ϕ  is given in terms of heave, )(1 ijD ϕ , surge, 

)(2 ijD ϕ , pitch, )(3 ijD ϕ , and diffraction, )(4 ijD ϕ , such that 

)()()()()( 4321 ijijijijij DDDDD ϕϕϕϕϕ +++= . (3.11) 

The components are formulated such that 
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where H/2 is the wave amplitude, h is the water depth, Jl is the Bessel function of the first 
kind of order l. Specifications of the body motion amplitudes ξb, source strength function fbl, 
and the geometrical elements Rj, Zj, Lj, sj, and C0 can be found in Perrie and Hu [1996]. The 
scattering model will give predictions on the attenuation coefficient at all grid points at every 
time step. An example of the attenuation spectrum is given in Fig. (3.1). In addition to the 
wave model, the movements of the ice floes have to be considered [Perrie and Hu, 1997], this 
is not described here but may be a crucial component of a comprehensive wave-ice model. It 
should be noted that there are also other models based on relatively similar principles but 
these have not been included into a geophysical wave model [Dixon and Squire, 2000; 2001; 
Meylan and Masson, 2006; Meylan, et al., 1997].  

 
Figure 3.1 The wave attenuation λ as a function of frequency f and ice cover concentration fi for the model by 

Perrie and Hu (1996). The energy impinging in MIZ is given by E(f) assuming a 20-m floe diameter and a 
1.5 m floe thickness [Perrie and Hu, 1996]. 

3.3 Operational systems 
Today met.no runs several operational models that would be useful for modeling of waves in 
ice. There are a number of models that can be used and the exact choice of models may 
depend upon the areas where the wave-in-ice model should be applied. All forecast models at 
met.no runs on several resolution and different areas: here we take the Barents Sea area as an 
example; for other areas a different choices may be made. Each description outlines the main 
features of the model, the model domain, and a forecast from the model made on Mars 29, 
2008. 

3.3.1 Meteorological models 
The meteorological forcing is important for forcing the ocean currents, the wave model and 
the ice-floe ice-margin movements. The main meteorological model at met.no is the High 
Resolution Lower Atmosphere Model (HIRLAM). Besides the output from the HIRLAM 
model, met.no daily receives global forecast from the European Centre for Medium Range 
Weather Forecast (ECMWF). 
Specifications on HIRLAM10. 

Parameters: Wind, temperature, pressure, humidity, cloud liquid water, precipitation, long 
and short wave radiation. Other parameters on request. 
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Area coverage: Scandinavia, Norwegian Sea, Barents Sea and part of the North East 
Atlantic. 

Spatial resolution: Approximately 10 km. 
Vertical resolution: The model has 40 levels in the vertical. Surface data and data on 

specified pressure or height levels available on request. 
Availability: 4 runs a day available in suites 00, 06, 12, 18 UTC. Available approximately 

at 02:40, 10:40, 14:40 and 22:40 UTC. 
Time steps: 1-hourly from T+0 to T+60. 

 

 
Figure 3.2 Model domain for HIRLAM10 (within blue frame) 
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Figure 3.3 Results from the HIRLAM 10 model for Mars 29, 2008. Left panel is the forecast for 16.00 on Mars 

29 and the right panel is the forecast for Mars 31 at 16.00. The figure shows the wind vector, the temperature 
at 2 m (color) and mean sea level pressure. 

3.3.2 Oceanographic models (including ice models) 
The oceanographic model is important for determining the movements of the ice, which is 
considered to be a part of the ocean model. Today met.no uses the MI-POM model (which is a 
development of the Princeton Ocean Model (POM)) as the prognostic ocean model but it has 
been decided to change to the Regional Ocean Model (ROMS) model within the next few 
years. The sea ice model has only been implemented in the Arctic Ocean model at the present 
stage; thus, if a dynamic ice model is required this will have some implications on the choice 
of model or the inclusion of the ice model into other operational setups. 
Specifications on Arctic-20km: 

Parameters: Sea surface elevation, Currents, Salinity, (Potential) Temperature, Ice 
concentration, Ice thickness, Ice velocities. Other parameters possible on 
request. 

Area coverage: Arctic Ocean, Norwegian Sea, Barents Sea, North Sea. Approximate 
coverage in degrees: Circumpolar north of 50N in the Atlantic. 

Spatial resolution: Approximately 20 km. 
Vertical resolution: Depths: 0, 3, 10, 25, 50, 75, 100, 500, 1000 m. 
Availability: 1 run a day available in 00 UTC. Results available approximately at 03:00 

UTC. 
Time steps: 6-hourly from T-30 to T+168. 
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Figur 3.4 Model domain for Arctic-20km (green) 

   
Figure 3.5 Results from the ARCTIC 20 model for Mars 29, 2008. Left panel is the forecast for 18.00 on Mars 

29 and the right panel is the forecast for Mars 31 at 18.00. The figure shows the current vector and the ice 
thickness (contour). 

Specifications on Nordic-4km: 
Parameters: Sea surface elevation, Currents, Salinity, (Potential) Temperature. Other 

parameters possible on request. 
Area coverage: Norwegian Sea, Barents Sea, North Sea. Approximate coverage in degrees 

N, S, W, E: 85, 50, -25, 60. 
Spatial resolution: Approximately 4 km. 
Vertical resolution: Depths: 0m. Other depths available on request for horizontal 

subsection of the total domain. 
Availability: 2 runs a day available in 00 and 12 UTC. Results available approximately at 

03:00 and 15:00 UTC. 
Time steps: 1-hourly from T-18 to T+60. 2-hourly for other depths than 0m. 
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Figur 3.6 Model domain for Nordic-4km (green) 

   
Figure 3.7 Results from the Nordic 4 model for Mars 29, 2008. Left panel is the forecast for 16.00 on Mars 29 

and the right panel is the forecast for Mars 31 at 12.00. The figure shows the current vector and sea surface 
temperature (color)). 

3.3.3 Wave models 
The wave model is of course at the heart of a forecast model for waves-in-ice. The main 
forecast model at met.no is the Wave Analysis Model (WAM), but some regional high 
resolution wave forecasts are made with the Simulating WAves Nearshore (SWAN) model.  
Specifications on WAM.10km (nested in WAM.50km) 

Parameters: Significant wave height, mean period, peak period, peak direction. Wind sea: 
significant wave height, peak period, peak direction. Swell: significant 
wave height, peak period, peak direction. 

Area coverage: North Sea, Norwegian Sea, Barents Sea. Approximate coverage in degrees 
N, S, W, E: 84, 54, -25, 65. 

Spatial resolution: Approximately 10 km. 
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Vertical resolution: Only sea surface fields. 
Availability: 2 runs a day available in 00 and 12 UTC. Results available approximately at 

03:00 and 15:00 UTC. 
Time steps: 1-hourly from T-11 to T+60. 

 
Figure 3.8 Model domains for WAM.50km (green) and WAM.10km (blue) 

   
Figure 3.9 Results from the WAM 10 model for Mars 29, 2008. Left panel is the forecast for 16.00 on Mars 29 

and the right panel is the forecast for Mars 31 at 12.00. The figure shows the Stokes drift current vector (a 
measure the transport of wave momentum transport) and significant wave height (contour). Observations on 
ice field are used to mask the wave model. 
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4 Future possibilities for modeling and forecasting of wave 
propagation into sea ice 
The complexity of the basic physical problem, and the mathematical complexity of the state-
of-the-art models describing wave and ice interaction, will also be reflected in any model 
describing the coupled wave-ice system. Also the ice coupling to atmospheric forcing and 
ocean currents needs to be described. Such coupled models are certainly well beyond the 
present state-of-the-art in modeling. Having said this, it should equally well be acknowledged 
that simpler model systems can be utilized that give added value compared to the present day 
knowledge. 

4.1 Overview of processes to be included 
To make accurate predictions of the wave field in an ice covered sea several aspects must to 
be resolved. The most important aspects we need to consider are: the structure of the ice 
cover, the wave-ice interaction, and the size of the zone we are interested in. All these aspects 
must be considered to provide accurate description of the wave ice interactions. 

4.1.1 The structure of the ice cover 
The structure of the ice cover is essential for the attenuation of wave energy in ice fields. Here 
it may be noted that much of the uncertainties about interpreting field experiments lies in the 
absence of data on the ice conditions. Given that the waves and ice is such a coupled system it 
may be difficult to separate the wave and the ice fields in a model system for predicting 
waves-in-ice. The following must be known for accurate prediction of wave ice interaction. 

• Ice thickness. 
• Floe concentration and its size distribution. 
• Ice type needs to be described (e.g., what is the concentration of small ice particles, to 

what extent is the ice characterized as slush ice etc). 
These quantities are not readily observed to the degree required in a forecasting model. 
Furthermore, the ice field changes very rapidly in both space and time such that it may be 
difficult to base a wave forecasting system on observations of ice properties. 
It is likely that a forecasting system for waves-in-ice must be complemented with a detailed 
ice forecasting system describing the ice floe distribution and the degree of slush ice. Notably, 
this is not considered in any of the existing ice models of today. For instance, waves will have 
a strong influence on the floe distribution through the efficiency of the waves to break ice 
floes into pieces. Thus we conclude that the prediction on ice characteristics is probably the 
weakest link in any attempt to build a forecasting system for waves-in-ice. 

4.1.2 Wave ice interaction 
The wave ice interaction will lie at the heart of any model for predicting wave energetic in ice 
covered seas. When waves enter an ice field there is always some scattering and dissipation of 
wave energy. Observations show that the wave energy declines essentially exponentially from 
the first appearance of ice floes and further into the ice. How deep the waves will penetrate 
depends on the ice characteristics but it is reasonable to assume that waves penetrate at least 
2-5 km in areas with high concentration of large ice floes, to distances of hundreds of km in 
pancake ice or solid ice. 
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The attenuation of waves is the results of a complex interplay between waves and ice, 
involving both scattering and dissipative forces. The wave-ice system is by nature a very 
complex system involving interaction between strong fluid motion and floating (and flexible) 
objects (i.e., ice floes). These ice floes will in its turn affect the waves creating a highly 
coupled dynamical system. The characteristics of the ice cover are highly variable and 
changes quickly with location and time, the wave-ice interaction accordingly depends on the 
local features of the ice cover. Today there is no general framework that accounts for ice and 
wave interaction for a wide range of ice and wave constellations. Some strength and 
shortcomings of present day knowledge are outlined below. 
Scattering processes needs to be described. There exist advanced theories that describes the 
interaction between waves and solid ice particles [Masson and LeBlond, 1989; Perrie and Hu, 
1997] or flexible ice covers [Dixon and Squire, 2001; Fox and Squire, 1994; Kohout and 
Meylan, 2008a; Kohout and Meylan, 2008b; Kohout, et al., 2007; Meylan, 2002; Meylan and 
Masson, 2006; Meylan and Squire, 1994; 1996; Meylan, et al., 1997; Squire, 1995; 2007; 
Squire and Williams, 2008; Vaughan, et al., 2007; Williams and Squire, 2006]6. Many of 
these theories may be evaluated for practical applications, but this is probably not a 
straightforward task. Several models are of course validated against the sparse data sets that 
exist; however, the models also need to be evaluated for robustness and for computational 
costs. The difficulty to obtain mathematical solutions to even relatively “simple” physical 
problems has been a major roadblock for studying more practically oriented problems. 
Numerical methods would represent one way forward: however, the dynamical features that 
creates problem in obtaining analytical solution will also be an obstacle employing numerical 
methods7. We conclude that numerical methods are probably underutilized for studies of the 
wave-ice system. 
Floe floe interaction must be evaluated. One important aspect of the wave ice interaction 
involves floe floe interactions, which are known to affect the damping of waves through 
scattering and dissipative forces. A thorough understanding of these interactions is most likely 
needed to create realistic models for waves-in-ice. This is especially true for the interior 
marginal ice zone that is characterized by a dense ice floe concentration. Despite the 
importance of floe floe interaction in a wavy ice field, there are few theoretical studies that 
address this problem. 
Friction must be described in a realistic way. Frictional effects have been neglected to a large 
extent. Nevertheless, there are some models that have proven very valuable in a number of 
situations [De Carolis and Desiderio, 2002; Wadhams, et al., 2002; Weber, 1987]. For 
instance, there exist a few studies that include the role of viscous forces on the wave motion 
in an ice field. Furthermore, frictional effects seem to be overlooked in studies of wave ice 
interaction, even though recent development focuses on ice cover with complex form. 
Furthermore, the scattering model conserves energy, and in the realistic case where externally 

 
6 It should be noted that some of these theories use rather advanced mathematics and may be difficult to 

apply for non-mathematicians. 

7 For instance, the fourth order mixed derivative appearing in the boundary condition at the flexible ice cover 

is not easily handled by standard mathematical methods: One way around this problem is to formulate the 

boundary conditions using the Green function [Lavrenov 2003, Lavernov and Novakov, 2000]  
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forced waves continuously pump energy into the ice zone there must be some process to 
remove energy, and this can only be done by viscous processes. 

4.1.3 Numerical resolution 
In addition to these choices on the physical description of the system, some choice has to be 
made on how to resolve the wave-ice zone. One difficulty with making accurate predictions of 
the coupled wave ice field is the small and highly variable scales of the system. The wave-ice 
zone has a scale of order 1-50 km and it changes rapidly with changing forcing conditions. 
The most relevant operational models at met.no runs at resolutions of 10 km (atmospheric and 
wave models), and 4 km and 20 km for the ocean and ice model8. Thus the wave-ice zone 
would not be sufficiently resolved in today’s models. Here it should be noted that the ice edge 
itself may induce a sea breeze that may be important for the evolution of the ice field. The sea 
breeze system is only marginally resolved with a 10 km grid posing a problem for accurate 
prediction of the ice field in sea breeze conditions. 
The immediate question is if the resolution of the underlying model should be increased, or if 
a system that follows the ice edge should be developed, i.e., a system than only describes the 
wave-ice zone. In the latter case the position of the ice margin must be specified from model 
or observations, while the model predicts the characteristics of the wave-ice zone.  

4.2 Evaluation of possibilities for including ice and wave parameters into the 
present operational wave and ice forecast model at met.no 
A comprehensive wave-in-ice model will require 

• An atmospheric model that provides atmospheric forcing fields. 
• An ocean model that provides current fields and sea surface temperature. 
• An ice model that describes the necessary ice characteristics. 
• A wave model that includes wave ice interaction. 

Furthermore, these models have to be run at a resolution that resolves the ice edge dynamics. 
The wave ice interaction is not included in the present met.no models: otherwise, the basic 
models run operationally at met.no today. However, the models run at too low resolution for 
being optimal for wave-in-ice modeling. We thus conclude that the basic model systems 
needed for wave-in-ice predictions are up and running using state-of-the-art models although 
the ice model may need reworking. However, there is no wave-ice coupling in these models 
and one of the results from this study is that there is no single well accepted operational 
model, or easy applicable theoretical framework, for predicting the wave characteristics in an 
ice covered ocean. On the contrary, to the authors knowledge there exist no operational 
models for predicting waves in ice (personal contacts with European Centre for Medium 
Range Weather Forecast (ECMWF), Prof. Perrie at Bedford Institute in Canada, and Dr. 
Meylan at University of Auckland, New Zealand). We thus conclude that presently there is no 
knowledge on operational predictions on wave heights in sea ice. 
During this literature study we have only encountered one realistic geophysical wave-ice 
model as of today [Perrie and Hu, 1996]; this model is not used operationally and employ a 

 
8 The 4 km ocean model covers the main part of the Barents Sea but as of today it does not carry a dynamical 

ice model 
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scattering model that may be too simple. Furthermore, the ice characteristics must either be 
prescribed or modeled in any way [Perrie and Hu, 1997]. 
A few possibilities of increasing complexity is listed below 

• Developing tables for the wave energy attenuation coefficients for different ice and 
wave conditions. This will imply that the user of such tables must have a basic 
understanding of the wave-ice system, and how it responds to changes in the forcing. 
Such lookup tables can be used both manually and within a numerical model, i.e., 
these lookup tables can be implemented in a wave model. Fairly accurate predictions 
on the wave-ice climate at certain conditions can most likely be made but more 
complex situations can probably not be captured. The creation of such tables will, 
however, require detailed understanding of relevant processes, field data, and output 
from modeling studies. 

• Applying simple scattering, and wave dissipation, models using prescribed ice floe 
concentration and characteristics, i.e., the ice characteristics is determined by a table 
rather than being described prognostic. 

• Designing a model that describes both the wave and ice conditions. This will be a 
rather challenging task even if a relatively simple scattering model may suffice. 

• A wave-ice model based on the state-of-the-art knowledge of wave-in-ice theories and 
dynamics of ice floe and ice dynamics. The development of such models will 
undoubtedly contain both new laboratory experiments and field work for acquiring 
data for validating the model. The development of such model system will require a 
substantial effort. 

Although the term simple models are used above, the work in setting up and developing these 
simple models should not be underestimated, wave-ice interaction is a very complicated field 
of science. Furthermore, any reliable forecasting system must be evaluated and validated 
routinely. Today, the data sets for validating wave-ice models are sparse and often there are 
significant gaps in the underlying data of the wave and ice fields such that it is not possible to 
evaluate the data set in a comprehensive way. Thus, new data sets may be needed to validate 
an operational wave-in-ice model. 
We conclude that met.no has the capability to include some type of wave-in-ice model. 
However, the implementation of such model will require significant resources. Furthermore, 
new studies aiming at applying existing theories into scenarios relevant for practical purposes 
needs to be outlined for the development of a state-of-the-art forecasting system9. 

4.3 Suggestions for future studies 
This limited literature review does not cover all the complex literature regarding wave-ice 
interaction, and the nearby field of wave and floating-object interaction. Nevertheless it seems 
clear from a practical application point of view that there are some mismatch between 
theoretical development, laboratory studies, and field experiments. Many of the most 
comprehensive field experiments are over 30 years old. New laboratory experiments that will 
shed new light on important processes and for verifying theoretical predictions are also 
needed. 

 
9 As there are no forecasting system as of today, all new forecast systems will essentially be beyond the state-

of-the-art 
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The complexity of the waves-in-ice system probably implies that it has to be attacked on 
many fronts at the same time: theory, laboratory experiments, field experiments and 
numerical experiments must be considered simultaneous. Numerical models can be used to 
analyze the model for wave-in-ice described in the Appendix B and C. However, numerical 
experiment can also involve experiments using wave models such as WAM: also state-of-the-
art numerical models where waves (and floating objects) can be describes by direct numerical 
simulations (DNS) may be a valuable research tool. 
met.no do not have the sufficient expertise to carry out all these research activities alone. 
However, it should be pointed out that the necessary expertise to some extent exist 
collectively in Oslo. While met.no has strong expertise in theoretical wave model, modeling 
using DNS to describe wave motion (Broström, Christensen, Weber, work in progress), the 
oceanographic department at Oslo University has a long tradition on theoretical wave 
problems, including wave-in-ice studies (Prof. Jan Erik Weber and Dr. Kai Christensen). The 
Institute of Mechanics at Oslo University has state-of-the-art equipment for laboratory wave 
studies (Dr. Atle Jensen). Here wave amplitude measurements (which are needed for wave 
attenuation experiments) is somewhat of a local specialty. Field studies may also be required, 
but there is no such expertise in Oslo to the best of the authors knowledge. External groups 
have to be approached for such studies. 
Acknowledgement 
All figures have been reproduced with kind permission from the American Meteorological 
Society (AMS), The American Geophysical Union (AGU), and Elsevier license numbers 
1938131441415 and 1938130588822. We also would like to thank Kjersti Bruserud for 
valuable comments on the manuscript. 



 

 47

Appendix A Some important relations on wave dynamics 
There are some important relations that are used frequently in the description of waves. For 
convenience some of these relations are summarized below. 
Let us consider a wave such that the surface elevation is given by 

)sin(),( tkxatx ωη −= , (A 1) 
where a is the wave amplitude, k is the wave number and ω is its angular frequency. The 
energy of the surface wave, E, is given by 

2

2gaE wρ= , (A 2) 

where g is gravity and ρw is the density of water. 
The phase speed, cp, is given by 

k
c p

ω
= , (A 3) 

while the group velocity, cg, is given by 

k
cg ∂

∂
=

ω
. (A 4) 

The group velocity is particularly important for estimating the wave amplitude as the wave 
energy travels with the group velocity. In a friction free case with no wave scattering 
processes we have for the energy flux FE

constEcF gE == . (A 5) 
Accordingly, if cg changes, for instance due to changes in water depth or the thickness of ice 
cover, the energy of the wave must accordingly change to keep the relation (A 5). 
A note of some interest is that the flux of moment is given by 

p

E
M c

FF = . (A 6) 

Accordingly, if the phase speed of the wave changes the momentum flux of the waves will 
change, provided that the energy flux is constant (as is predicted by A 5). Momentum is a 
conserved quantity and the quick calculation indicates that there must be some exchange of 
momentum with the mean flow. A more through analysis shows that the pressure fields must 
also be included when describing the wave-mean flow interaction but the described scenario 
is one component of the wave-mean flow interaction [Broström, et al., 2008; Longuet-Higgins 
and Stewart, 1960; 1964]. 
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Appendix B Waves scattered by ice floes 
The main purpose of this section is to outline the “standard” theory used to describe how 
waves behave under the influence of an ice cover. The theory for open water is also described 
and the physical mechanism for the scattering of waves is described. 
Let us consider a situation where open water waves enter from left (i.e., from x=-∞) and that 
they encounter an ice floe extending from x=0 to x=L having thickness h. The wave will 
propagate under the ice cover: however, as the wave speed is different under the ice cover 
there will be a certain reflection of the wave energy due to the ice cover, and only a certain 
part of the wave energy will propagate through the ice cover over to the open water at the 
other side of the ice floe. An important assumption in this theory is that there are non floe-floe 
interactions. A schematic picture of the situation is outlined in Fig. (B 1).  

 
Figure B 1 Schematic picture of the physical situation when a wave encounter an ice floe. 
It may be noted that the wave solution must be continuous over the entire region and the 
problem thus involve two different matching areas in the outlined problem. This, together 
with rather complicated boundary conditions at the surface, implies that the mathematical 
treatment of the described physical situation is not straightforward. On the contrary, the 
mathematical methods used for deriving the wave solutions are rather complicated and often 
some type on numerical optimization for matching constants must be applied. The 
mathematical difficulty of obtaining solutions to the described physical situation represent 
one of the greatest challenges for obtaining a unifying theory for waves propagating under 
water and sea ice. Anyway, the final product of the theory will be to predict the amplitude of 
the reflected wave due to the scattering from an ice floe. 

B 1 Outline of equations used 

B 1.1 Basic equations for the flow 
Let us consider a wave such that the surface elevation is given by 

)sin(),( tkxatx ωη −=  (B 1) 
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where a is the wave amplitude, k is the wave number and ω is its angular frequency. For wave 
traveling in the x-direction the following approximate equations describe the velocity field 
and the pressure (here we neglect friction for simplicity, the frictional case describing waves 
in slush ice is outlined in Appendix C) 
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where (u, w) are the velocities in the (x, z) direction, respectively. ρw is the density of water, p 
is pressure and g is the acceleration of gravity. It is convenient to describe the velocities by 
the velocity potential φ(x,z,t) such that 
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Inserting this potential into the continuity equation (B 2c) provides the following equation for 
the velocity potential 

02 =∇ φ . (B 4) 
This equation is often used to describe friction free wave motions: thus, boundary conditions 
are therefore generally derived for φ rather than for velocities and pressure. 

B 1.2 Surface boundary conditions 
The equations have to be supplemented with the dynamics of the boundaries. Notably, the 
boundary conditions at the surface are not straightforward and represent the main difficulty in 
developing theory for surface waves, and the exact form of the boundary conditions may 
depend upon the application. Furthermore, some simplifications must be considered and these 
simplifications are not always straightforward. However, here we will apply the lowest order 
theory. For waves there is always a kinematic condition reflecting the movement of a surface, 
and a dynamic conditions reflecting the physical situation we aim to describe. 

B 1.2.1Kinematic condition 
The kinematic condition describes the movement of a layer in the fluid (or the surface 
movements) and continuity of this layer implies that certain relations must hold true. The 
movement of a continuous layer, e.g., the free surface, is described by 

ηηη
hhu
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where index h reflects horizontal (i.e., x and y) components. Applying the definition of the 
velocity potential (B 3) we find 
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In general the non-linear term is considered to be small (this assumption requires that the 
wave amplitude is small as compared to the wave length, i.e., a«λ) such that 
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which will be used in this study. This boundary condition should be applied at z=η; however, 
by using a Taylor expansion we see that this condition can be applied at the z=0 within the 
order of approximation [Phillips, 1977]. 

B 1.2.2 Dynamic surface boundary condition 
The dynamical boundary condition reflects the physical situation we intend to describe. 
Accordingly we need to use different dynamical conditions at the free water surface and at the 
water-ice interface. It should be noted that we will apply the surface conditions for the free 
surface and the ice covered surface at z=0, even though the ice may be too thick for this 
assumption to hold true. 

Free surface 
One assumption we can apply is that the pressure is zero at the sea surface: to phrase this 
condition in terms of the velocity potential we need to use the Bernoulli equation. We 
consider the Bernoulli equation to be well known and it reads 
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By also including the time evolution it reads [Phillips, 1977] 
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Using the velocity potential (B 3), it follows that the free surface is described by 
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Thus, applying this condition at z=0 and neglecting non-linear terms we find 
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Ice conditions 
Let us consider an ice floe with thickness, h. Assuming that the ice can be regarded as an 
elastic plate we can write a linearized relationship between the surface deflection and water 
pressure immediately below the ice. It should also be noted that the mass of the ice will also 
give a force on the water at the wave-ice interface. Following [Liu and Mollo-Christensen, 
1988; Wadhams, et al., 2002] we write 
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The first term in (B 12) represent the pressure at the ice-water interface, the second term 
describes the flexural force arising from bending the elastic ice cover, the third term describes 
the compressive stress in the sea ice (this term is often neglected such that the assumption of a 
thin Bernoulli-Euler elastic plate is made), and the last term is the force required to move the 
mass of the ice cover. Constants in the above equation are: 

)1(12 2

3

s
EhL
−

= : flexural rigidity of ice. 

E: Young’s modulus of elasticity, which is E=6·109 N m-2 for ice. 

s: Poisson’s ratio, which is s=0.3 for ice. 

P: compressive stress in the ice. 
Combining (B 11) and (B 12)  
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And we find the following dynamical condition to be fulfilled at the surface 
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Neglecting the compressive stress in the ice we have 
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Again this condition should be applied at z=η, but will be applied at z=0, consistent within the 
order of approximations used in this study. 

B 1.2.3 Boundary conditions at the side of the ice cover 
In addition to the above conditions we must describe the dynamics of the situation at the sides 
of the ice cover, here denoted by xi (note that for the situation outlined in Fig. B1, these 
condition should be applied at x=0 and at x=L). At the side of the ice floe, the bending 
moment and the shear must vanish such that  
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In addition there must be a continuity in the velocity potential such that 

,

,

ii

ii

xxxx

xxxx

xx
=

−

=

+

=

−

=

+

∂
∂

=
∂
∂

=

φφ

φφ

 (B 16a, b) 



 

 52

where  reflects the two solutions at each side of the ice floe boundary x−+ φφ   , i.  

B 1.3 Bottom boundary condition 
For many applications it is convenient to assume that the ocean is infinitely deep: In this case 
it is assumed that all fields are bounded at infinity. For finite depth the conditions is that the 
velocities is zero at the bottom.  

B 1.3.1 Kinematic condition 
The kinematic condition at the bottom is 
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implying that  

0=
∂
∂

−= Hzz
φ . (B 18) 

It should be noted that is condition is only used for the case of finite depth. 

B 1.3.2 Dynamic condition 
The dynamical condition at the bottom is not applicable when considering the friction free 
motion (the equations can only fulfill one condition at the bottom). Continuing, it should be 
noted that friction free conditions imply that the solution will unphysical predict that there is a 
certain horizontal velocity at the bottom. In a real fluid the velocity will be zero at a solid 
surface, by including friction this condition will be fulfilled by a thin frictional layer. 

B 1.4 Dispersion relation 
The dispersion relation describes the relation between the wave period and the wave length. 
Furthermore, since the phase speed, cp, is given by 
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and the group velocity, cg, is given by 
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these important quantities can be calculated directly from the dispersion relation. Another 
important aspect of the dispersion relation with respect to waves and ice is that the dispersion 
relation will depend both on the wave length and the ice thickness, h, i.e. 

0),( =hkω . (B 19) 

Thus, if we know ω and k from measurements we can calculate the thickness h. There have 
been some attempts to estimate the wave properties by SAR methods and to use (B 19) to 
calculate the ice thickness; the procedure is not entirely straightforward and the results are 
ambiguous [Nagurny, et al., 1994; Wadhams, et al., 2002]. The problem is most likely that the 
relation (B 34) is not known to the required degree. 
To solve the equations (2.7)–(2.11) one makes an ansatz, or insightful guess, of how the 
solution of the equations looks like. Using this ansatz we can derive certain relations that must 
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hold for the ansatz to be a proper solution of the boundary conditions. Let us assume that the 
solution takes the form 

( )∑ −−+=
n

nnnnn tizkxikBxikA )exp()exp()exp()exp( ωφ ; (B 20) 

this equation fulfils the boundary condition if, and only if, ω and k are related as 

02 =−ωngk                                                    (open water) (B 21a) 

( ) 0225 =−−− ωρωρρ wniwn khgLk                (ice condition)  (B 21b) 
which is know as the dispersion relation for open water and ice, or flexural gravity, 
conditions, respectively. (Here note that h can be viewed as a equivalent ice thickness for ice 
concentration times the thickness of the slushy layer such that ( )ffpp hchch += , where index 
p reflect pancake ice and index f frazil ice, respectively) 
Let us first consider the simplified case with L=0: the dispersion relations become 
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It should be noted that for the case with small frequencies, i.e., long waves, such that 
2ωρ hg i>>  the dispersion relation is similar to that of open water. Equation (B 22b) shows 

that the ice thickness can be estimated if the wave frequency and the wave length are known. 
However, this relation do not consider the stiffness of the ice (flexural force), or the fact that 
the ice conditions often are characterized by presence of very viscous slush ice. 
For L≠0 it is not possible to find a simple relationship between k and ω. However there are 
some simple limits that are useful. It can be shown [Fox and Haskell, 2001] that the behavior 
of the solution changes character at ( ) 815 Lgc ρω = : For cωω < , gk 2ω≈  while for cωω >  

( ) 512 Lk ωρ≈ . For the first case the dispersion relation equals the relation of the open water. 
The case with L≠0 furthermore implies that the group velocity of the waves can become very 
small for certain values in the ice stiffness. If this happens, the wave energy will be trapped in 
this region and if waves continue to pump energy into such region the wave amplitude will 
ultimately become very large. This has been one of the explanation for severe wave condition 
appearing deep inside the Antarctic pack ice during an expedition with RV Polarstern in 1986 
[Liu and Mollo-Christensen, 1988]. 
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Appendix C Frictional affects 
The presence of strong wave motions implies that small ice particles (order mm) cannot attach 
to each other such that larger pieces of ice cannot be formed. Under freezing conditions with 
intense wave action very viscous and buoyant ice slush is created. Apparently, the ice “cover” 
in this case do not have any flexural force on the wave action such the model in Appendix B 
cannot be used. To describe this situation, a model based on a two layer system can be 
outlined to describe the most pertain parts of the slush ice system [De Carolis and Desiderio, 
2002; Weber, 1987]. The upper layer consists of viscous and buoyant slush ice while the 
lower layer consists of water. A schematic picture of the physical scenario described in the 
Appendix is presented in Fig. (C 1). This type of system was initially described by Weber 
(1987) using a Lagrangian approach; however, as this mathematical framework is not 
common to most geophysical fluid scientists we outline a similar model based on the more 
standard Eulerian framework in this Appendix10. 
Another physical situation of great interest is the pancake ice field characterized by many 
small (order 0.1-1m but with cakes up to 10 m size) ice floes surrounded by slush ice. This 
type of ice is most likely very difficult to model in detail. The question is what type of model 
that should be applied to describe waves in this important region. Observations on the 
dispersion relation in pancake ice areas indicate that the model described in this Appendix 
describes data relatively well, albeit the problem in determining the viscosity for the pancake 
ice layer [Wadhams, et al., 2004]. Another situation of importance is the MIZ characterized 
by very small ice floes and with a high density of ice pieces that can be described as “slush 
ice” (notably, slush ice is used for a water-ice mixture of very small ice crystals; water-ice 
mixture with larger ice pieces of order cm to m appears not to have any specific name to the 
authors knowledge). 

 
Fig C 1 Schematic picture of the model for slush ice. 
                                                 

10 The mathematical treatment of the waves can be outlined in Eulerian framework (most common) or the 

Lagrangian framework. In this study we use the Eulerian framework although it may be noted that many 

properties of waves are more naturally described using a Lagrangian framework (Lamb, H. 1932; Weber, .1987)  
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C 1 Equations for the flow 
Describing the frictional affect implies that we need to consider the frictional terms in the 
Navier-Stokes equations: However, we again assume that we deal with small amplitude waves 
and neglect the non-linear terms; thus, 
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As in Appendix B we will use the velocity potential φ(x,z,t): However, the inclusion of 
friction will create frictional boundary layers that carries some vorticity, and its is it is 
necessary to also include a rotational component of the flow, ur, which is related to the 
streamfunction, ψ(x,z,t). Let us consider the following definitions [Lamb, 1932] 
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The velocity field is thus given by 
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where ϕ is the potential arising from the gravity. We thus have [Lamb, 1932] 
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C 2 Surface boundary conditions 

C 2.1 Kinematic condition 
Following [Lamb, 1932] we write the kinematics condition (here assuming that the boundary 
condition can be evaluated at z=0 rather than at z=η within the order of approximation applied 
in this study; this approximation can be derived by considering a Taylor expansion of all 
variables around z=0 and neglecting all terms that includes the small amplitude a):  
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where index h reflects horizontal (i.e., x and y) components. Applying the definition (C 3) and 
assuming that the non-linear term is small we find 
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C 2.2 Dynamical condition 
The dynamical boundary conditions are zero stress at the surface 
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Using (C 5c) we can also write (C 8b) as 
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writing the u, w-velocities as a velocity potential we thus get the surface boundary conditions 
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C 3 Bottom boundary conditions 
There are two types of bottom boundary conditions that are frequently used: Either of the 
following are used 

• A requirement that the solution is bounded when extending toward infinity or 

• zero velocity at the bottom (here recalling that we consider frictional affects): Thus 
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or expressed in terms of the potentials 
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C 4 Interfacial boundary conditions 
If we assume that there is more than one layer (in this section we consider an upper buoyant 
high-viscosity slush ice layer and a lower layer consisting of ordinary sea water) the following 
must hold at the interface between the layers: The horizontal and vertical velocities must be 
continuous 
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There must also be continuity in the stresses (see C 9) 
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Here the superscripts (+) and (-) refers to the layer above and below the interface, 
respectively. 

C 5 Solutions 
The solutions can be written as [De Carolis and Desiderio, 2002; Lamb, 1932] 
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where (applying C 5c) 

υ
ωα ik −= 22 . (C 15) 

If we assume that the basin is infinitely deep it follows that A=C=0 to fulfill the condition of 
non-infinite numbers at infinity, and we have 
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However, for finite depth systems the full set of equations must be considered. 
If a single layer system is considered Eqs. (C 14) contains 4 unknowns. Now, the kinematic 
condition at the surface (C 7) can be used to relate η to φ and ψ; two boundary conditions at 
the surface (C 9) and two boundary conditions at the bottom (C 11) implies that the 4 
unknowns can be determined using four equations and the problem is well posed. For the case 
with two layers (as is the case when describing slush ice on top of pure water), Eqs (C 14) 
must be applied for each layer and there will be four new constants to determine (totally eight 
constants): these four new constants can be determined by using the four conditions at the 
interface (C 12a, b) and (C 13a, b). However, is not a straightforward task to determine the 
eight constant analytically from the eight conditions, and numerical methods to find the 
constants must be used [De Carolis and Desiderio, 2002]. We have not solved the system of 
equation as a part of this literature review and rely mainly on other studies for exemplifying 
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the solutions [De Carolis and Desiderio, 2002]. Some results from the model are presented in 
Figs (C2, C3). For more discussion see Sec. 2.3.3. 

 
Figure C 2 Comparison between model results and laboratory experiment carried out with waves in slush ice 

[Newyear and Martin, 1997]. Left figure shows the dispersion relation and the right figure displays the 
attenuation coefficient. The viscosity of the upper layer was used to fit data and left figure uses νi=2.94 10-2 
m2 s-1 while the right panel uses νi=3.68 10-2 m2 s-1, in lower layer νi=1.8 10-6 m2 s-1 were used.  

 
Figure C 3 Comparison of data from Greenland 4 September 1979 [Wadhams, et al., 1988] and curves with the 

Weber model (dash dot line) and the viscous two-layer model presented here. The viscosity was used to fit 
model with data and νi=1.95 10-3 m2 s-1 was used for the present model while Weber used νi=1.95 10-3 m2 s-1. 
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