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1. Introdu
tionThe aim of the meteorologi
al data assimilation is to determine an initial data �eld for numeri
alweather predi
tion and to quantify its un
ertainty. In general, this task 
oin
ides with the problem of amodel state observer for the non-linear system, governing the development of the atmosphere. However,several spe
i�
 features of the meteorologi
al data assimilation makes the task quite 
hallenging.First of all, the number of observations is of several order of magnitude smaller than the dimensionof the model state variable. Therefore, prior information about the model state must be involved inthe 
onstru
tion of the model state observer (usually 
alled the analysis state) and must be 
arefullyspe
i�ed in order to over
ome the la
k of observations.The information is usually introdu
ed in the form of the standard �rst and se
ond order moments:the prior mean of the model state, spe
i�ed through a short-range fore
ast and often 
alled a ba
k-ground state or a �rst-guess �eld, and the prior varian
e-
ovarian
e matrix of the model state, whi
h
ontains statisti
al knowledge about the fore
ast errors and the physi
al balan
es between the di�erent
omponents of the model state variable. Taking the 
omplexity of the physi
al pro
esses, governing thedevelopment of the atmosphere, and the huge dimensionality of the model state O(106) into a

ount,the 
areful spe
i�
ation of the prior information is a 
hallenging task.Se
ondly, the model state variable is just a dis
rete approximation to the 
ontinuous atmospheri
state whi
h is observed. The time evolution of the model state is governed by dis
rete approximationsof 
ontinuous physi
al laws. The appropriate dis
rete approximation of balan
es as well as the varian
esof short-range fore
ast errors strongly depend on the spatial and the temporal s
ales of motion. So, theobserved information must be assimilated taking into a

ount the s
ale of the phenomena of interestand the model and representativity errors whi
h are 
aused by the dis
retisation.Besides that, an e�
ient assimilation s
heme must be robust to the non-linear dependen
ies betweenobserved quantities and the model state and must re�e
t both the spatial and temporal variation inthe distribution of observations.One method to merge a ba
kground �eld and observed quantities in a way 
onsistent with theestimated a

ura
y of both sour
es of information was introdu
ed �rst by Eliassen (1954) and inde-pendently by Gandin (1963). Within the meteorologi
al 
ommunity this method is 
alled the OptimumInterpolation (OI). Under this method the analysed state is 
onstru
ted as an optimal, in the sense ofminimum varian
e, linear 
ombination of the ba
kground state and observed quantities and is a linearregression of the model state on innovations (the deviations of the observed data from the ba
kgroundstate proje
ted into observation spa
e). The method was extended to the three-dimensional multi-variate analysis (Loren
, 1982) and was for a long period su

essfully used for operational weatherpredi
tion by many weather servi
es. Being a linear regression te
hnique, the method does not requireany strong assumptions on the probabilisti
 distribution of the model state variable, besides existen
eof se
ond moments. Main disadvantage of the method is an ability to treat in a proper way onlyobserved quantities linearly related to the model state.An important step forward in the numeri
al weather predi
tion was the development of three-dimensional variational data assimilation s
heme (3D-Var)(Parrish and Derber,1992) and its extensionto four-dimensional (4D-Var: 3D-Var plus a time-window) variational assimilation s
heme (Le Dimetand Talagrand, 1987, Courtier et.al, 1994). Under these methods, the analysed state is determinedthrough a posterior mode of the model state, given the observed quantities and with the ba
kgroundstate as a prior. A Gaussian distributional assumption on the prior is essential for the performan
e ofthese methods. At the same time these methods provide an optimal solution even in 
ase of a non-linear1



2observational operator (the operator whi
h transforms the model state variable into observed quanti-ties). The valid physi
al balan
e (in essen
e stati
) relationship between di�erent model state variable
omponents expli
itly enters into the data assimilation pro
edure through the analyti
ally dedu
edand statisti
ally derived fore
ast error 
ovarian
e matrix. A time-invariant varian
e-
ovarian
e matrixwith a simpli�ed stru
ture of the fore
ast errors (spatial homogeneity and barotropi
 fore
ast errorstru
ture) redu
es e�
ien
y of the data assimilation pro
edure when three-dimensional variationaldata assimilation s
heme is applied.In four-dimensional variational data assimilation s
heme the observational operator in
ludes a dy-nami
al propagation of the model state over the assimilation window, and in su
h a weight it providesan impli
it evolution of the fore
ast error varian
e-
ovarian
e matrix during this time window. Thisimpli
it propagation of the stati
 varian
e-
ovarian
e matrix by the model dynami
s improves theassumed stru
ture of the fore
ast errors and the sequential observations will be given more properway in a

ordan
e with this. Still the same stati
 varian
e-
ovarian
e matrix in the beginning of ea
hassimilation window, whi
h negle
t all information about previously assimilated observations, degradesthe assimilation pro
edure.As it is well known, having linear dynami
s and a linear observational operator under valid Gaussianassumptions on the prior distribution of the model state, the optimal sequential estimation of the modelstate is Kalman �lter (Kalman, 1960, Kalman and Bu
y, 1961). If these requirements are ful�led, theKalman �lter will provide the same solution as the four-dimensional variational assimilation s
hemeprovided that the varian
e-
ovarian
e matrix is properly spe
i�ed in the beginning of data assimilationwindow. However, be
ause the numeri
al equations propagating the development of the atmosphereare non-linear and the dimensionality of the model state variable is unfeasible huge, the Kalman �lterre
ursions 
annot be used for the pra
ti
al implementation of the data assimilation pro
edure.A number of generalisations and extensions of the Kalman �lter idea has been proposed for thepurposes of the meteorologi
al data assimilation. A suboptimal Kalman �lter, 
alled the ensembleKalman �lter in a number of versions, is one of the most su

essful extension of the 
lassi
al Kalman�lter implemented in pra
ti
e at many weather servi
es. Ensemble Filter, when a number of fore
astsare propagated in time and updated sequentially from observations, has been developed in the attemptto produ
e information about the probability distribution of the atmospheri
 state (Evensen, 1994;van Leeuwen and Evensen, 1996; Toth and Kalnay, 1993, 1997; Houterkamer and Mit
hell, 1998). Thefundamental problem of this approa
h is that the sample size of the pra
ti
al ensemble is too smallin order to dire
tly produ
e meaningful statisti
s about the 
omplete distribution of the model stategiven the observations.Di�erent assumptions and heuristi
 methods were tried to ta
kle this problem. This resulted in alarge number of pra
ti
al implementations of the Ensemble Filter. In 
ommon for all implementationsis that the dynami
al evolution of the probability distribution of the atmospheri
 state is 
arried outthrough propagation of the initial (or analysed) ensemble of the model states forward in time by modeldynami
s. In su
h a way a fore
ast ensemble is obtained. The way in whi
h the fore
ast ensemble isupdated from observations into an analysed (or initial state) ensemble di�ers for di�erent implemen-tations of the Ensemble �lter. Ensemble Filters 
ould be 
rudely divided into
• the Resampling approa
h Ensemble �lters (Kim et.al, 2003; Leeuwen 2003; Anderson and Anderson,1999), where the ensemble of analysed states is resampled from the ensemble of the fore
ast states,and
• the Res
aling approa
h Ensemble Filters, where the ensemble of fore
ast states is transformed into



3an ensemble of the analysed states.The Ensemble Kalman Filter (EnKF) belongs to the Res
aling approa
h Ensemble Filters and 
anbe divided into(1) Perturbed Observations Ensemble Filter (EnKF), where the ensemble of fore
ast states issto
hasti
ally updated during the assimilation step (Evensen, 1994; Houterkamer and Mit
hell,1998),(2) Square-root Ensemble Filters (ETKF), where the ensemble of fore
ast state is deterministi
allyupdated during the assimilation step (Cohn et al, 1998; Whitaker and Hamil, 2001; Anderson2001, Bishop et al, 2001; Ott et al. ,2004) and(3) the Redu
ed-Rank Kalman Filters where emphasis is put on the 
omputationally feasible prop-agation in time of the fore
ast error 
ovarian
e matrix.The Hybrid Ensemble Kalman Filter-Variational assimilation s
heme, whi
h utilizes the advantagesfrom both the Variational (the full-rank fore
ast error 
ovarian
e matrix) and Ensemble Assimila-tion S
hemes (the �ow-dependent un
ertainty about the estimate of the model state), seems to be apromising data assimilation te
hnique. The summary on various pra
ti
al implementations of the dataassimilation s
hemes, their advantages and simpli�
ations, and theoreti
al relationships between themare main topi
s of this report. Data assimilation s
hemes 
an provide not only a deterministi
 estimateof the model state (the analysed state), but also quantify the un
ertainty about the analysed state aswell. In variational approa
hes the inverse of the analysed varian
e-
ovarian
e matrix (the Hessian),whi
h determines the 
urvature of the 
onditional probability density fun
tion, given observations, ina vi
inity of its maximum (the analysed state), 
an theoreti
ally be obtained during the assimilation
y
le. In the Ensemble Kalman Filter based approa
hes the un
ertainty of the model state is rep-resented through the ensemble estimate of the analysis error 
ovarian
e matrix. A number of 
leverensemble predi
tion systems (EPS) were developed and implemented at di�erent weather servi
es inattempt to provide a probabilisti
 inferen
e about some phenomena of interest.EPS systems di�er by strategies to generate the initial ensemble of perturbations and 
an 
rudelybe 
lassi�ed into four di�erent 
lasses:(1) error breeding (Toth and Kalnay, 1993,1997),(2) singular ve
tors optimized over a 
ertain fore
ast length (Buizza et al, 1993, Molteni et. al,1996),(3) Kalman �lter based res
aling s
hemes and(4) system simulation approa
hes.A number of studies were performed with the aim to 
ompare di�erent global EPS (Wei and Toth,2003; Buizza et al., 2005, Wang and Bishop, 2003). These indi
ated that
• the error breeding s
heme may be superior 
ompared with singular ve
tors at short lead times;
• the ETKF may be superior to the error breeding in a number of aspe
ts;
• the lo
al domain Ensemble Transform Kalman Filter (Ott et al. 2004 ) may outperform the globaldomain Ensemble Transform Kalman Filter in resolving medium- and short- range synopti
 systems.Te
hniques to validate performan
e of the EPS, di�erent 
ommonly used 
riterion of veri�
ation andrelationships between them 
ompose the se
ond topi
 of this report.



4 2. The numeri
al weather predi
tion as a sequential update problem2.1. A general formulation of the sequential update problem.Let us denote Xτ a m-dimensional state ve
tor des
ribing the atmosphere at time τ , yτ a p-dimensionalve
tor of observed quantities at time τ and let us denote Yt = {ys, s ≤ t} a 
olle
tion of all observationsavailable up to time t. The obje
tive of the weather predi
tion is to 
onstru
t of a 
onditional densityfun
tion p(Xτ | Yt) of the state of atmosphere, valid at the time moment τ , given observations Yt,available up to the time moment t ≤ τ . The obje
tive of the numeri
al weather predi
tion is to
onstru
t the 
onditional density p(Xτ | Yt) of Xτ , the dis
rete approximation of the state of theatmosphere Xτ , given a set of the observations Yt. In 
ase if τ = t, the 
onditional probability density
p(Xτ | Yτ ) is 
alled the analysis density, and in 
ase if τ > t, the 
onditional density p(Xτ | Yt) is
alled the fore
ast density.Let us denote ti, i = 1, . . . , n a sequen
e of time moments when the data assimilation is performed,
M(ti, ti−1) the deterministi
 dynami
al propagator of the model state from one assimilation timeto another and Hti the deterministi
 observation operator valid at time ti. The data assimilationpro
edure 
an be des
ribed in the following way using the state spa
e model terminology

yti =Hti(Xti) + ǫti

Xti =M(ti, ti−1)(Xti−1
) + Ti−1ξti−1

(1)where ǫti is a p-dimensional observation error ve
tor, ξti−1
is a q-dimensional model error ve
tor (q <<

m) and Ti−1 is a m × q-dimensional proje
tion matrix. Both error terms are sto
hasti
ally spe
i�ed.Even in the most general 
ases simplifying assumptions are done in order to justify the appli
ation ofthe state spa
e model theory for data assimilation. For instan
e, the model error and the observationerror are usually assumed to not depend on the state of the atmosphere
ξ(Xti−1

, ti−1) ≡ ξ(ti−1), ǫ(Xti , ti) ≡ ǫ(ti)The sequen
e of the 
onditional probability densities p(Xti | Yti), i = 1, . . . , n, 
an be obtained bysolving the sequential probability density update problem: 
onstru
t p(Xti | Yti) from p(Xti−1
| Yti−1

)for i = 1, . . . , n, provided p(Xt0 | Yt0) ≡ p(Xt0) is already spe
i�ed. Applying the de�nition of the
onditional probability,
p(Xti | Yti) =

p(Xti ,Yti)

p(Yti)
=

p(Xti , yyi
| Yti−1

)p(Yti−1
)

p(Yti−1
)Applying the probability multipli
ation rule and the fa
torization of the density over parameter

Xti−1
and utilizing the Markovian properties of the state spa
e model, one 
an obtain(2) p(Xti | Yti) =

1

c
p(yti | Xti)

∫

p(Xti | Xti−1
)p(Xti−1

| Yti−1
)dXti−1where c is a normalizing 
onstant.Here the 
onstru
tion of the 
onditional distribution is based on �ltering. For ea
h assimilation
y
le i, �rst the probabilisti
 knowledge about model state at time ti−1, based on the whole set ofhistory observations Yti−1

, is propagated forward until the next assimilation time ti. Se
ondly, theprobabilisti
 knowledge about model state is updated from new observation yti.



52.2. An analyti
al solution to the sequential update problem.Under very restri
tive 
onditions, when
• (K.1) the model dynami
al propagator M(ti, ti−1) and the observation operator Hti are linear,
• (K.2) the distributional assumption about the model ξ(ti−1) and the observation ǫ(ti) errors areGaussian, ξ(ti−1) ∼ N (0, Qt−1), ǫ(ti) ∼ N (0, Rti),
• (K.3) the initial model state distribution is Gaussian, p(Xt0 | Yt0) ≡ p(Xt0) := N (at0 , Bt0)
• (K.4) and the model and observations errors are mutually un
orrelated and un
orrelated with theinitial model state,the sequential update of the 
onditional density fun
tion p(Xti | Yti) 
an be expressed analyti
ally. Inthis 
ase the p(Xti | Yti) is Gaussian as well and is 
ompletely determined through its two �rst 
entralmoments, p(Xti | Yti) := N (ati , Bti). The parameters ati , Bti 
an be re
ursively 
al
ulated via thewell-known standard Kalman �lter equations:

ati = E(Xti | Yti) = af
ti + Bf

tiHT
ti
(Rti + HtiB

f
tiHT

ti
)−1(yti −Htia

f
ti)

Bti = V ar(Xti | Yti) = Bf
ti − Bf

tiHT
ti
(Rti + HtiB

f
tiHT

ti
)−1HtiB

f
ti

(3)where af
ti and Bf

ti are the parameters of the predi
tive distribution of the model state p(Xti | Yti−1
)given the history of observations Yti−1

. The p(Xti | Yti−1
) is Gaussian as well

af
ti = E(Xti | Yti−1

) =M(ti, ti−1)ati−1

Bf
ti = V ar(Xti | Yti−1

) =M(ti, ti−1)Bti−1
MT (ti, ti−1) + Qti−1

(4)This estimate of the model state (eqn. 3) determines the best linear predi
tion of the model stateon the innovations and the most probable estimate of the model state given observations at the sametime. An innovation is a one-step ahead fore
ast error, vti = yti −E(HtiXti | Yti−1
) = yti −Htia

f
ti . TheKalman �lter re
ursions, whi
h are stri
tly valid only under these �rm 
onditions (K.1 -K.4), determinenot only the time evolution and the update of the 
onditional mean and the 
onditional varian
e ofthe model state. They des
ribe the development of the whole 
onditional probability density fun
tiongiven the observations. If the 
onditions (K.1-K.4) are not valid stri
tly, the best linear predi
tion ofthe model state on the innovations and the mean squared error of the predi
tion 
an be 
onstru
ted.The best linear predi
tion xble

ti
and the mean squared error Bble

ti
are given by

xble
ti

=E(Xti | Yti−1
) + cov(Xti , vti | Yti−1

)(var(vti | Yti−1
))−1vti

Bble
ti

=V ar(Xti | Yti−1
) − cov(Xti , vti | Yti−1

)(var(vti | Yti−1
))−1cov(Xti , vti | Yti−1

)−1.
(5)If the model and observation errors are mutually un
orrelated and un
orrelated with the initialmodel state (K.4), the equations (5) will have a form notationally similar to the Kalman �lter updateequations (eqn. 3)

xble
ti

=af
ti + Bf

tiH
T
ti
(HtiB

f
tiH

T
ti

+ Rti)
−1vti

Bble
ti

=Bf
ti − Bf

tiH
T
ti
(HT

ti
Bf

tiHti + Rti)
−1HtiB

f
ti

(6)where af
ti and Bf

ti are the two �rst 
onditional moments of Xti , given the history of observation Yti−1
,

E(Xti | Yti−1
) and V ar(Xti | Yti−1

), respe
tively. However, this system (eqn. 6) does not provide thesequential inferen
e about the model state be
ause xble
ti

and Bble
ti

do not 
oinside with the two �rst



6
onditional moments E(Xti | Yti) and V ar(Xti | Yti) and do not give any rules on how to sequentiallyupdate af
ti+1

and Bf
ti+1

.2.3. Smoothing of the unobservable model state.Smoothing is an alternative pro
edure to obtain the 
onditional probability distribution of the modelstate based on observations. In this 
ase the 
onditional distributions of the whole sequen
e of unob-servable model states (Xt0 , Xt1 , . . . , Xtn) given all available observations Ytn is 
onstru
ted.Applying the probability density multipli
ation rule and the Markovian properties of state spa
emodel, one 
an obtain(7) p(Xt0 , Xt1, . . . , Xtn | Ytn) =
1

c
p(Xt0)

n
∏

i=1

p(yti | Xti)p(Xti | Xti−1
).Here c denotes a normalizing 
onstant.Provided that 
onditions (K.2-K.4) holds, the posterior distribution p(Xt0 , Xt1 , . . . , Xtn | Ytn) isGaussian and is 
ompletely determined through its two �rst moments,

p(Xt0 , Xt1 , . . . , Xtn | Ytn ∼ N (ã, B̃),where ã is a (n + 1) × m-dimensional ve
tor, ã = (ãt0 , ãt1 , ãt2 , . . . , ãtn)T = (E(Xt0 | Ytn), E(Xt1 |
Ytn), . . . , E(Xtn | Ytn))T and B̃ is a (n + 1)m × (n + 1)m dimensional matrix, B̃ij = cov(Xti , Xtj |
Ytn), 0 ≤ i, j ≤ n. Numeri
ally, a mean and a varian
e of the Gaussian distribution 
an always beobtained by 
al
ulating the maximum of the log-density and the 
urvature of the log-density at thepoint of the maximum.

ã = argminL(Xt0 , . . . , Xtn)

= argmin{− log p(Xt0) −
n

∑

i=1

(log p(yti | Xti) + log p(Xti | Xti−1
))}

B̃ =

[

(
∂2L(Xt0 , . . . , Xtn)

∂Xti∂Xtj

)0≤i,j≤N

]−1

(8)Here the notation argmin means "argument that minimizes"Noti
e that the joint distributions p(Xt0 , Xt1 , . . . , Xtn | Ytn), i = 0, . . . , n are multipli
ations ofGaussian ones even if the Gaussian state spa
e model is not linear (
ondition (K.1) holds). However,the marginal distributions p(Xti | Ytn), i = 0, . . . , n, are Gaussian only if the Gaussian state spa
emodel is linear (
ondition (K.1) holds). In 
ondition (K.1) holds, the mode and the 
urvature at themode, ã and B̃, 
an e�
iently be 
al
ulated applying the forward Kalman �lter and the ba
kwardKalman smoother re
ursive equations (Durbin and Koopman, 2001).If the perfe
t model is assumed (ξi ≡ 0, i = 0, . . . , n − 1), the dimensionality of the minimisationfun
tional is dramati
ally redu
ed from (n + 1)m to m. In that 
ase the whole un
ertainty about theunobservable model state originate from the initial 
onditions and p(Xt0 | Ytn) is the single 
onditionaldistribution that should be determined.(9) p(Xt0 | Ytn) =
1

c
p(Xt0)

n
∏

i=1

p(yti | Xt0),



7and p(Xt0 | Ytn) ∼ N (ã, B̃),where
ã = argminL(Xt0 | Ytn)

= argmin{− log p(Xt0) −
n

∑

i=1

(log p(yti | Xti))}

B̃ =

[

∂2L(Xt0)

∂X2
ti

]−1

(10)For example, under a Gaussian state spa
e model the minimisation fun
tional L(Xt0 | Ytn) is
L(Xt0 | Ytn) =0.5(Xt0 − at0)

T B−1
t0 (Xt0 − at0)+

0.5
∑

i=1n

(yti − HtiM(ti, t0)Xt0)
T R−1

ti
(yti − HtiM(ti, t0)Xt0)

(11)Still for a large-dimensional model state the design of the minimisation pro
edure (eqn. 10) is a
hallenging task.If the state spa
e model is not Gaussian or the 
onditions (K.1-K.4) do not hold, the mode of theposterior distribution (eqn. 7) still 
an be obtained by minimising the 
orresponding fun
tional. Itis possible to 
onstru
t a sequen
e of Gaussian approximative state spa
e models that in the limitwill have a mode/a 
onditional mean, whi
h will 
oin
ide with the mode of the original posteriordistribution (Durbin and Koopman, 2001).3. Approximate solutions to the sequential update problem.In meteorologi
al data assimilation the stri
t 
onditions (K.1-K.4) are never met. Both the dynam-i
al propagator and the observation operator are in prin
iple non-linear, the model and observationerrors are 
orrelated with the initial model state and these errors are assumed to obey the Gaussiandistribution just for simpli
ity. The degree of non-linearity and non-Gaussianity di�ers signi�
antlybetween di�erent types of observations and between dynami
al propagation of di�erent spatial andtemporal s
ale phenomena. Relaxing some of these stri
t 
onditions, di�erent approa
hes for approx-imate solutions of the problem have been proposed and implemented at di�erent weather servi
es.Essentially, they 
an roughly be divided into
• the variational type, whi
h pretend to estimate mode of the 
onditional distribution p(Xt0 | Ytn)(eqn. 9, 11),and
• the regression type, whi
h pretend to produ
e the best linear predi
tion xble

tn of the Xtn on the wholesequen
e of available observations (eqn. 5, 6),approa
hes.Let us denote τ a time moment for whi
h the data assimilation should be performed and ∆τ tobe the length of the assimilation window. Then, under the variational approa
h, the analysed modelstate xa
τ ≈ E(Xτ | Yτ ) is estimated by minimizing a 
ertain fun
tional, often 
alled a 
ost fun
-tion. The Three-dimensional Variational data assimilation s
heme (3D-Var) and the Four-dimensionalVariational assimilation s
heme (4D-Var) are used worldwide at di�erent weather servi
es with greatsu

ess. Both s
hemes are implemented in a so-
alled in
remental formulation. This means the "op-timal� in
rement δxa

τ = xa
τ − xf

τ is obtained instead of estimating the whole analysed state. Here xf
τ is



8the best available fore
ast of the model state at time moment τ based on the history of observations,
xf

τ = M(τ, τ − ∆τ)xa
τ−∆τ , and is often 
alled the ba
kground state.3.1. Variational data assimilation s
hemes.

• The 3-Dimensional Variational data assimilation s
heme (3D-Var)
xa

τ = xf
τ +δxa

τ

δxa
τ = argmin(Jb + Jo)

J3D = Jb + Jo =0.5δxT
τ B−1δxτ + 0.5(Hτ (x

f
τ ) + H̄τδxτ − yτ )

T R−1(Hτ (x
f
τ ) + H̄τδxτ − yτ ) =

0.5ηT
τ ητ + 0.5(Hτ(x

f
τ ) + H̄τU

−1ητ − yτ )
T R−1(Hτ (x

f
τ ) + H̄τU

−1ητ − yτ )

(12)Here B is the matrix 
ontaining the 
ovarian
es of the fore
ast errors of the model state, H̄τ is atangent-linear observation operator around the ba
kground state, U is a square-root of the inverse ofthe 
ovarian
e matrix B, B−1 = UT U , and ητ = Uδxτ is the 
ontrol ve
tor along whi
h the mini-mization of the 
ost fun
tion J3D is performed. Observations are �rst 
olle
ted over the time period
(τ − 0.5∆τ, τ +0.5∆τ), then proje
ted to the time moment τ and after that assimilated at the time τ .
• The 4-Dimensional Variational data assimilation s
heme (4D-Var)Let ti denote an a
tual time when an observation is 
arried out.

xa
τ = xf

τ +δxa
τ

δxa
τ = argmin(Jb + Jto + Jc)

J4D = Jb + Jto + Jc = δxT
τ B−1δxτ

+
∑

i,τ<ti≤τ+∆τ

(Ht(x
f
ti) + H̄tiδxti − yti)

T R−1(Ht(x
f
ti) + H̄tiδxti − yti)

+ (xτ+0.5∆τ −
τ+∆τ
∑

t=τ

αtxt)
T Q(xτ+0.5∆τ −

τ+∆τ
∑

t=τ

αtxt)

(13)
The 4-Dimensional variational data assimilation s
heme is an extension of the 3D-Var. The in
re-ment δxτ is propagated forward by the tangent-linear dynami
al propagator up to the time moment

ti when the a
tual observations yti are 
arried out, δxti = M̄(ti, τ)δxτ . In su
h a way model dynami
sare involved as strong 
onstraints in the optimization pro
edure of the 4D-Var. The optional addi-tional term Jc in the 
ost-fun
tion J4D expresses requirements of the smoothness of the solution intime, one example originating from a low-pass digital �lter. Be
ause the dynami
al forward integrationis involved in the data assimilation pro
edure, some type of initialisation is ne
essary. As shown inLyn
h and Huang 1992, the digital �lter initialisation is very similar to the nonlinear normal modeinitialisation provided that there is a 
lear frequen
y separation between fastly propagating gravitymodes and slowly propagating Rossby modes. The gravity modes are asso
iated with divergent mo-tion and may be 
reated from the unbalan
ed horizontal pressure gradient or even from the linearlybalan
ed initial state due to non-linear dynami
s. The low-pass digital �lter prohibits a drift awayof the model state due to adjustment of the solution to high frequen
y os
illations. Here xt denotesthe solution dynami
ally integrated forward up to the time moment t, xt = M(t, τ)(xf
τ + δxa

τ ) and
αt, t = τ, . . . , τ + ∆τ are the time �lter weights. Formulation and dis
ussion of the time �lter weights
an be found in Gauthier and Thepaut 2001.



9The 
ost fun
tions J3D and J4D are proportional to the posterior probability density p(xτ | Yτ ) ofthe model state under the Gaussian state spa
e model (eqn. 11). Thus the 3DV ar and the 4DV arapproa
hes are based on smoothing rather than on �ltering, they do not predi
t the "optimal" modelstate at the end of the data assimilation window but estimate the most likely model state givingrise to the set of observations. Be
ause the amount of observed quantities is mu
h smaller than thedimensionality of the model state, the prior assumptions on the model state have strong in�uen
eon the posterior distribution of the model state. The 
ovarian
e of the prior distribution B does not
hange in time, has a very simpli�ed stru
ture and is statisti
ally/analyti
ally dedu
ed.3.2. The general ensemble Kalman Filter formulation.A Monte Carlo approximation of the 
onditional probability density fun
tion p(xτ | Yτ ) provides onepossibility to propagate the fore
ast error 
ovarian
e matrix B in time, at least approximately.The ensemble of the model states, Xa
τ−∆τ =

[

Xa
1,τ−∆τ , . . . , X

a
N,τ−∆τ

], where N is the ensemble size, isassumed to represent the 
onditional probability density fun
tion of the model state p(Xτ−∆τ | Yτ−∆τ).Then the 
onditional predi
tive distribution of the model state p(Xτ | Yτ−∆τ ) is 
onsidered to berepresented by the ensemble Xf
τ =

[

Xf
1,τ , . . . , X

f
N,τ

], where ea
h ensemble member is propagatedforward in time by model dynami
s,(14) Xf
i,τ = M(τ, τ − ∆τ)Xa

i,τ−∆τ + ηi,τ ,where the model error may be eventually sampled from ηi,τ ∼ N (0, Qτ). If a perfe
t dynami
al modelis assumed, the model error term is omitted, namely Qτ ≡ 0.For instan
e, the 
onditional mean and the 
onditional 
ovarian
e of the model state at time τ ,given the set of observations assimilated during previous 
y
les Yτ−∆τ , are assumed to be estimatedby means of the relationship
E(Xτ | Yτ−∆τ ) ≈xf

τ =

=
1

N

N
∑

i=1

Xf
i,τ

Cov(Xτ | Yτ−∆τ ) ≈Bf
τ =

1

N − 1

N
∑

i=1

(Xf
i,τ − xf

τ )(X
f
i,τ − xf

τ )
T = Zf

τ (Zf
τ )T

(15)
Here Zf

τ = (Zf
1,τ , . . . , Z

f
N,τ) denotes the ensemble of normalized fore
ast perturbations, Zf

i,τ =
1√

N−1
(Xf

i,τ − xf
τ ).The fore
ast step, the way how the ensemble of the fore
ast states at a new assimilation time is
onstru
ted from the ensemble of the analysed state obtained from the previous assimilation time,is 
ommon for di�erent implementations of the ensemble �lter and is given in eqn. (14). Variousimplementations of the ensemble �lter propose di�erent analysis steps, the way how the ensemble ofthe fore
ast states, representing p(Xτ | Yτ−∆τ ) is transformed into the ensemble of the analysed statesto represent p(Xτ | Yτ ).



103.3. Di�erent implementations of the ensemble Kalman �lter.The ensemble Kalman �lter EnKF (Evensen, 1994, Houtekamer and Mit
hell, 1998) utilises the stan-dard Kalman �lter re
ursions to perform the analysis step. The best linear predi
tor of the modelstate xble
τ on the last innovation vτ = yτ −Hτx

f
τ , given the history of observations Yτ−∆τ , and its meansquared error Bble

τ are obtained using equation 6. The two �rst 
onditional moments are approximatedby simply setting E(Xτ | Yτ ) = xble
τ and V ar(Xτ | Yτ ) = Bble

τ . In other words, the ensemble Kalman�lter retains the "linearity" aspe
ts of Kalman �ltering and assumes impli
itly Gaussian distributionsfor un
ertainties in the fore
ast and the observations. The implementations of the EnKF 
ould roughlybe divided into 3 di�erent approa
hes:
• the ensemble Kalman �lter with perturbed observations, often asso
iated with a
ronym EnKF (Burg-ers et al. 1998, Houtekamer and Mit
hell 1998),
• the square-root ensemble Kalman �lter, often asso
iated with the a
ronym ESRF (Whitaker andHamill 2002, Tippett et al. 2003, Bishop et al. 2001, Ott and Coauthors. 2004), and
• the redu
ed rank square-root Kalman �lter (Heemink, Verlaan and Segers, 2001, Cohn and Todling,1996, Verlaan and Heemink, 1997).All �ltering algorithms mentioned above are of the res
aling type. The ensemble of fore
ast states,whi
h is supposed to sample the predi
tion distribution p(Xτ | Yτ−∆τ), is transformed, sto
hasti
allyor deterministi
ally, into the ensemble of analysed states, whi
h is supposed to sample the posteriordistribution p(Xτ | Yτ).
• The ensemble Kalman �lter with perturbed observations.Under the ensemble Kalman �lter with perturbed observations ea
h ensemble member is updatedin the following way(16) Xa

i,τ = Xf
i,τ + Kτ (yi,τ −Hτ (X

f
i,τ )), i = 1, . . . , Nwhere Kτ is a Kalman gain matrix 
al
ulated from the ensemble of the fore
ast states(17) Kτ = Zf

τ (H̄τZ
f
τ )T (H̄τB

f
τ H̄T

τ + Rτ )
−1and yi,τ , i = 1, . . . , N is a simulated ensemble of perturbed observations, where the spread of theensemble re�e
ts the pre
ision of the observations, namely yi,τ ∼ N (yτ , Rτ ) for ea
h i.The EnKF analysis update s
heme provides a sto
hasti
 update of the ensemble of the model stateperturbations during the assimilation step. In order to 
onstru
t the ensemble of analysed states, theensemble of the fore
ast states and the ensemble of observations are merged together in observationspa
e taking into a

ount the skill of both ensembles expressed via the respe
tive ensemble spread.While merging, the Gaussian assumptions on the underlying fore
ast error and observation errordistributions are made impli
itly.The perturbed observation approa
h introdu
es an additional sour
e of sampling error. Under thiss
heme, the equations (6) for the sample mean and for the sample varian
e of analysed state aresatis�ed only on average, namely

E(X̄a
τ ) = xa

τ ,

E(Za
τ (Za

τ )T ) = Ba
τ ,taking into a

ount eqn. (15). At the same time one should stress that adding the noise in perturbationspa
e stabilizes the �lter by solving the rank-de�
ien
y problem in an innovative way.



11Pham (2001) proposes a similar Ensemble Kalman �lter, 
alled the se
ond-order-exa
t EnKF, basedon slightly di�erent 
onsiderations. During the analysis step the ensemble members are updated asfollows(18) Xa
i,τ = Xf

i,τ + Kτ (yτ − HτX
f
i,τ) + ǫi,τwhere ǫi,τ , i = 1, . . . , N , is a se
ond-order-exa
t sample from the Gaussian distribution,

ǫi,τ ∼ N (0, KτRτ (Kτ )
T ),with linear 
onstraints

N
∑

i=1

ǫi,τZ
f
i,τ = 0.In other words the ensemble, of the analysed perturbations Za

τ = 1√
N−1

(Xa
i,τ − xa

τ ) has 
ontributionsfrom the spa
e orthogonal to one spanned by the ensemble of fore
ast perturbations Zf
τ ,

Za
i,τ = Zf

i,τ − KτHτZ
f
i,τ + ǫi,τ .

• The square-root ensemble Kalman �lterUnder the ensemble square-root Kalman �lter (ESRF) the mean and the spread of the ensemble areadjusted so that they would exa
tly satisfy the equations (6).
Za

τ =Zf
τ C

Z̄a
τ =0

Xa
τ =xa

τ + Za
i,τ

(19)where C is an expli
itly 
al
ulated transformation whi
h preserves the mean of the ensemble and underwhi
h the 
ovarian
e of the the analysis ensemble mat
hes its theoreti
al value, given by eqn. (6),namely(20) Za
τ (Za

τ )T = Zf
τ C(Zf

τ C)T = (I − KτHτ )Z
f
τ (Zf

τ )TThe ESRF provide a deterministi
 update of the ensemble of model perturbations during the assim-ilation step. In order to 
onstru
t the ensemble of analysed states, the ensemble of fore
ast states isrotated and s
aled. The ensemble estimate of the fore
ast error 
ovarian
e matrix in observation spa
eis used to determine the s
aling and rotation. Be
ause the mean and the varian
e of the 
onditionalensemble of the model state, given the whole set of observations up to time τ , satisfy equations 6 by
onstru
tion, the Gaussian distributions for the fore
ast error and observation error are made impli
-itly. The main drawba
k of the method, in 
omparison with the perturbed observations approa
h, isthat the ensemble of analysed perturbations is sampled from the spa
e spanned by the ensemble offore
ast perturbations only.There is an in�nite amount of square-root transformations C whi
h satisfy requirement (20). Bishopet al. (2001) propose an elegant solution to this equation whi
h allows an expli
it look into the



12me
hanism of Kalman Filtering. Wang et al. (2004) developed the s
heme further to 
onstru
t thetransformation preserving the mean of the ensemble.(21) C = G(D + I)−1/2GTwhere a diagonal matrix D 
ontains the (N-1) non-zero eigenvalues of the estimated fore
ast 
ovarian
ein ensemble spa
e, standardised by the observation error varian
e, (H̄τZ
f
τ )T R−1H̄τZ

f
τ , and a N ×(N −

1)-dimensional matrix G 
ontains the 
orresponding orthonormal eigenve
tors of (H̄τZ
f
τ )T R−1

τ H̄τZ
f
τ .The multipli
ation from the right by GT provides a spheri
al simplex 
entering of the ensemble afterrotation and s
aling was performed. Be
ause matrix G is orthogonal, the ensemble of analysed statesis 
entered without destroying its square-root property.Besides that, Sakov and Oke, 2008, have shown that the symmetri
 transformation (eqn. 21) providesa unique solution. In the same paper Sakov and Oke generalised the s
heme further by noting thatthe general mean-preserving solution for the ensemble Transform Kalman �lters may be written as(22) C = G(D + I)−1/2GT Upwhere Up is an arbitrary orthonormal mean-preserving matrix

Up1 = 1, Up(Up)T = IThey provided an e�
ient algorithm for 
onstru
tion of a randommean-preserving orthogonal matrix
Up. With the transform de�ned by eqn. (22), a random ensemble of analysed states with the samplemean and sample varian
e exa
tly satisfying eqn. (6) 
an be 
onstru
ted.A variety of alternative algorithms to perform deterministi
 update of the ensemble during analysisexist. The main 
hallenge of the ensemble Kalman �lter is the ne
essity to invert the innovation
ovarian
e matrix, whi
h has dimensionality of number of observations. Di�erent algorithms proposedi�erent ways to over
ome this obsta
le. We mention some algorithms whi
h have re
eived largeattention in the literature:(1) a dire
t approa
h implemented in the �rst step of the Physi
al-spa
e Statisti
al Analysis System(PSAS) algorithm (Cohn et al. 1998),(2) a serial assimilation of observations (Houterkamer and Mit
hell 2001, Bishop et al. 2001,Whitaker and Hamill 2002) and(3) the ensemble adjustment Kalman �lter (Anderson, 2001).As it was noti
ed in Wang and Bishop (2003), the Ensemble Square-root Filters have a very �ateigenvalue spe
trum due to the �ltering e�e
t of 
ovarian
e, eqn. (6).Be
ause the tra
e of the ensemble estimate of the model state 
ovarian
e 
annot ex
eed the ensemblesize, this �at eigenvalue spe
trum indu
es a severe underestimation of the analysed error 
ovarian
e,and as a result a severe underestimation of the fore
ast error 
ovarian
e in the beginning of thenext assimilation time. This leads to �lter divergen
e. In fa
t, the whole derivation of the res
alingmatrix C is impli
itly based on the assumption that the ensemble of fore
ast perturbations is largeenough to represent adequately the fore
ast error 
ovarian
e matrix in observation spa
e, H̄τB

f
τ H̄T

τ .If the ensemble size is too small, the ensemble estimate of the fore
ast error 
ovarian
e will la
k
ontributions from important dire
tions. To in
rease the spread of the analysis ensemble by multiplyingthe transformed perturbations by an in�ation fa
tor or to sample an additional un
ertainty are some



13possibilities to over
ome the problem. The spread of innovations 
an be used to design the in�ationfa
tor (Wang and Bishop 2003, Dee 1995). The in�ation fa
tor Πτ is de�ned as(23) Πτ = Πτ−1

√
ατwhere the parameter ατ is su
h that(24) d̃T

τ d̃τ ≈ trace(H̃τατB
f
τ H̃T

τ + I).Here d̃τ is a ve
tor of the standardised innovations,
d̃τ = R−1/2

τ (yτ − Hτx
f
τ ),and H̃τ is a standardised observational operator, H̃τ = R

−1/2
τ H̄τ .When the in�ation fa
tor is implemented the total transformation matrix at time τ be
omes(25) Cτ = ΠτGτ (Dτ + I)−1/2GT

τRe
ently, Wang et al. (2007) have shown that su
h a simplisti
ally designed in�ation fa
tor (eq.24) leads to the overestimation of the true 
ovarian
e matrix in the subspa
e spanned by the ensemblemembers if the dimensionality of the ensemble is mu
h smaller than the dimensionality of the modelstate in the normalised observation spa
e. In order to improve the �lter performan
e they propose analternative res
aling matrix(26) Cτ = ΠτGτ (ρDτ + I)−1/2GT
τwhere the s
alar fa
tor ρ is the fra
tion of the fore
ast error varian
e proje
ted into the ensemble spa
e.It 
an be estimated by(27) ρ =

d̃T
τ ET

τ Ed̃τ − (N − 1)

d̃T
τ d̃τ − pwhere p is the number of observations, N is the number of ensemble members and Eτ is a matrix ofthe eigenve
tors of the model error 
ovarian
e matrix in normalised observation spa
e. As shown inBishop et al. (2001)

Eτ = H̃τZ
f
τ GτD

−1/2
τ /

√
N − 1The averaging is done over a number of independent 
ases in the expression for ρ.Noisiness of the ensemble estimate of the 
ovarian
e matrix is another problem whi
h originatesfrom the small ensemble size. A "
ovarian
e lo
alisation" (Gaspari and Cohn 1999) whi
h expli
itlydamps 
orrelations between model state 
omponents at long distan
es is a pra
ti
al way to improvethe quality of the ensemble estimate of the 
ovarian
e matrix. Buehner 2005 proposed a 
ovarian
elo
alisation s
heme appli
able in the framework of the ETKF. The mistreat of the statisti
al balan
esand long-s
ale variation are dangers of this approa
h. Filtering noise dire
tly in ensemble spa
e isanother possibility to handle the problem. Ott and 
oauthors (2004) solved the problem asso
iatedwith the rank-de�
ien
y of the ensemble square-root �lters by implementing a lo
al Ensemble KalmanFilter. In this approa
h the analysis at ea
h grid-point is performed simultaneously using the modelstate variable 
omponents and the observations in a lo
al region 
entered at that point. Be
ause theassimilation is performed independently in ea
h lo
al region, the smoothness of the analysed �eld mustbe 
onsidered. In order to a
hieve this, the assimilation pro
edure is expli
itly 
onstrained to 
hoosethe analysis perturbations whi
h minimize the distan
e to ba
kground state. Noti
e that the ba
kwards



14ensemble rotation, provided by the spheri
al simplex 
entering in the ETKF res
aling s
heme, servesfor the same purpose.The ensemble of analysed states is strongly 
orrelated with the ensemble of fore
ast states, su
h thatthe ensemble res
aling s
heme (eqn. 21) preserves the pattern. There is a hope that this approa
h willredu
e the aliasing of the long s
ale variations whi
h appears due to lo
al assimilation s
heme. Anotherstrong side of this approa
h is the lo
al Gaussian approximation to the non-Gaussian problem in 
aseof non-linear dynami
s. The global ensemble Kalman �lter, whi
h assumes impli
itly the Gaussiandistribution of the un
ertainty about the model state, 
annot perform data assimilation properly inthat 
ase. However, a lo
al Gaussian state spa
e model 
an provide an e�
ient approximation of a non-Gaussian model state provided that the lo
al neighbourhood is sele
ted su

essfully. The lo
al ensembleKalman �lter is supposed to des
ribe well atmospheri
 pro
esses asso
iated with lo
al energeti
s, su
has the baropropi
 and baro
lini
 instabilities, downstream development of the upper-tropospheri
 wavepa
kets, anti
y
linu
 wave breaking and other phenomena.
• Redu
ed Rank Ensemble Kalman Filter.In the Redu
ed Rank Kalman Filter the full-rank 
ovarian
e matrix of the model state is approx-imated by a matrix with a redu
ed rank. The redu
ed rank approa
h 
an be implemented via anensemble square-root Kalman �lter as well when the N ensemble members are sele
ted in the dire
tionof N leading eigenve
tors of the 
ovarian
e matrix. The redu
ed rank square-root ensemble Kalman�lter algorithm was initially proposed by Verlaan and Heemink ( 1997, RRSQRT). The analysis stepis deterministi
 and is based on the square-root Kalman �lter analysis update

Bf
τ =Lf

τ (L
f
τ )

T

Kτ =Bf
τ HT

τ (HτB
f
τ HT

τ + Rτ )
−1

xa
τ =xf

τ + Kτ (yτ − Hτx
f
τ )

L̃a
τ ={(I − KτHτ

)Lf
τ , KτR

1/2
τ }

La
τ =Πτ L̃

a
τ

(28)
Here Lf

τ is a matrix of perturbations, Lf
τ = [I1,τ , . . . , Iq,τ ] and Πτ is a proje
tion onto the q leadingeigenve
tors of the matrix a

τ (L
a
τ )

T . To initialize the �lter La
0 is taken to be the q largest eigenve
torsof the stati
 model error 
ovarian
e matrix B0

La
0 = [Ia

1,0, . . . , I
a
q,0]To propagate the perturbations the dynami
al step (eqn. 14) is generalized by implementing a �nitedi�eren
es approa
h

xf
τ =M(τ, τ − ∆τ)(xa

τ−∆τ )

If
i,τ =

1

ǫ
{Mτ,τ−∆τ(x

a
τ−∆τ + ǫIa

i,τ−∆τ ) −Mτ,τ−∆τ(x
a
τ − ∆τ)}

(29)Noti
e that if ǫ = 1 the equation above 
oin
ides with (eqn. 14). The model error 
an be easilya

ounted for assuming
L̃f

τ =[Lf
τ , Q

1/2
τ ]

Lf
τ =Πf

τ L̃
f
τ .



15Here Πf
τ is again a proje
tion matrix on the q leading eigenve
tors of the matrix a

τ (L
a
τ )

T and Qτ is amodel error 
ovarian
e matrix at time τ . Heemink et al. (2001) propose extensions to the redu
ed rankensemble Kalman: to ni
ely 
ombine deterministi
 and probabilisti
 updates of the analysis ensemble.Under the Partially Orthogonal Ensemble Kalman �lter (POEnKF), the matrix of ensemble La
τ 
onsistsof the q largest eigenvalues of Ba

τ , I1,τ , . . . , Iq,τ , and N random ensembles ξ1,τ , . . . , ξN,τ to better sampleun
ertainty about xa
τ

[La,τ , Ea,τ ] = [I1,τ , . . . , Iq,τ , ξ1,τ , . . . , ξN,τ ].For initialisation of the �lter, the random ensemble is sampled from the Gaussian approximation tothe model state distribution, ξi,0 ∼ N (xa
0, B0). During the analyses step the fore
ast error 
ovarian
ematrix is estimated

E∗,f
τ =Π∗

τE
f
τ

Bf
τ =Lf

τ (L
f
τ )

T +
1

N − 1
E∗,f

τ+ (E∗,f
τ )T

(30)where Π∗
τ is a proje
tion of the random ensemble to the spa
e orthogonal to the spa
e spanned by Lf

τ .The analysis update of the ensemble is performed in a

ordan
e with (eqn. 28) for the deterministi
part of the ensemble, La
τ and in a

ordan
e with (eqn. 16) for the random part of the ensemble, Ea

τ .In the Complementary Orthogonal Subspa
e Filter for E�
ient Ensembles (COFFEE) the randompart of the ensemble, Ef
τ is expli
itly 
onstrained to sample from the subspa
e orthogonal to the Lf

τ .(31) Ef
τ = [ξ1,τ − xf

τ + η1,τ , . . . , ξN,τ − xf
τ + ηN,τ ]where ηi,τ ∼ N (0, (I − Πf

τ )L
f
τ (L

f
τ )

T (I − Πf
τ )

T ).Heemink et al. (2001) shows that adding of stru
tured random noise to the redu
ed rank Kalman�lter signi�
antly improves it behaviour.The Singular Evolutive Extended Kalman �lter (SEEK) developed by Pham et al. (1998b) and theSingular Evolutive Interpolated Kalman �lter (SEIK) developed by Pham 1997 
an be 
onsidered tobe a type of redu
ed-rank Kalman �lter. The idea behide SEEK �lter is to make 
orre
tion only inthe dire
tion where error is ampli�ed or is large, keeping at the same time the error small in otherdire
tions. Ideally, the redu
ed-rank 
ovarian
e matrix should span the attra
tor whi
h is of low rank.However it seems to be an unrealisti
 task to approximate the attra
tor of so 
ompli
ated non-linearsystem in su
h a simple way. In essen
e, all ensemble Kalman �lter implementations severely su�erfrom the problem of rank de�
ien
y. Whatever res
aling s
heme is sele
ted, the rank of the sample
ovarian
e of the analysed states will be bounded from above by the amount of ensemble members.
• The parti
le type ensemble �ltersIn all algrorithms dis
ussed above the impli
it resampling of the model state during the assimilation
y
le is done mainly in order to 
ompensate for the underestimation of the 
ovarian
e of the model stateerrors, whi
h arises from a rank-de�
ien
y of the ensemble Kalman �lter. Besides these algorithms, anumber of elegant ensemble �lter implementations based on the parti
le �lter idea are proposed in theliterature (van Leeuwen (2003), Kim et al. (2003), Chin et al. (2007)). The parti
le �lters are non-parametri
. The 
onditional distribution p(Xτ−∆τ | Yτ−∆τ) is approximated by a dis
rete distribution,lo
ated on N analysis states, xa

i,τ−∆τ , i = 1, . . . , N , with equal probability, p1,τ−∆τ = p2,τ−∆τ = . . . =
pN,τ−∆τ = 1/N . The 
onditional distribution p(Xτ | Yτ−∆τ) is approximated by dis
rete distribution,lo
ated at N fore
ast states xf

i,τ , i = 1, . . . , N , with the same probability pi,τ = 1/N . The model



16dynami
s, eqn (14), are used to propagate the parti
les forward in time. To approximate the 
onditionaldistribution p(Xτ | Yτ ) at a new assimilation time, the probabilities of parti
les pi,τ are 
hanged. Theyare not anymore equal to ea
h other, while the parti
le themselves remain untou
hed. To improveperforman
e of the parti
le �lter, a resampling step is introdu
ed. At the new assimilation time theensemble of analysed states xa
τ is resampled from the ensemble of the fore
ast states xf

τ in a

ordan
ewith modi�ed probabilities pi,τ . The 
onditional distribution p(Xτ | Yτ ) is again approximated by adis
rete one, with equal probabilities, lo
ated on parti
les xa
i,τ , i = 1, . . . , N . The resampling prohibitsthe e�
ient rank of the ensemble to de
rease during the assimilation 
y
les.Even though the parti
le �lters theoreti
ally are able to handle the data assimilation properly in
ase of non-linear and non-Gaussian state spa
e problems, the pra
ti
al appli
ability of these �ltersfor the meteorologi
al data assimilation is quite limited. The main problem is a very slow 
onvergen
eof the non-parametri
 estimate (O(1/N)), espe
ially in 
ase of a large-dimensional model.A non-Gaussian extension of the EnKF that uses a mixture of Gaussian probability densities todes
ribe the probability density of the model state is an alternative to handle non-linear and non-Gaussian state spa
e models (Anderson and Anderson 1999, Bengtsson et al. 2003). Under thisapproa
h the 
onditional density p(Xτ | Yτ−∆τ ) is assumed to be

p(Xτ |Yτ−∆τ
) =

L
∑

l=1

πf
l,τN (µf

l,τ , B
f
l,τ),where N (µf

l,τ , B
f
l,τ ) denotes a Gaussian density with mean µf

l,τ and 
ovarian
e matrix Bf
l,τ . All pa-rameters µf

l,τ , Bf
l,τ and mixing probabilities πf

l,τ are estimated from the ensemble of the fore
ast states
Xf

i,τ , i = 1, . . . , N , assuming that the size N of the ensemble is mu
h larger than the amount of thesele
ted 
lasses L. During the assimilation step, the 
onditional density p(Xτ | Yτ ) is approximatedby
p(Xτ | Yτ ) =

L
∑

l=1

πa
l,τN (µa

l,τ , B
a
l,τ ),where µa

l,τ and Ba
l,τ are updated in a

ordan
e with the Kalman �lter re
ursive formulas, eqn. (6),separately for ea
h 
lass L. The mixing probabilities are updated in su
h way that the 
lasses 
loserto observations would have higher weights.3.4. The Hybrid Ensemble Kalman Filter - Variational assimilation s
heme..The Hybrid Ensemble Kalman Filter-Variational Assimilation s
heme has re
eived mu
h attention inthe literature at present time (Wang et al 2007, Hamill and Snyder 2000). The idea of the hybrid s
hemeis to 
ombine the best possible a
hievements of both the variational and the ensemble assimilations
hemes. The su

essful assimilation s
heme must point out areas of strongest fore
ast un
ertaintyand try extra
t as mu
h as possible information from the available observations in those areas. Whenthe data assimilation is performed under the Variational or the Ensemble Kalman s
heme, in both
ases the analysed state in ea
h gridpoint is a weighted sum of the fore
ast state and the surroundingobservations with weights being determined by the relative un
ertainty of both sour
es of information.That is why the realisti
 estimation of the 
urrent fore
ast un
ertainty, whi
h is large in dynami
allyunstable areas and low in the areas with dense observation network, is important for 
onstru
ting theanalysed state. Even if the number of observations available and utilized by data assimilation s
heme



17at present is relatively large (from O(104) to O(106)), the dimensionality of the model state in highresolutions is still mu
h higher. The prior assumptions on the model state, expressed via the fore
asterror 
ovarian
e matrix, in�uen
e strongly the 
onstru
tion of the analysed state. In order to performa proper extrapolation of the observations into the model state, the �ow-dependent stru
ture fun
tionsof the fore
ast error 
ovarian
e are essential.The fore
ast error 
ovarian
e used in variational data assimilation s
hemes at present does not havethis property. It is stati
 and has simplisti
 stru
ture fun
tions based on spatial homogeneity andisotropy. There is a hope that a fore
ast error 
ovarian
e matrix B, whi
h 
ombines together the fullrank stati
 fore
ast error 
ovarian
e matrix B3DV ar and the �ow-dependent rank-de�
ient ensemblefore
ast error 
ovarian
e matrix Be, based on the Kalman �lter res
aling ensemble, will improve thevariational assimilation s
heme.The hybrid assimilation s
hemes are proposed in two di�erent formulations, whi
h are theoreti
allyequivalent (Wang et al. (2007)). Hamill and Snyder (2000) use the same 
ost fun
tion as in 3D-Variational data assimilation (eqn. 12) but with the fore
ast error 
ovarian
e matrix B being equal(32) B := Bf
τ = αB3DV ar + (1 − α)(Zf

τ (Zf
τ )T · L)where Zf

τ is the ensemble of the normalised fore
ast perturbations, L is the pres
ribed 
orrelationmatrix used for the 
ovarian
e lo
alisation and A · B denotes the S
hur produ
t of the A and Bmatri
es, (A · B)i,j = Ai,jBi,j.Loren
 (2003) and Buehner (2005) propose a modi�
ation to the 
ost fun
tion by augmenting theset of 
ontrol variables
J =

1

2
ηT

τ ητ +
1

2
aT

τ A−1aτ

+
1

2
(Hτ (x

f
τ + ∆xτ ) − yτ )

T R−1(Hτ (x
f
τ + ∆xτ )

T − yτ )

(33)whi
h is to be minimised with respe
t to the "optimal" in
rement ∆xτ . The analysis in
rement ∆xτis expressed via two sets of 
ontrol variables, namely the usual variational ones, whi
h are of the sizeof the model state, and a set of new 
ontrol variables asso
iated with the �ow-dependent stru
turesresolvable by the ensemble
∆xτ = β1∆x1,τ + β2∆x2,τ

= β1(B3DV ar)
1/2ητ + β2(B

e
τ )

1/2aτ

= β1(B3DV ar)
1/2ητ + β2Z

f
τ aτ

(34)Here β1 and β2 are empiri
ally estimated weights and matrix A is a �lter stabiliser.Buehner (2005) proposes to augment the 
ontrol variable set further in order to implement the
ovarian
e lo
alisation in the 
ontext of the ETKF. He points out that the square-root of the lo
alisedensemble 
ovarian
e 
an be expressed as(35) Zf
loc,τ = [diag(Zf

1,τ)L
1/2, diag(Zf2,τ)L

1/2, . . . , diag(Zf
N,τ)L

1/2],where, again, L is the pres
ribed 
orrelation matrix for the lo
alisation, Zf
i,τ is the i-th perturbationand diag(Zf

i,τ) is a m × m diagonal matrix with the Zf
i,τ on the diagonal. Equation (35) expli
itlyproves that the 
ovarian
e lo
alisation redu
es the e�e
t of sampling error. The square-root Zf

loc,τ ofthe sample estimate of the fore
ast error 
ovarian
e matrix has larger dimensionality, whi
h is at most
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Nr, in 
omparison with the dimensionality of the square-root matrix Zf

τ , whi
h is N . Here r is thedimensionality of L. In this 
ase the set of variational 
ontrol variables should be augmented by Nrnew 
ontrol variables asso
iated with the �ow-dependent stru
tures.One important remark is that it is not straight-forward to apply the 
ovarian
e lo
alisation. Essen-tially, the 
ovarian
e lo
alisation la
ks physi
al ba
kground and destroys important balan
es betweenthe model state 
omponents. For example, the geostrophi
 
omponent wind 
omponents should be inan approximate linear balan
e with the spatial geopotential gradient. One possibility is to apply thelo
alisation to streamfun
tion only and let other variable 
omponents to adjust to ea
h other after thelo
alisation.
J =

Wb

2
(δxτ )

T B−1
3DV arδxτ +

Wa

2
aT A−1a

+
1

2
(Hτ (x

f
τ + ∆xτ ) − yτ )

T R−1(Hτ (x
f
τ + ∆xτ )

T − yτ )

(36)The analysis in
rement is related to the 
ontrol ve
tor as follows
∆xτ = ∆x1,τ + ∆x2,τ

= Uητ + Ueηe
τa

(37)where ητ is a set of 
ontrol variables asso
iated with the stru
ture of B3DV ar, U is a transformation fromthe 
ontrol ve
tor spa
e into the model spa
e, ηe
τ is a set of variables estimated from the ensemble ofthe fore
ast states Zf

τ and Ue is a transformation ba
k to the model spa
e that is supposed to preservesome important balan
es expli
itly. Matrix A is an empiri
al 
orrelation matrix (to be spe
i�ed) whi
hdes
ribes the stru
ture of ai-2D �eld. The 2D-�elds ai 
an be of a mu
h 
oarser resolution than themodel state.Wang et al. (2007) has shown that the Hybrid Ensemble Transform- Optimal Interpolation s
heme
an work even without lo
alisation in the 
ase of a simpli�ed dynami
al model. The estimate of thefore
ast error 
ovarian
e matrix is stabilised by merging the rank-de�
ient �ow-dependent 
ovarian
ematrix with the full rank stati
 
ovarian
e matrix.4. Ensemble predi
tion systemsThe methods dis
ussed in the previous se
tion are all 
on
erned with data assimilation. The issue ofdata assimilation is to merge the un
ertainty in the fore
ast model and in the observation in an optimalway in order to 
onstru
t the initial model state for the weather predi
tion. The ensemble methodsused in data assimilation allow to 
onstru
t not only a deterministi
 initial state for the fore
asting butto quantify the un
ertainty about the initial model state as well. The representation of un
ertainty isdone essentially through estimation/modelling of the analysis/fore
ast error 
ovarian
e. One may saythat for these models the Gaussian assumptions about the distribution of the model state are madeimpli
itly. Even variational data assimilation s
hemes allow theoreti
ally the quanti�
ation of theun
ertainty about the initial model state. The inverse of the Hessian, whi
h determines the 
urvatureof the 
onditional probability density fun
tion, given observations, in a vi
inity of its maximum, 
ouldbe used as a measure of the un
ertainty. However, the huge dimensionality of the model state doesnot allow to perform the inverse.The ensemble predi
tion systems (EPS) were proposed by Leith (ex
ellent review is given by Ehren-dorfer (1997)) and have di�erent aim. A su

essful EPS should sample the un
ertainty about the initial



19model state (the initial PDF) in su
h a way that it 
ould des
ribe a relevant part of the PDF (usuallynon-Gaussian) during and after the integration period of interest for the phenomena of interest. Thephenomena of interest 
an often be related to the model state variable via non-linear small-dimensionaltransform. The EPS systems 
an roughly be divided into three groups dependent on how the initialensemble of perturbations is 
reated:(1) sampling of dynami
ally unstable dire
tions : the singular ve
tors optimized over 
ertain fore-
ast length and error breeding;(2) sampling of the analyses errors :Kalman �lter based res
aling;(3) 
omprehensive sampling of di�erent sour
es of un
ertainty about the fore
asting system: asystem simulation approa
h.Combinations of these three approa
hes also exist.4.1. Singular Ve
tors.Singular ve
tors represent those dire
tions in the model spa
e at initial time that give the maximumlinear growth for a spe
i�
 fore
ast period and over prespe
i�ed area. Maximisation is performed withrespe
t to a 
ertain norm. Typi
ally singular ve
tors are maximised using the energy norm both atthe initial and at the �nal time and are abbreviated TE SV (total energy singular ve
tors). TE SVare solutions of the following generalised eigenvalue problem(38) (M(t0, tp))
T P T EpPM(t0, tp)x = λE0xwhere λ is an eigenvalue 
orresponding to x, E0 and Ep is energy norms at the initial and at the�nal time, M(t0, tp) is a tangent-linear dynami
al propagator over the period t0 < t ≤ tp and P is aproje
tion operator to the prespe
i�ed area.The total energy norm is 
al
ulated via the total dry energy transformation, whi
h was �rst proposedby Talagrand (1981) and was studied in details by Erri
o (2000)(39) < x, Ex >=

∑

l

(uT
l Dlul + vT

l Dlvl +
cp

Tr
tTl Dltl) + RdTr(ln(Ps))

2where l is a verti
al model level, Dl is the verti
al transformation, Dl = Pl+1/2 − Pl−1/2, ul, vl, tl and
Pl are wind 
omponents, temperature and pressure at the model level l, Ps is the surfa
e pressure,
cp = 1004 J K−1 kg−1 is the spe
i�
 heat for dry air at 
onstant pressure, Tr = 273 K is the referen
etemperature and Rd = 287 J mol−1 K−1 is the gas 
onstant for dry air. This quantity was used togenerate initial perturbations in Buizza et al. (1993). The theoreti
al expression for the total energynorm 
an be found in Barkmeijer et al. (1999), for instan
e.In the 
ase of linear dynami
s the set of singular ve
tors XSV k(t0) 
orresponding to di�erent λk,
λ1 > λ2 > . . . λN , would span the most rapidly growing dire
tion at the optimization time tp (tp = 48hours is typi
ally assumed). The evolved singular ve
tors M(tp, t0)XSV k(t0) will form the E-orthogonalset at the optimisation time tp.The derivations of singular ve
tors is based on the model dynami
s. These ve
tors are believed tosample the unstable linear subspa
e as e�
iently as possible. To generate the initial perturbationsfor the EPS the singular ve
tors are res
aled to represent the system with a realisti
 initial spread.Both the optimisation time and the phenomena of interest in�uen
e the 
onstru
tion of the singular



20ve
tors. For example, by maximizing the total energy norm in the small target area the system 
anbe designed for a spe
i�
 region and pro
ess of interest.Su
h singular ve
tors are 
alled Targeted Singular ve
tors. Frogner and Iversen(2001) and Hersba
het al. (2000) generated the targeted ensemble predi
tion systems (TEPS) for parts of Europe. TEPSprovides the initial and the boundary �elds for LAMEPS, a high resolution limited area ensemble pre-di
tion model. The model seems to be su

essful in fore
asting extreme weather events and even larges
ale pre
ipitation whi
h involves strong mesos
ale variability and is strongly in�uen
ed by orography.A detailed des
ription and veri�
ation of LAMEPS 
an be found in Frogner and Iversen (2002).To make EPS based on Singular Ve
tors more appropriate for the short range fore
asting, theoptimized (at some future time, usually 24 or 48 hours) singular ve
tors may be 
ombined with theevolved singular ve
tors from the previous optimisation time. Hamill et al 2003 propose an alternativeapproa
h. They generate the ensemble of Analysis Error Covarian
e Singular Ve
tors (AEC SV) bysolving the generalised eigenvalue problem (eqn 38) but with the initial energy norm E0 in the equationabove being repla
ed with the inverse of the analyses error 
ovarian
e norm P−1
a . So the idea is tosample the qui
kly growing dire
tions, whi
h initially have stru
tures 
onsistent with the analysiserror 
ovarian
e. Hamill et al. (2003) have shown that evolved and appropriately res
aled AEC SV

vtp satisfy the following generalized eigenvalue equation(40) E1/2
p Xf

tp(E
1/2
p Xf

tp)
T vtp = λvtpprovided that the ensemble size is large and that the model dynami
s is nearly linear. The fore
astensemble Xf

tp is obtained by dynami
al forward integration of the analysis ensemble Xa
t0
, whi
h isgenerated using the ensemble square-root Kalman �lter algorithm (eqn. 20). Thus, the evolvedsingular ve
tors vtp are expressed as a linear 
ombination of the fore
ast ensemble, vtp = E

1/2
p Xf

tpa,where the ve
tor a is obtained solving an equivalent (eqn. 40) but smaller, with the dimensionality ofthe ensemble, eigenvalue problem(41) (E1/2
p Xf

tp)
T (E1/2

p Xf
tp)a = λaThen the initial AEC singular ve
tors ut0, whi
h are 
onsidered to give rise to vtp , are estimated asthe same linear 
ombination a but of the analyses ensemble Xa

t0
, namely

ut0 = Xa
t0a.The typi
al stru
tures of the initial-time AEC SV were signi�
antly di�erent from the typi
al stru
-tures of the total energy singular ve
tors (eqn. 38) and were similar to the subsequent fore
ast errorstru
tures, but smaller in amplitudes. However, Buehner and Zadra (2006) show that the shape of theevolved singular ve
tors is almost independent of the initial norm.4.2. Breeding ve
tors.The analyses error, or the initial-time error, 
onsist of the random errors introdu
ed by ina

ura
ies ofthe assimilated observations and the growing errors asso
iated with the instabilities of the evolving �ow,whi
h are dynami
ally generated from the errors introdu
ed at the previous assimilation times. Evenif the growing part of the error is only a portion of the total analysis error, their impa
t on the fore
asterror is large. Therefore, 
reating an ensemble of initial states with a limited ensemble size seems to beappropriate to fo
us on the e�
ient sampling in the dire
tion of growing errors (Ehrendorfer (1997),Toth and Kalnay (1997)). To sample the growing error dire
tion Toth and Kalnay proposed a method
alled breeding of the growing ve
tors. The idea is to add an arbitrary perturbation to the initial state



21at time t0, to let it grow for a short time period (t0, tp), while the error growth is approximately linear,and to downs
ale the evolved perturbation so that it has the amplitude of the initial perturbation. Theobtained perturbation is added to the analysis state at time tp and the pro
ess is 
ontinued resetting.The down s
aling of the evolved perturbations helps to eliminate de
aying dire
tions.Theoreti
ally the breeding perturbations are related to the lo
al Lyapunov ve
tors of the atmosphere(Trevisan and Legnani (1995)).(42) λi = lim
t→∞

1

t
log2

[

pi(t)

pi(0)

]where p is a linear perturbation spanning the phase spa
e of a system with orthogonal ve
tors. Whenthe Lyapunov exponents are interpreted lo
ally, ea
h of them 
an be asso
iated with a perturbation.The breeding te
hnique is based on the fa
t that any random perturbation introdu
ed an in�nitelylong time earlier develops into the leading lo
al Lyapunov ve
tor, the perturbation p with the largestexponent λ (eqn. 42).Singular ve
tors (eqn. 38) provide another possibility to approximate the Lyapunov ve
tors. At thesame time, as we have mentioned above, both optimisation time tp and the optimisation area in�uen
estrongly singular ve
tors too.In order to allow the initial perturbations 
onstru
ted via the breeding error te
hnique resemblethe analysis error in a better way, a regional res
aling is introdu
ed. The idea is to have largerperturbation amplitude in the regions sparsely observed. The s
aling fa
tor is a smooth fun
tion ofhorizontal lo
ation. A perturbation traveling into a poorly observed o
eani
 area is allowed to growfreely, while those rea
hing a well-observed area are s
aled down to the size of the estimated analysiserror (Augustine et al. (1992)).4.3. The perturbed observations approa
h.Houterkamer et al. (1996a) have developed an approa
h, alternative to the sele
tive sampling, togenerate the initial perturbation. This approa
h is in operational use at MSC sin
e 1996. The ini-tial 
onditions are generated by assimilating randomly perturbed observations, using di�erent modelversions in a number of independent data assimilation 
y
les. This is a type of system simulationexperiment, when all un
ertain parts of the fore
asting system are subje
t to perturbations. In otherwords, the idea is to sample 
arefully all sour
es of un
ertainty whi
h determine the fore
ast error.Sour
es of un
ertainty that are 
onsidered to have a signi�
ant impa
t on the fore
ast errors are ob-servation errors (both measurement and representativity), model errors (the e�e
t of unresolved s
alesand parametrisation of the physi
al pro
esses), data assimilation pro
essing errors (the unrealisti
stru
ture-fun
tions of the 
ovarian
e matrix) and the erroneous boundary �elds (in
luding imperfe
testimation of the surfa
e �elds). To a

ount for all these sour
es of errors the initial perturbation aregenerated using di�erent sets of perturbed observations, di�erent dynami
al models and di�erent setsof perturbed surfa
e �elds. At present the MSC s
heme to sample di�erent sour
es of un
ertainty hassigni�
antly developed further by allowing elaborated perturbations of essential parameters of physi
alparametrisation.4.4. The Kalman Filter based res
aling.The Kalman Filter based res
aling approa
h (ETKF) to generate ensemble predi
tion system 
an be
alled a generalized breeding. The ensemble of the fore
ast perturbations is res
aled into the ensembleof the analysis perturbations. Under the error breeding methodology the fore
ast perturbations are



22downs
aled by a s
alar or an ad-ho
 matrix, in a 
ase of a masked breeding, into the analysis pertur-bations. In 
ontrast to this methodology, the fore
ast perturbations under the ETKF res
aling s
hemeare downs
aled into the analysis perturbations by a 
arefully designed res
aling matrix whi
h re�e
tsboth the relative fore
ast/observations un
ertainty and the spatial observation distribution (eqn. 21).Theoreti
ally, in 
ase of a full-rank model, the analysis perturbations generated by the ETKF forma square-root of the analysis error 
ovarian
e matrix. One drawba
k of the ETKF res
aling s
hemeis that if the number of the ensemble perturbations is mu
h smaller than the number of dire
tions towhi
h the fore
ast error varian
e proje
ts, the transformation (eqn. 20) heavily underestimates theanalysis error 
ovarian
e matrix (Wang and Bishop 2003). A simplisti
 way to over
ome the problemis to multiply ea
h ensemble member by a s
alar to for
e the spread of the analysis perturbations tobe 
onsistent with the analysis error varian
e on a spatially averaged basis. It is still questionableif the perturbations modi�ed in su
h a heuristi
 manner are able to des
ribe the time developmentof the PDF of the model state. Wang and Bishop (2003) have shown that the fastest growth in theensemble perturbation subspa
e generated by the ETKF is larger in the total energy norm than thefastest growth in the ensemble 
onstru
ted via breeding.The fastest growth γ is de�ned via a linear 
ombination b of the perturbations to obtain the dire
tionof the fastest growth of the total energy over the prespe
i�ed time period,(43) max
bT (Zf

tp)
T SZf

tpb

bT (Za
t0)

T SZa
t0b

,where S is an appropriate norm, the total energy norm (eqn. 39) in this 
ase. In fa
t, the linear
ombination b is a leading eigenve
tor of A−1/2BA−1/2, where A = (Za
t0)

T Za
t0 , B = (Zf

tp)
T Zf

tp and
t0 < t < tp is the optimisation period (Wang and Bishop 2003). Thus the fastest error growth is theleading eigenvalue of A−1/2BA−1/2.The analysis perturbations 
onstru
ted via the ETKF have a very �at spe
trum, espe
ially in
omparison with the perturbation 
onstru
ted via error breeding.Besides that the ETKF perturbation seems to be able to resolve a wider range of innovation varian
ethan the breeding perturbations.At the same time we would like to stress that the Kalman Filter based res
alig s
hemes allow tosample the un
ertainty valid at the analysed time t0, measuring the un
ertainty via the varian
e-
ovarian
e of the model state. This means that the Gaussian assumptions about the PDF of themodel state valid at t0 are done impli
itly. It is questionable wether the ensemble of limited size ofthe analyses states 
onstru
ted in su
h way and dynami
ally propagated forward to the time interestis able des
ribe adequately the relevant part of the PDF for the phenomena of interest.5. Verifi
ation of the Ensemble SystemsThe veri�
ation of ensemble predi
tion system for NWP involves some spe
i�
 problems. The qual-ity of the predi
tion system 
an be evaluated only based on observations, be
ause only the observationsre�e
t the true state of the atmosphere. At the same time the assessment of the quality 
an be doneonly statisti
ally, based on a large number of realizations of both observations and ensemble predi
-tions. S
ores whi
h are 
ommonly used for evaluating the ensemble predi
tion system are extensivelydis
ussed in Toth et al. (2003) or Stanski et al. (1989).A veri�
ation methodology for the ensemble predi
tion system 
on
erns three di�erent subje
ts:
• predi
tion of the o

urren
e of a parti
ular binary event,
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• predi
tion of a probability distribution of a random (one-dimensional) variable
• and representation of the un
ertainty about the estimate of the (full-dimensional) model state.To validate the predi
tion of an o

urren
e of the parti
ular binary event E , as for example "thesurfa
e pressure is 3hPa smaller than its 
limatologi
al value",
• the Brier s
ore (the Probability s
ore) and its de
omposition,
• the Relative Operating Chara
teristi
s (ROC) and the area under ROC and
• the Relative E
onomi
 Value are usually used.They all are based on the Reliability Diagram (a relation between fore
asted and observed frequen
iesof the binary event E) and try to produ
e quantitative summaries from it.A validation of the predi
tion of the probability distribution of a random one dimensional variableis 
losely related to the validation of an o

urren
e of a parti
ular binary event. The random one-dimensional variable X is des
ribed via an en
losing set of binary events El = {X ≤ xl}, l = 1, . . . , L,with in
reasing sequen
e of thresholds x0 < x1 < . . . xl < . . . < xL.
bullet Dis
rete and Continuous Rank Probability S
ores, whi
h are generalizations of the Brier S
ore,are 
ommon measures for the validation.Spe
i�
 measures based on the ensemble estimate of the probability distribution are reported often inparallel.
• The Rank histogram (Candille and Talagrand, 2005) the utilizes indistinguishability hypothesis(verifying observations should be free from observational error) and
• the Skill S
ore (S
) 
on
erns the 
on
ept of a prior-posterior probability density in a Bayesianframework (a parametri
 estimate of the probability density) (Wilson et al., 1999). • the Skill S
ore(S
) 
on
erns the 
on
ept of a prior-posterior probability density in a Bayesian framework (a parametri
estimate of the probability density) (Wilson et al., 1999).A validation of the representation of the un
ertainty about the estimate of the model state is ofdi�erent nature. In appli
ations 
on
erning "Gaussian" type data assimilation (Hybrid Variational orEnsemble Kalman Filter data assimilation) the un
ertainty about the point estimate of the model stateis represented through the varian
e-
ovarian
e matrix of the fore
ast error. In that 
ase the validationshould primarily re�e
t how well the ensemble is able to span a subspa
e essential for the dynami
aldevelopment of the varian
e-
ovarian
e matrix. The diagnosti
s should re�e
t(1) the dynami
al 
onsisten
y and dominant s
ales of the variability(spe
tral densityand horizontal and verti
al 
ross-
orrelations withinand between model state 
omponents),(2) the spread-skill relationship(the "spread-skill" plot,the resolved range of innovations varian
e,Perturbation versus Error Correlation Analysis (PECA)) and(3) the span of the dynami
ally unstable dire
tions(fastest growth of perturbation energy in the ensemble spa
e,perturbation 
orrelation with the Eady index,

E-dimension).In the following we will 
on
entrate on a des
ription of some of the validation te
hniques mentionedabove and outline some basi
 relationships between them.



245.1. Predi
tion of the o

urren
e of a parti
ular binary event.Let M denote the total amount of realizations of a predi
tion of a parti
ular event of interest, E , overwhi
h the veri�
ation is performed, let ri,j = {0, 1}, 1 ≤ i ≤ N , j = 1, . . . , M , denote the predi
tion ofthe event E by the ensemble member i during the realization j and let oj = {0, 1}, 1 ≤ j ≤ M , denotethe observation of the event E during the realization j. The random quantities ri,j and oj are equal 1if E o

urs and equal 0, otherwise.The predi
ted probability of the o

urren
e of E in the realization j, pj, is
pj =

1

N

N
∑

i=1

ri,j.For ea
h realization pj is a dis
rete random variable with N + 1 possible out
omes, i.e. pj = πk,
πk := {0, 1

N
, 2

N
, . . . , N

N
} for ea
h j = 1, . . . , M . The distribution of pj will depend on the ensemblesize and the predi
tability of the event. Let gk = g(πk) := 1

M

∑M
j=1 Ipj=πk

, 0 ≤ k ≤ N , denote thefrequen
y of the o

urren
e of the out
ome πk. Here IA is the index of a random event A: IA is 1 if
A is true, and IA is 0 if A is false. In the similar way let us denote ok, 0 ≤ k ≤ N , the frequen
y withwhi
h the event E indeed o

urs in di�erent realizations of the predi
tion system when it is predi
tedby the system with probability of the o

urren
e πk, ok = o(πk) := 1

M

∑M
j=1 ojIpj=πk

.
• The Reliability Diagramis a plot of ok against πk. The histogram of the probability realizations pj, j = 1, . . . , M or thefrequen
y gk, k = 0, . . . , N is reported as well. This information is the 
omplete representation of theperforman
e of the ensemble predi
tion system in predi
ting the event E .Several quantitative measures for the performan
e of the Reliability Diagram are proposed in theliterature.
• Brier s
ore (Brier, 1950)is de�ned as(44) B =

1

M

M
∑

j=1

(pj − oj)
2 = E(p − o)2 = E(E(p − o)2 | p)where p and o are random variables des
ribing the predi
ted probability of o

urren
e and the o

ur-ren
e itself of the event E . The better is the predi
tion system the lower is Brier s
ore.Murphy 1973 proposed a de
omposition of the Brier s
ore into three informative 
omponents. Let

g(p) and o(p) denote density fun
tions whi
h des
ribe 
orresponding relationship between the frequen-
ies of o

urren
e gk or ok and the out
omes of the predi
ted probability πk, 0 ≤ k ≤ N . Let oc denotethe 
limatologi
al frequen
y of the o

urren
e of the E , oc =
∑N

k=0 okgk. Then Murphy de
ompositionreads
B =Ep((p − o(p))2) + Ep(o(p)(1 − o(p)))

=

∫ 1

0

g(p)(p − o(p))2dp −
∫ 1

0

g(p)(o(p) − oc)
2dp + oc(1 − oc)

=

N
∑

k=0

gk(πk − ok)
2 −

M
∑

k=0

gk(ok − oc)
2 + oc(1 − oc)

(45)



25The �rst two terms in the Murphy de
omposition of Brier s
ore B 
hara
terize the predi
tion sys-tem. The �rst term in the de
omposition is 
alled a reliability (BSrel) and it measures the statisti
al
onsisten
y between the predi
ted and the observed frequen
ies of o

urren
e of E . The se
ond term(BSres) is 
alled a resolution and it implies that the predi
ted probability should be 
ase dependent(di�erent from the 
limatologi
al one). The third term is 
alled un
ertainty (BSs) and it depends onthe nature of the event E but not on the predi
tion system.Sometimes Relative Brier S
ore (BSS) and its de
omposition are reported instead.
BSS =

B
BSs

=BSSrel + BSSres =

Ep(p − o(p))2

oc(1 − oc)
+ 1 − Ep(o(p) − oc)

2

oc(1 − oc)

(46)In
reasing the fore
ast lead time BSSrel grows and BSSres de
reases. The development with timeof the total BSS will depend on the relative impa
t of both 
omponents.
• Relative Operating Chara
teristi
s or Re
eiver Operating Chara
teristi
s (ROC)is an alternative qualitative measure of the performan
e of the EPS and it is 
losely related with theReliability Diagram (Mason and Graham, 2002). The ROC 
urve is a plot of Hit rate against False-alarm rate varying the strategy of predi
tion of the event E by the ensemble system. For the ensemblesystem of size N there are N + 2 di�erent predi
tion strategies of the event E : predi
t if at least l,
1 ≤ l ≤ N , ensemble members predi
t the event (Dl) and two degenerate predi
tion strategies, namelynever predi
t (D0) and always predi
t (DN+1). For the sele
ted informative predi
tion strategy Dl,
l = 1, . . . , N , the jth realization of the EPS will predi
t event E if and only if pj ≥ πl. Let mo =
1
M

∑M
j=1 oj denote the total amount realizations when the event E has o

urred, ml

1 = 1
M

∑M
j=1 ojIpj≥πldenote the total amount of realizations when the event E was predi
ted when it has indeed o

urred,

m0
l = 1

M

∑M
j=1(1 − oj)Ipj≥πl

denote the total amount of realizations when the random event waspredi
ted but has not o

urred and m−1
l = 1

M

∑M
j=1 ojIpj≤πl

denote the total amount of realizationswhen the random event was not predi
ted but has indeed o

urred. For the degenerate predi
tionstrategies we have (m1
0, m

0
0, m

−1
0 ) = (0, 0, mo) and (m1

N+1, m
0
N+1, m

−1
N+1) = (mo, M − mo, 0).Then the Hit rate Hl and the False-alarm rate Fl 
orresponding to the predi
tion strategy Dl,

l = 0, . . . , N + 1 are de�ned as follows
Hl =

m1
l

mo
, Fl =

m0
l

M − mo
.Plotting Hl against Fl for all l = 0, . . . , N + 1 we obtain ROC 
urve. The 
loser 
omes the 
urve tothe left upper 
orner ((H, F ) = (1, 0) - "the most hit the least false alarms" ) the better is the EPSsystem predi
ting E .

• The area under ROCis often is reported as another quantitative measure of the probabilisti
 skill of the EPS. Under 
ertain
onditions, the area under ROC 
an be used to measure skillfulness of the EPS statisti
ally. Areaunder ROC, A, 
an easily be 
al
ulated as(47) A = 1 − mo(M − mo)

F



26where F is a total number of "inversions" among realizations of the EPS. An "inversion" we 
alla situation when the predi
ted probability of any hit pjhit
≥ 0, jhit : ojhit

= 1, is smaller than thepredi
ted probability of any false-alarm pjfalse−alarm
, jfalse−alarm : ojfalse−alarm

= 0. The total amount ofall hits with the predi
ted probabilities lower than ea
h false-alarm 
an be obtained easily from theranks of the realizations 
orresponding to ea
h hit, ri, i = 1, . . . , mo. The realizations are ordered byde
reasing the predi
ted probability of the random event E .If all predi
ted probabilities are di�erent for di�erent realizations, the total number of "inversions"is given by the following formula(48) F =
mo
∑

i=1

ri −
mo(mo + 1)

2If ties are present among pj , as it is often the 
ase for the ensemble predi
tion system, a 
orre
tion forthe ties should be done (DeLong et al. 1988). In that 
ase the area under ROC is obtained as(49) Aties = 1 − mo(M − mo)

Fties
= 1 − 1

mo(M − mo)

P
∑

p=1

hp(fp + f̃p)where P is a number of distin
t segments among pj, hp is a number of hit in segment p, fp is anumber of false-alarms with the predi
ted probability of the event higher than that asso
iated withsegment p and f̃p is a number of false-alarms with the predi
ted probability of the event higher orequal than that asso
iated with segment p.For large amount of realization the distribution of F 
an be well approximated by the Gaussian one:(50) F ∼ N (aF , bF ).where aF = mo(M−mo)
2

, bF = mo(M−mo)(M+1)
12

.The exa
t distribution of the F is known as well. It is has the same distribution as the Mann-WhitneyU-statisti
s (Bamber 1975), whi
h is symmetri
 and is de�ned via a re
urren
e formula (Conover, 1973,1999).The same distributional theory holds even for Fties with a 
ertain adjustment for ties (Conover,1999). For large number of realizations,(51) Fties ∼ N (aties
F , bties

F )where
aties
F =N (

mo(M − mo)

2
,

bties
F =

mo(M − mo)(M + 1)

12
− mo(M − mo)

12M(M − 1)

P
∑

p=1

(τp(τp + 1))(τp − 1))The Mann-Whitley U-statisti
s test di�eren
es in 
entral tenden
ies of two independent samples.High observed value of F (Fties) will indi
ate that there is a statisti
ally signi�
ant di�eren
e betweenthe predi
ted probabilities of the hit events and the false-alarm events. However, it is important that



27realizations of pj indeed form an independent sample in order to use the distribution of the statisti
sto quantify the signi�
an
e.
• Relative E
onomi
 valueof the EPS is one more way to quantify the performan
e of the EPS. Relative E
onomi
 Value relatesBrie S
ore and Relative Operating Chara
teristi
s between themselves. Relative E
onomi
 value 
learlydemonstrates the advantage of EPS systems in 
omparison with deterministi
 fore
asts (Ri
hardson,2001).We say that if the veri�
ation event E o

urs, it will 
ost the user Lu if he have already taken apreventive a
tion whi
h 
ost C or the user will pay the total 
ost Lu + La if he have not taken thepreventive a
tion. The user must sele
t a strategy to take the preventive a
tion or not by minimizingthe 
ost over a large number of 
ase, i.e by minimizing the expe
ted 
ost. If the user de
ides to prote
thimself by taking a preventive a
tion, he will do that always as soon as the event E is predi
ted.A

epting the 
ertain predi
tion strategy Dl = (m1

l , m
0
l , m

−1
l ), 0 ≤ l ≤ N + 1, the expe
ted expensewill be

eel =
m−1

l

M
(La + Lu) +

m0
l

M
C +

m1
l

M
(C + Lu)

= oc(Lu + La) + La(Fl(1 − oc)α − Hloc(1 − α))
(52)where α = C/La is a quantity whi
h will 
hara
terize the user, namely whi
h fra
tion of thepotential avoidable loss La the user is prepared to spend on the preventive a
tion, and oc = mo/M isa 
limatologi
al frequen
y of the event E .Negle
ting information given by the EPS the user would base the sele
tion of strategy on the"
limatologi
al frequen
y" only. The optimal (expe
ted) 
limatologi
al expense eec is

eec = min{C + ocLu, oc(La + Lu)}This expression is based on the deterministi
 strategy to prevent always if the preventive a
tiongives positive gain an average (C < ocLa), 
orresponding to the degenerate predi
tion strategy DN+1(HN+1 = 1, Fl+1 = 1), and to prevent never if the preventive a
tion 
osts on average too mu
h(C ≥ ocLa), 
orresponding to the degenerate predi
tion strategy D0 (H0 = 0, F0 = 0).The Relative e
onomi
 value Vl, dependent on the predi
tion strategy Dl, is the redu
tion in theexpe
ted expense due to the EPS in proportion to the redu
tion in the expe
ted expense due a theperfe
t fore
ast,(53) Vl =
eec − eel

eec − eeperfwhere eeperf = oc(C +Lu) is the expe
ted expense based on the perfe
t fore
ast (Hperf = 1, Fperf = 0).It is possible to show that Vl a
hieves the maximum value always for α = oc and that the maximalvalue depends on the sele
ted predi
tion strategy and that it is equal to the Kiupers s
ore KSl of thefore
ast
Vmax,l = Hl − Fl = KSlThe Relative E
onomi
 value is positive only for a range of users, namely



28(54) m−1
l

M − m1
l − m0

l

< α <
m1

l

m1
l + m0

lEvaluating the EPS system from the perspe
tive of the user (α), the user must sele
t his optimalpredi
tion strategy whi
h will give the largest Relative E
onomi
 value V opt(α) = Vlopt(α)(α). How
lose V opt(α) is to its the maximal value KSlopt(α) depends on how 
lose α is to the 
limatologi
alfrequen
y oc.
• The Overall E
onomi
 valueis the expe
ted expense over all users. Let the population of users be des
ribed by a density fun
tion
u(α), 0 < α < 1. All users whi
h are predi
ted to gain (in the long run) from the preventive a
tion((α < p) ≡ (C < pLa)) will take the preventive a
tion and all user whi
h are predi
ted to lose in longrun on preventing (α ≥ p) ≡ (C ≥ pLa

) will take all 
ost if the event will happen indeed. The overalle
onomi
 expense for a deterministi
 fore
ast p will be
eeF (p) =

∫ p

0

αu(α)dα + o(p)

∫ 1

p

u(α)dα.Here we assume that Lu = 0 for simpli
ity. The Overall E
onomi
 value for the EPS, eeF =
∫ 1

0
eeF (p)g(p)dp, 
an be de
omposed into following 
omponents

eeF =

∫ 1

0

g(p)

∫ p

0

(α − o(p))u(α)dαdp + oc

= eec +

∫ 1

0

g(p)

∫ p

o(p)

(α − o(p))u(α)dαdp−
∫ 1

0

g(p)

∫ o(p)

oc

(o(p) − α)u(α)dαdp.

(55)For a �nite size ensemble,
eeF =

N
∑

k=0

gk

∫ πk

ok

(α − ok)u(α)dα −
N

∑

k=0

gk

∫ ok

oc

(ok − α)u(α)dα + eecFor the uniform distribution of users, u(α) ∼ U(0, 1), the overall expe
ted E
onomi
 value eeFbe
omes dire
tly related to the Brier s
ore.
eeF =

1

2

N
∑

k=0

gk(πk − ok)
2 − 1

2

N
∑

k=0

gk(oc − ok)
2 +

1

2
oc(1 − oc) +

1

2
oc

=
1

2
(BSrel − BSres + BSs) +

1

2
oc

(56)In other words, the Brier s
ore is essentially the Overall E
onomi
al Value for users without prefer-en
e.



295.2. Predi
tion of the probability distribution of a s
alar random variable.
• The Ranked Probability S
ore(RPS) is a generalization of the Brier s
ore and is used to evaluate the probabilisti
 ensemble predi
tionof a s
alar variable, x. The Ranked Probability S
ore 
an be applied in Dis
retized (DRPS) or inContinuous (CRPS) form dependent on the support of the s
alar variable (a dis
rete or a 
ontinuousone). For evaluation of an ensemble predi
tion system from the perspe
tive of a s
alar variable theRelative Ranked Probability S
ore (RPSs) and it de
omposition into normalized reliability (RPSrel)and normalized resolution s
ore (RPSres) 
an be applied. An extensive dis
ussion on these s
ores isgiven in Candille and Talagrand (2005). For example, in dis
rete form the DRPSs, DRPSrel and
DRPSres are de�ned as follows

DRPS =
1

L

L
∑

l=1

B(El) = DPRSrel + DPRSres

unc =
1

L

L
∑

l=1

plc(1 − plc)

DRPSs =1 − DRPS

unc

DRPSrel =
1
L

∑L
l=1 E(pl − o(pl))

2

unc

DRPSres =1 −
1
L

∑L
l=1 E(o(pl) − pcl)

2

unc

(57)
where El = {x ≤ ξl}, ξ1 < ξ2 < . . . ξL, l = 1, . . . , L is a sequen
e of events, B(E) is the Brier s
ore s
orefor the probabilisti
 predi
tion of event E and plc is a 
limatologi
al frequen
y for the o

urren
e ofevent El.
• The Continuous Ranked Probability S
ore (CRPS)is obtained by transforming a �nite sum over thresholds in DRPS (eqn. 57) into an integral over x.(58) CRPS =

1

M

M
∑

j=1

∫

(Fj(ξ) − H(ξ − xobs,j))
2dµ(ξ) =

∫

B(Eξ)dµ(ξ)where B(Eξ) is the Brier s
ore for the event Eξ = {x ≤ ξ}, Fj(ξ) is the jth realization of the probabilitydistribution of the s
alar variable x, Fj(ξ) = P (Eξ) = 1
N

∑N
k=1 H(ξ − xkj), xkj is the predi
tion ofthe random variable x by ensemble member k in the realization j of the EPS, H(y) is the Heaoyisidefun
tion (H(y) = 0 if y < 0, Hy = 1 if y > 0) and dµ(ξ) is a measure with whi
h the integration isperformed.The Continuous Ranked Probability S
ore 
an be de
omposed into similar 
omponents as the Dis-
rete Ranked Probability S
ore(59) CRPS = Reli − Resol + UThe un
ertainty 
omponent U =

∫

Fc(ξ)(1 − Fc(ξ))dµ(ξ) is 
orresponding to unc in (eqn. 57).Here Fc(ξ) de�nes a 
limatologi
al probability fun
tion of the random variable x. Components Reliand Resol 
orrespond to the reliability and resolution 
omponents in the Brier S
ore de
omposition.



30Candille-Talagrand (Candille and Talagrand (2005)) and Hersba
h-Lalaurette (Hersba
h (2000)) aretwo di�erent de
ompositions of the CRPS into Reli and Resol 
omponents.
• The Rank Histogramis another measure of the probabilisti
 ensemble predi
tion of a s
alar variable x. It measures whetherthe verifying observation xobs,j (negle
ting the observation error) is statisti
ally indistinguishable fromthe N ensemble members xi,j , i = 1, . . . , N , j = 1, . . . , M . The Rank Histogram is de�ned as follows.It 
onsists of N + 1 bins sk:(60) sk =

M
∑

j=1

I{x[k−1],j≤xobs,j <x[k],j
, k = 1, . . . , N + 1where −∞ = x[0] < x[1] < . . . < x[k] < . . . < x[N ] < x[N+1] = +∞ are order statisti
s of the j-th realization of the ensemble predi
tion system. The �atter is the Histogram, the more reliable isensemble predi
tion system.The quantity(61) δ =

N + 1

MN

N+1
∑

k=1

(sk −
M

N + 1
)2measures the deviation of the histogram from a �at one. A value of δ whi
h is mu
h larger than1 means that the ensemble predi
tion system is unreliable. Very small values of δ indi
ate thatobservations are not random or not independent.

• The Skill S
oreis one more measure of the EPS based on the ensemble estimate of the probability distribution of arandom s
alar variable. Let E∆X denote a verifying event
E∆X = {| X − xobs |≤ ∆X}.Let Pc(E∆X) denote the 
limatologi
al probability of the event E∆X and Pens(E∆X) denote the oneestimated from the ensemble. From the Bayesian perspe
tive they will 
orrespond to the prior andthe posterior distribution of the event respe
tively.The Skill S
ore gives a measure of Pens(E∆X) relative to Pc(E∆X):(62) Sc =

Pens(E∆X) − Pc(E∆X)

1 − Pc(E∆X)Under this s
oring measure the EPS is 
onsidered to be skillful in predi
ting event E∆X if theposterior probability of the event is larger than the prior one, in other words Sc is positive for theskillful EPS. The Skill s
ore is positively oriented and it is sensitive to the lo
ation and sharpness ofthe ensemble estimated distribution with respe
t to the verifying observation. The Skill S
ore takesinto a

ount di�eren
es in the predi
tability of the event too, be
ause it is sensitive to the sharpness(and lo
ation) of the 
limatologi
al probability as well.Be
ause the ensemble size in EPS is usually small, the Pens(E∆X) should be estimated parametri
ally.The predi
tion of geopotential height and surfa
e and upper-air temperatures is found to obey a normaldistribution, the predi
tion of pre
ipitation obeys a Gamma or a Kappa distribution, the predi
tionof wind obeys a Weibull distribution, the predi
tion of 
loud 
over obeys a Beta distribution and thepredi
tion of the visibility is assumed to obey a lognormal distribution.



315.3. Representation of the un
ertainty about the model state estimate.When an ensemble system is used for "Gaussian" type data assimilation purposes, the main aim of theensemble is to adequately represent the initial un
ertainty about the model state and its development.For the "Gaussian" type data assimilation systems the 
ovarian
e matrix of the fore
ast error is
onsidered to 
apture the un
ertainty about the estimate of the model state. A su

essful ensembleshould not only 
apture the time-and-spa
e dependent variation of the spread of the distribution ofdi�erent model state 
omponents, but re�e
t also the �ow-dependent 
ross-
orrelations between modelstate 
omponents. The best veri�
ation tool is to run a period of data assimilation 
y
les: su

essfulensemble should improve the e�
ien
y in assimilating observations. However, it is a real 
hallenge to
onstru
t the proper estimate of the fore
ast error 
ovarian
e matrix when the dimensionality of themodel state is so high and the size of the ensemble is so small. A number of diagnosti
s and veri�
ationtools 
an highlight spe
i�
 features of estimates of the fore
ast error 
ovarian
e matrix.
• Diagnosti
 plotsof the spe
tral varian
e of di�erent model state 
omponents as well as plots of the 
ross-
orrelationsbetween model state 
omponents are very useful, investigating the dynami
al 
onsisten
y of the fore
asterror 
ovarian
e estimate.
• The spread-skill relationshipis 
onsidered to be an important 
hara
teristi
 of the ensemble system. There is not any uniquequantity whi
h would summarize the spread of the ensemble.The spread-skill relationship plot is a plot root-mean-square error of the ensemble mean Em =

(P T
mPm)

1/2
S and the estimate of the ensemble spread Esp = ( 1

N

∑N
i=1(P

T
i Pi)S)1/2 . Here Pm = x̄ − xaand Pi = Xi − xm, where Xi denote the ensemble members i, 1 ≤ i ≤ N , x̄ denotes the ensemblemean, xa denotes the verifying analysis and subs
ript S denotes the norm. The total energy normis often used (eqn. 39). The 
orrelation between spread and skill is related with the magnitude ofthe spread variability, namely the more the spread departs from its 
limatologi
al mean value, themore useful is the spread as a predi
tor of skill (Whitaker and Loughe (1998)). The resolved range ofinnovation varian
e is one more way to measure spread-skill relationship of the ensemble (Wang andBishop (2003)). First, a s
atterplot of squared innovations against ensemble estimate of the varian
e inobservation spa
e is 
onstru
ted using all observation quantities. After that a relationship (regression)of the innovation varian
e on the ensemble varian
e is tried. For the perfe
t ensemble, when theobservation error, model error and fore
ast error are mutually un
orrelated, the relationship shouldlook like as a stright line with 45 degrees slope, be
ause the innovation varian
e is a sum of the fore
astand observation varian
e (taken in observation spa
e). Although in reality the representativity errorand the model error may be 
orrelated with the fore
ast error, still observing the resolved range of theinnovation varian
e 
an tell us something about how well the spread of ensemble represent the skill ofthe ensemble 
an be made.Wei and Toth (2003) propose another measure to quantify skill-spread relationship 
alled Pertur-bations versus Error Correlation Analysis (PECA). First the optimal linear 
ombination of ensembleperturbations Popt, whi
h gives the best predi
tion of the fore
ast error Pm in L2 norm, is obtained:

Popt =

N
∑

i=1

αiPi,where the weights αi, 1 ≤ i ≤ N , are obtained by solving the least-square problem



32(63) min | Pm − Popt |L2The PECA is de�ned as a pattern anomaly 
orrelation between the fore
ast error Pm and the optimalperturbation Popt(64) PAC(Pm, Popt) =
cov(Pm, Popt)

var(Pm)1/2var(Popt)1/2The su

essful ensemble should explain the largest part of the fore
ast error varian
e via the optimalperturbation. • Sampling of dynami
ally unstable dire
tionsis one more important 
hara
teristi
s of the ensemble in representing the fore
ast error varian
e-
ovarian
e. The 
orrelation of the optimal perturbation with the Eady index (Hoskin and Valdes(1990)), the fastest growth of the energy of perturbations in the spa
e spanned by the ensemble inthe total energy norm and the E-dimension (Oszkowski et.al, 2005) 
an be used as measures of theensemble performan
e.The estimation of the fastest energy growth is given in the se
tion on Singular ve
tors (eqn. 43).The Eady index expresses the maximum normal mode error growth rate in baro
lini
 developmentsand it is de�ned as(65) σEady = 0.3125
f

Nb

du

dzwhere f is the Coriolis parameter, Nb is the buoyan
y frequen
y and du
dz

is the verti
al wind shear.Interpreting the 
orrelation one should remember that the Eady index 
orresponds to instabilities
aused by baro
lini
 development only.The Ensemble dimension, also known as The Bred Ve
tor dimension, measures the e�e
tive dimensionspanned by a N-dimensional ensemble in a lo
al geographi
al region at a parti
ular time. The E-dimension 
hara
terizes the e�e
tive number of dominant dire
tions in the ve
tor spa
e spanned bythe ensemble perturbations and is de�ned as(66) Edim(λ1, . . . , λN) =
(
∑N

i=1

√
λi)

2

∑N
i=1 λiwhere λi, i = 1, . . . , N are eigenvalues of the lo
al fore
ast error 
ovarian
e matrix BL = (P T

L PL)S. Heresubs
ript S denotes the total energy norm and PL denotes the ensemble of lo
al perturbations PL =
(PL,1, PL,2, . . . , PL,N). The lo
al perturbation PL,i 
ontains perturbations of all dynami
al variables
Xj,i − x̄j of the global perturbation Pi, belonging to the lo
al area L. Small values of Edim, 1 ≤
Edim << N , re�e
t presen
e of a few leading dire
tions of variability (the remaining ones are small
ompared to the leading ones) in the lo
al area and large values of the Edim. The large values of
Edim, Edim ≈ N , re�e
t the nearly equal spread of the variability among all dire
tion, what 
an
orrespond to noise. Oszkowski et al. (2005) point out that a number of atmospheri
 s
enarios, su
has pure baro
lini
 instabilities, 
omplex pro
esses involving baro
lini
 and barotropi
 instabilities, thedivergen
e of ageostrophi
 geopotential �uxes et
. result in a low E-dimension.



336. Con
lusionsThe basi
 purposes of the 
urrent literature study 
ould be summarized as follows:
• to investigate the theoreti
al relationships between the sequential and variational data assimi-lation s
hemes espe
ially in a perspe
tive of the pra
ti
al implementation;
• to investigate the relationships between the ensemble data assimilations and the ensemblepredi
tion systems.
• in addition we have provided a summary of widely used veri�
ation methods to qualify theperforman
e of the ensemble predi
tion and ensemble data assimilation systems.The variational data assimilation methods, su
h as the Three-Dimensional and the Four-DimensionalVariational Data Assimilation S
hemes, are su

essfully implemented worldwide by the weather ser-vi
es for the operational weather predi
tion. At the same time, there is a lot of spa
e for furtherimprovements.The Variational Data Assimilation s
hemes 
ompute a posterior mode of the probability density fun
-tion, valid at the beginning of the data assimilation window, maximising the 
orrespondent densityfun
tion numeri
ally. The full rank ba
kground error 
ovarian
e matrix is ne
essary for the pro
e-dure of the numeri
al maximisation. The number of assimilated observation is of several magnitudessmaller that the dimensionality of the model state. Thus the prior assumptions about the probabil-ity density fun
tion at the beginning of the data assimilation window, expressed via the ba
kgroundfore
ast and the ba
kground fore
ast error 
ovarian
e matrix, will have strong impa
t on the posteriormode. The Variational Data Assimilation S
hemes la
k a�ordable pro
edure for the expli
it updateof the evolution of the fore
ast/analysis/fore
ast-at-the-begging-of-the-next-assimilation-window error
ovarian
es. The stati
 
onstant 
ovarian
e is used at the beginning of ea
h assimilation window, whatdegrade the performan
e of the variational assimilation s
hemes.The sequential data assimilations methods based on the Kalman Filter re
ursions would providethe Gaussian approximation to the posterior probability density fun
tion valid at the end of the dataassimilation window. However, the Kalman Filter re
ursions require an expli
it forward propagationof the fore
ast error 
ovarian
e. The various implementations of the Ensemble Kalman Filter wereproposed in order to a�ord the pra
ti
al implementation of the sequential methods, where the fore
asterror 
ovarian
e matrix in propagated forward approximately. First, a number of model states, anensemble, is sele
ted so that they together would represent 
ovarian
e matrix at the initial time;ea
h model state is propagated forward in time using the forward model propagator; the fore
asterror 
ovarian
e at the time of interest is estimated from this propagated ensemble; the propagatedfore
ast ensemble is res
aled/resampled into the analyses ensemble that should represent the updateof the un
ertainty about the model state after new observations are assimilated. However, the rankde�
ien
y of the model state 
ovarian
e estimate from the ensemble with a limited size 
reates seriousproblems implementing Ensemble Kalman Filter data assimilation s
hemes.Theoreti
ally, the Hybrid Ensemble-Variational data assimilation s
heme, where the the ba
kground
ovarian
e matrix is modelled via 
ontributions from both the full-rank stati
 
onstant 
ovarian
ematrix and the rank-de�
ient �ow-dependent 
ovarian
e matrix estimated from the ensemble of thefore
ast state, 
ould be an alternative method. However, it still should be proven that involving therank-de�
ient estimate of the fore
ast error 
ovarian
e matrix would not degrade the performan
e ofthe variational assimilation s
heme. The S
hur-produ
t of matri
es is traditionally used to in
reasethe rank of the ensemble estimate of the fore
ast error 
ovarian
e matrix. It is important to noti
ethat a S
hur-produ
t of matri
es is not a linear transformation, therefore an extreme 
are should



34be taken on investigating impa
t of the S
hur-produ
t on the physi
al balan
es between the modelstate 
omponents. In the long term perspe
tive, the �ow-dependent fore
ast error 
ovarian
e matrixshould be modelled using lo
al stru
tures, su
h as wavelets or Intrinsi
 Mode Fun
tions, with only theparameters estimated from the ensemble.The Data Assimilation S
hemes provides a point estimate of the model state with a possibility toquantify un
ertainty about the estimate. The Ensemble Predi
tion System are essentially di�erentfrom the Ensembles Methods for Data assimilation and they are 
onstru
ted with the aim to providea probabilisti
 inferen
e about some phenomena of interest (a low-dimensional transform of the modelstate variable) during and after a 
ertain integration period. For the long range fore
asts, the Lyapunovexponent based te
hniques, su
h as singular ve
tors and breeding ve
tors, are traditionally used. Forthe shorter fore
ast range the initial model state will have an impa
t on the probabilisti
 inferen
eduring and after integration period. Thus Ensemble Predi
tion Systems, whi
h adequately representthe probability distribution of the initial model state, are required. Sampling initial un
ertainty, theETKF based res
aling s
heme outperforms Breeding and Singular Ve
tors te
hniques. The HybridETKF-PF (Parti
le Filters) S
heme has a potential to be
ome an e�
ient ensemble predi
tion systemfor the short-moderate range fore
asts.The 
hoi
e of the veri�
ation methods is important quantifying the performan
e of the EnsemblePredi
tion Systems. The majority of the 
ommonly used veri�
ation tools su
h as the Brier S
ore, Rel-ative Operating Chara
teristi
s and area under ROC as well as the Relative E
onomi
 Value representdi�erent quantitative measures of the performan
e of the Reliability diagram for the parti
ular eventof interest. It should be taken 
are when the 
on
lusions are extrapolated on subspa
e of the modelstate support not 
overed by the event. The Overall E
onomi
 value 
an validate the performan
e ofthe Ensemble Predi
tion system for the users with parti
ular preferen
e expressed through a 
ost-lossratio.A
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