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1. IntrodutionThe aim of the meteorologial data assimilation is to determine an initial data �eld for numerialweather predition and to quantify its unertainty. In general, this task oinides with the problem of amodel state observer for the non-linear system, governing the development of the atmosphere. However,several spei� features of the meteorologial data assimilation makes the task quite hallenging.First of all, the number of observations is of several order of magnitude smaller than the dimensionof the model state variable. Therefore, prior information about the model state must be involved inthe onstrution of the model state observer (usually alled the analysis state) and must be arefullyspei�ed in order to overome the lak of observations.The information is usually introdued in the form of the standard �rst and seond order moments:the prior mean of the model state, spei�ed through a short-range foreast and often alled a bak-ground state or a �rst-guess �eld, and the prior variane-ovariane matrix of the model state, whihontains statistial knowledge about the foreast errors and the physial balanes between the di�erentomponents of the model state variable. Taking the omplexity of the physial proesses, governing thedevelopment of the atmosphere, and the huge dimensionality of the model state O(106) into aount,the areful spei�ation of the prior information is a hallenging task.Seondly, the model state variable is just a disrete approximation to the ontinuous atmospheristate whih is observed. The time evolution of the model state is governed by disrete approximationsof ontinuous physial laws. The appropriate disrete approximation of balanes as well as the varianesof short-range foreast errors strongly depend on the spatial and the temporal sales of motion. So, theobserved information must be assimilated taking into aount the sale of the phenomena of interestand the model and representativity errors whih are aused by the disretisation.Besides that, an e�ient assimilation sheme must be robust to the non-linear dependenies betweenobserved quantities and the model state and must re�et both the spatial and temporal variation inthe distribution of observations.One method to merge a bakground �eld and observed quantities in a way onsistent with theestimated auray of both soures of information was introdued �rst by Eliassen (1954) and inde-pendently by Gandin (1963). Within the meteorologial ommunity this method is alled the OptimumInterpolation (OI). Under this method the analysed state is onstruted as an optimal, in the sense ofminimum variane, linear ombination of the bakground state and observed quantities and is a linearregression of the model state on innovations (the deviations of the observed data from the bakgroundstate projeted into observation spae). The method was extended to the three-dimensional multi-variate analysis (Loren, 1982) and was for a long period suessfully used for operational weatherpredition by many weather servies. Being a linear regression tehnique, the method does not requireany strong assumptions on the probabilisti distribution of the model state variable, besides existeneof seond moments. Main disadvantage of the method is an ability to treat in a proper way onlyobserved quantities linearly related to the model state.An important step forward in the numerial weather predition was the development of three-dimensional variational data assimilation sheme (3D-Var)(Parrish and Derber,1992) and its extensionto four-dimensional (4D-Var: 3D-Var plus a time-window) variational assimilation sheme (Le Dimetand Talagrand, 1987, Courtier et.al, 1994). Under these methods, the analysed state is determinedthrough a posterior mode of the model state, given the observed quantities and with the bakgroundstate as a prior. A Gaussian distributional assumption on the prior is essential for the performane ofthese methods. At the same time these methods provide an optimal solution even in ase of a non-linear1



2observational operator (the operator whih transforms the model state variable into observed quanti-ties). The valid physial balane (in essene stati) relationship between di�erent model state variableomponents expliitly enters into the data assimilation proedure through the analytially deduedand statistially derived foreast error ovariane matrix. A time-invariant variane-ovariane matrixwith a simpli�ed struture of the foreast errors (spatial homogeneity and barotropi foreast errorstruture) redues e�ieny of the data assimilation proedure when three-dimensional variationaldata assimilation sheme is applied.In four-dimensional variational data assimilation sheme the observational operator inludes a dy-namial propagation of the model state over the assimilation window, and in suh a weight it providesan impliit evolution of the foreast error variane-ovariane matrix during this time window. Thisimpliit propagation of the stati variane-ovariane matrix by the model dynamis improves theassumed struture of the foreast errors and the sequential observations will be given more properway in aordane with this. Still the same stati variane-ovariane matrix in the beginning of eahassimilation window, whih neglet all information about previously assimilated observations, degradesthe assimilation proedure.As it is well known, having linear dynamis and a linear observational operator under valid Gaussianassumptions on the prior distribution of the model state, the optimal sequential estimation of the modelstate is Kalman �lter (Kalman, 1960, Kalman and Buy, 1961). If these requirements are ful�led, theKalman �lter will provide the same solution as the four-dimensional variational assimilation shemeprovided that the variane-ovariane matrix is properly spei�ed in the beginning of data assimilationwindow. However, beause the numerial equations propagating the development of the atmosphereare non-linear and the dimensionality of the model state variable is unfeasible huge, the Kalman �lterreursions annot be used for the pratial implementation of the data assimilation proedure.A number of generalisations and extensions of the Kalman �lter idea has been proposed for thepurposes of the meteorologial data assimilation. A suboptimal Kalman �lter, alled the ensembleKalman �lter in a number of versions, is one of the most suessful extension of the lassial Kalman�lter implemented in pratie at many weather servies. Ensemble Filter, when a number of foreastsare propagated in time and updated sequentially from observations, has been developed in the attemptto produe information about the probability distribution of the atmospheri state (Evensen, 1994;van Leeuwen and Evensen, 1996; Toth and Kalnay, 1993, 1997; Houterkamer and Mithell, 1998). Thefundamental problem of this approah is that the sample size of the pratial ensemble is too smallin order to diretly produe meaningful statistis about the omplete distribution of the model stategiven the observations.Di�erent assumptions and heuristi methods were tried to takle this problem. This resulted in alarge number of pratial implementations of the Ensemble Filter. In ommon for all implementationsis that the dynamial evolution of the probability distribution of the atmospheri state is arried outthrough propagation of the initial (or analysed) ensemble of the model states forward in time by modeldynamis. In suh a way a foreast ensemble is obtained. The way in whih the foreast ensemble isupdated from observations into an analysed (or initial state) ensemble di�ers for di�erent implemen-tations of the Ensemble �lter. Ensemble Filters ould be rudely divided into
• the Resampling approah Ensemble �lters (Kim et.al, 2003; Leeuwen 2003; Anderson and Anderson,1999), where the ensemble of analysed states is resampled from the ensemble of the foreast states,and
• the Resaling approah Ensemble Filters, where the ensemble of foreast states is transformed into



3an ensemble of the analysed states.The Ensemble Kalman Filter (EnKF) belongs to the Resaling approah Ensemble Filters and anbe divided into(1) Perturbed Observations Ensemble Filter (EnKF), where the ensemble of foreast states isstohastially updated during the assimilation step (Evensen, 1994; Houterkamer and Mithell,1998),(2) Square-root Ensemble Filters (ETKF), where the ensemble of foreast state is deterministiallyupdated during the assimilation step (Cohn et al, 1998; Whitaker and Hamil, 2001; Anderson2001, Bishop et al, 2001; Ott et al. ,2004) and(3) the Redued-Rank Kalman Filters where emphasis is put on the omputationally feasible prop-agation in time of the foreast error ovariane matrix.The Hybrid Ensemble Kalman Filter-Variational assimilation sheme, whih utilizes the advantagesfrom both the Variational (the full-rank foreast error ovariane matrix) and Ensemble Assimila-tion Shemes (the �ow-dependent unertainty about the estimate of the model state), seems to be apromising data assimilation tehnique. The summary on various pratial implementations of the dataassimilation shemes, their advantages and simpli�ations, and theoretial relationships between themare main topis of this report. Data assimilation shemes an provide not only a deterministi estimateof the model state (the analysed state), but also quantify the unertainty about the analysed state aswell. In variational approahes the inverse of the analysed variane-ovariane matrix (the Hessian),whih determines the urvature of the onditional probability density funtion, given observations, ina viinity of its maximum (the analysed state), an theoretially be obtained during the assimilationyle. In the Ensemble Kalman Filter based approahes the unertainty of the model state is rep-resented through the ensemble estimate of the analysis error ovariane matrix. A number of leverensemble predition systems (EPS) were developed and implemented at di�erent weather servies inattempt to provide a probabilisti inferene about some phenomena of interest.EPS systems di�er by strategies to generate the initial ensemble of perturbations and an rudelybe lassi�ed into four di�erent lasses:(1) error breeding (Toth and Kalnay, 1993,1997),(2) singular vetors optimized over a ertain foreast length (Buizza et al, 1993, Molteni et. al,1996),(3) Kalman �lter based resaling shemes and(4) system simulation approahes.A number of studies were performed with the aim to ompare di�erent global EPS (Wei and Toth,2003; Buizza et al., 2005, Wang and Bishop, 2003). These indiated that
• the error breeding sheme may be superior ompared with singular vetors at short lead times;
• the ETKF may be superior to the error breeding in a number of aspets;
• the loal domain Ensemble Transform Kalman Filter (Ott et al. 2004 ) may outperform the globaldomain Ensemble Transform Kalman Filter in resolving medium- and short- range synopti systems.Tehniques to validate performane of the EPS, di�erent ommonly used riterion of veri�ation andrelationships between them ompose the seond topi of this report.



4 2. The numerial weather predition as a sequential update problem2.1. A general formulation of the sequential update problem.Let us denote Xτ a m-dimensional state vetor desribing the atmosphere at time τ , yτ a p-dimensionalvetor of observed quantities at time τ and let us denote Yt = {ys, s ≤ t} a olletion of all observationsavailable up to time t. The objetive of the weather predition is to onstrut of a onditional densityfuntion p(Xτ | Yt) of the state of atmosphere, valid at the time moment τ , given observations Yt,available up to the time moment t ≤ τ . The objetive of the numerial weather predition is toonstrut the onditional density p(Xτ | Yt) of Xτ , the disrete approximation of the state of theatmosphere Xτ , given a set of the observations Yt. In ase if τ = t, the onditional probability density
p(Xτ | Yτ ) is alled the analysis density, and in ase if τ > t, the onditional density p(Xτ | Yt) isalled the foreast density.Let us denote ti, i = 1, . . . , n a sequene of time moments when the data assimilation is performed,
M(ti, ti−1) the deterministi dynamial propagator of the model state from one assimilation timeto another and Hti the deterministi observation operator valid at time ti. The data assimilationproedure an be desribed in the following way using the state spae model terminology

yti =Hti(Xti) + ǫti

Xti =M(ti, ti−1)(Xti−1
) + Ti−1ξti−1

(1)where ǫti is a p-dimensional observation error vetor, ξti−1
is a q-dimensional model error vetor (q <<

m) and Ti−1 is a m × q-dimensional projetion matrix. Both error terms are stohastially spei�ed.Even in the most general ases simplifying assumptions are done in order to justify the appliation ofthe state spae model theory for data assimilation. For instane, the model error and the observationerror are usually assumed to not depend on the state of the atmosphere
ξ(Xti−1

, ti−1) ≡ ξ(ti−1), ǫ(Xti , ti) ≡ ǫ(ti)The sequene of the onditional probability densities p(Xti | Yti), i = 1, . . . , n, an be obtained bysolving the sequential probability density update problem: onstrut p(Xti | Yti) from p(Xti−1
| Yti−1

)for i = 1, . . . , n, provided p(Xt0 | Yt0) ≡ p(Xt0) is already spei�ed. Applying the de�nition of theonditional probability,
p(Xti | Yti) =

p(Xti ,Yti)

p(Yti)
=

p(Xti , yyi
| Yti−1

)p(Yti−1
)

p(Yti−1
)Applying the probability multipliation rule and the fatorization of the density over parameter

Xti−1
and utilizing the Markovian properties of the state spae model, one an obtain(2) p(Xti | Yti) =

1

c
p(yti | Xti)

∫

p(Xti | Xti−1
)p(Xti−1

| Yti−1
)dXti−1where c is a normalizing onstant.Here the onstrution of the onditional distribution is based on �ltering. For eah assimilationyle i, �rst the probabilisti knowledge about model state at time ti−1, based on the whole set ofhistory observations Yti−1

, is propagated forward until the next assimilation time ti. Seondly, theprobabilisti knowledge about model state is updated from new observation yti.



52.2. An analytial solution to the sequential update problem.Under very restritive onditions, when
• (K.1) the model dynamial propagator M(ti, ti−1) and the observation operator Hti are linear,
• (K.2) the distributional assumption about the model ξ(ti−1) and the observation ǫ(ti) errors areGaussian, ξ(ti−1) ∼ N (0, Qt−1), ǫ(ti) ∼ N (0, Rti),
• (K.3) the initial model state distribution is Gaussian, p(Xt0 | Yt0) ≡ p(Xt0) := N (at0 , Bt0)
• (K.4) and the model and observations errors are mutually unorrelated and unorrelated with theinitial model state,the sequential update of the onditional density funtion p(Xti | Yti) an be expressed analytially. Inthis ase the p(Xti | Yti) is Gaussian as well and is ompletely determined through its two �rst entralmoments, p(Xti | Yti) := N (ati , Bti). The parameters ati , Bti an be reursively alulated via thewell-known standard Kalman �lter equations:

ati = E(Xti | Yti) = af
ti + Bf

tiHT
ti
(Rti + HtiB

f
tiHT

ti
)−1(yti −Htia

f
ti)

Bti = V ar(Xti | Yti) = Bf
ti − Bf

tiHT
ti
(Rti + HtiB

f
tiHT

ti
)−1HtiB

f
ti

(3)where af
ti and Bf

ti are the parameters of the preditive distribution of the model state p(Xti | Yti−1
)given the history of observations Yti−1

. The p(Xti | Yti−1
) is Gaussian as well

af
ti = E(Xti | Yti−1

) =M(ti, ti−1)ati−1

Bf
ti = V ar(Xti | Yti−1

) =M(ti, ti−1)Bti−1
MT (ti, ti−1) + Qti−1

(4)This estimate of the model state (eqn. 3) determines the best linear predition of the model stateon the innovations and the most probable estimate of the model state given observations at the sametime. An innovation is a one-step ahead foreast error, vti = yti −E(HtiXti | Yti−1
) = yti −Htia

f
ti . TheKalman �lter reursions, whih are stritly valid only under these �rm onditions (K.1 -K.4), determinenot only the time evolution and the update of the onditional mean and the onditional variane ofthe model state. They desribe the development of the whole onditional probability density funtiongiven the observations. If the onditions (K.1-K.4) are not valid stritly, the best linear predition ofthe model state on the innovations and the mean squared error of the predition an be onstruted.The best linear predition xble

ti
and the mean squared error Bble

ti
are given by

xble
ti

=E(Xti | Yti−1
) + cov(Xti , vti | Yti−1

)(var(vti | Yti−1
))−1vti

Bble
ti

=V ar(Xti | Yti−1
) − cov(Xti , vti | Yti−1

)(var(vti | Yti−1
))−1cov(Xti , vti | Yti−1

)−1.
(5)If the model and observation errors are mutually unorrelated and unorrelated with the initialmodel state (K.4), the equations (5) will have a form notationally similar to the Kalman �lter updateequations (eqn. 3)

xble
ti

=af
ti + Bf

tiH
T
ti
(HtiB

f
tiH

T
ti

+ Rti)
−1vti

Bble
ti

=Bf
ti − Bf

tiH
T
ti
(HT

ti
Bf

tiHti + Rti)
−1HtiB

f
ti

(6)where af
ti and Bf

ti are the two �rst onditional moments of Xti , given the history of observation Yti−1
,

E(Xti | Yti−1
) and V ar(Xti | Yti−1

), respetively. However, this system (eqn. 6) does not provide thesequential inferene about the model state beause xble
ti

and Bble
ti

do not oinside with the two �rst



6onditional moments E(Xti | Yti) and V ar(Xti | Yti) and do not give any rules on how to sequentiallyupdate af
ti+1

and Bf
ti+1

.2.3. Smoothing of the unobservable model state.Smoothing is an alternative proedure to obtain the onditional probability distribution of the modelstate based on observations. In this ase the onditional distributions of the whole sequene of unob-servable model states (Xt0 , Xt1 , . . . , Xtn) given all available observations Ytn is onstruted.Applying the probability density multipliation rule and the Markovian properties of state spaemodel, one an obtain(7) p(Xt0 , Xt1, . . . , Xtn | Ytn) =
1

c
p(Xt0)

n
∏

i=1

p(yti | Xti)p(Xti | Xti−1
).Here c denotes a normalizing onstant.Provided that onditions (K.2-K.4) holds, the posterior distribution p(Xt0 , Xt1 , . . . , Xtn | Ytn) isGaussian and is ompletely determined through its two �rst moments,

p(Xt0 , Xt1 , . . . , Xtn | Ytn ∼ N (ã, B̃),where ã is a (n + 1) × m-dimensional vetor, ã = (ãt0 , ãt1 , ãt2 , . . . , ãtn)T = (E(Xt0 | Ytn), E(Xt1 |
Ytn), . . . , E(Xtn | Ytn))T and B̃ is a (n + 1)m × (n + 1)m dimensional matrix, B̃ij = cov(Xti , Xtj |
Ytn), 0 ≤ i, j ≤ n. Numerially, a mean and a variane of the Gaussian distribution an always beobtained by alulating the maximum of the log-density and the urvature of the log-density at thepoint of the maximum.

ã = argminL(Xt0 , . . . , Xtn)

= argmin{− log p(Xt0) −
n

∑

i=1

(log p(yti | Xti) + log p(Xti | Xti−1
))}

B̃ =

[

(
∂2L(Xt0 , . . . , Xtn)

∂Xti∂Xtj

)0≤i,j≤N

]−1

(8)Here the notation argmin means "argument that minimizes"Notie that the joint distributions p(Xt0 , Xt1 , . . . , Xtn | Ytn), i = 0, . . . , n are multipliations ofGaussian ones even if the Gaussian state spae model is not linear (ondition (K.1) holds). However,the marginal distributions p(Xti | Ytn), i = 0, . . . , n, are Gaussian only if the Gaussian state spaemodel is linear (ondition (K.1) holds). In ondition (K.1) holds, the mode and the urvature at themode, ã and B̃, an e�iently be alulated applying the forward Kalman �lter and the bakwardKalman smoother reursive equations (Durbin and Koopman, 2001).If the perfet model is assumed (ξi ≡ 0, i = 0, . . . , n − 1), the dimensionality of the minimisationfuntional is dramatially redued from (n + 1)m to m. In that ase the whole unertainty about theunobservable model state originate from the initial onditions and p(Xt0 | Ytn) is the single onditionaldistribution that should be determined.(9) p(Xt0 | Ytn) =
1

c
p(Xt0)

n
∏

i=1

p(yti | Xt0),



7and p(Xt0 | Ytn) ∼ N (ã, B̃),where
ã = argminL(Xt0 | Ytn)

= argmin{− log p(Xt0) −
n

∑

i=1

(log p(yti | Xti))}

B̃ =

[

∂2L(Xt0)

∂X2
ti

]−1

(10)For example, under a Gaussian state spae model the minimisation funtional L(Xt0 | Ytn) is
L(Xt0 | Ytn) =0.5(Xt0 − at0)

T B−1
t0 (Xt0 − at0)+

0.5
∑

i=1n

(yti − HtiM(ti, t0)Xt0)
T R−1

ti
(yti − HtiM(ti, t0)Xt0)

(11)Still for a large-dimensional model state the design of the minimisation proedure (eqn. 10) is ahallenging task.If the state spae model is not Gaussian or the onditions (K.1-K.4) do not hold, the mode of theposterior distribution (eqn. 7) still an be obtained by minimising the orresponding funtional. Itis possible to onstrut a sequene of Gaussian approximative state spae models that in the limitwill have a mode/a onditional mean, whih will oinide with the mode of the original posteriordistribution (Durbin and Koopman, 2001).3. Approximate solutions to the sequential update problem.In meteorologial data assimilation the strit onditions (K.1-K.4) are never met. Both the dynam-ial propagator and the observation operator are in priniple non-linear, the model and observationerrors are orrelated with the initial model state and these errors are assumed to obey the Gaussiandistribution just for simpliity. The degree of non-linearity and non-Gaussianity di�ers signi�antlybetween di�erent types of observations and between dynamial propagation of di�erent spatial andtemporal sale phenomena. Relaxing some of these strit onditions, di�erent approahes for approx-imate solutions of the problem have been proposed and implemented at di�erent weather servies.Essentially, they an roughly be divided into
• the variational type, whih pretend to estimate mode of the onditional distribution p(Xt0 | Ytn)(eqn. 9, 11),and
• the regression type, whih pretend to produe the best linear predition xble

tn of the Xtn on the wholesequene of available observations (eqn. 5, 6),approahes.Let us denote τ a time moment for whih the data assimilation should be performed and ∆τ tobe the length of the assimilation window. Then, under the variational approah, the analysed modelstate xa
τ ≈ E(Xτ | Yτ ) is estimated by minimizing a ertain funtional, often alled a ost fun-tion. The Three-dimensional Variational data assimilation sheme (3D-Var) and the Four-dimensionalVariational assimilation sheme (4D-Var) are used worldwide at di�erent weather servies with greatsuess. Both shemes are implemented in a so-alled inremental formulation. This means the "op-timal� inrement δxa

τ = xa
τ − xf

τ is obtained instead of estimating the whole analysed state. Here xf
τ is



8the best available foreast of the model state at time moment τ based on the history of observations,
xf

τ = M(τ, τ − ∆τ)xa
τ−∆τ , and is often alled the bakground state.3.1. Variational data assimilation shemes.

• The 3-Dimensional Variational data assimilation sheme (3D-Var)
xa

τ = xf
τ +δxa

τ

δxa
τ = argmin(Jb + Jo)

J3D = Jb + Jo =0.5δxT
τ B−1δxτ + 0.5(Hτ (x

f
τ ) + H̄τδxτ − yτ )

T R−1(Hτ (x
f
τ ) + H̄τδxτ − yτ ) =

0.5ηT
τ ητ + 0.5(Hτ(x

f
τ ) + H̄τU

−1ητ − yτ )
T R−1(Hτ (x

f
τ ) + H̄τU

−1ητ − yτ )

(12)Here B is the matrix ontaining the ovarianes of the foreast errors of the model state, H̄τ is atangent-linear observation operator around the bakground state, U is a square-root of the inverse ofthe ovariane matrix B, B−1 = UT U , and ητ = Uδxτ is the ontrol vetor along whih the mini-mization of the ost funtion J3D is performed. Observations are �rst olleted over the time period
(τ − 0.5∆τ, τ +0.5∆τ), then projeted to the time moment τ and after that assimilated at the time τ .
• The 4-Dimensional Variational data assimilation sheme (4D-Var)Let ti denote an atual time when an observation is arried out.

xa
τ = xf

τ +δxa
τ

δxa
τ = argmin(Jb + Jto + Jc)

J4D = Jb + Jto + Jc = δxT
τ B−1δxτ

+
∑

i,τ<ti≤τ+∆τ

(Ht(x
f
ti) + H̄tiδxti − yti)

T R−1(Ht(x
f
ti) + H̄tiδxti − yti)

+ (xτ+0.5∆τ −
τ+∆τ
∑

t=τ

αtxt)
T Q(xτ+0.5∆τ −

τ+∆τ
∑

t=τ

αtxt)

(13)
The 4-Dimensional variational data assimilation sheme is an extension of the 3D-Var. The inre-ment δxτ is propagated forward by the tangent-linear dynamial propagator up to the time moment

ti when the atual observations yti are arried out, δxti = M̄(ti, τ)δxτ . In suh a way model dynamisare involved as strong onstraints in the optimization proedure of the 4D-Var. The optional addi-tional term Jc in the ost-funtion J4D expresses requirements of the smoothness of the solution intime, one example originating from a low-pass digital �lter. Beause the dynamial forward integrationis involved in the data assimilation proedure, some type of initialisation is neessary. As shown inLynh and Huang 1992, the digital �lter initialisation is very similar to the nonlinear normal modeinitialisation provided that there is a lear frequeny separation between fastly propagating gravitymodes and slowly propagating Rossby modes. The gravity modes are assoiated with divergent mo-tion and may be reated from the unbalaned horizontal pressure gradient or even from the linearlybalaned initial state due to non-linear dynamis. The low-pass digital �lter prohibits a drift awayof the model state due to adjustment of the solution to high frequeny osillations. Here xt denotesthe solution dynamially integrated forward up to the time moment t, xt = M(t, τ)(xf
τ + δxa

τ ) and
αt, t = τ, . . . , τ + ∆τ are the time �lter weights. Formulation and disussion of the time �lter weightsan be found in Gauthier and Thepaut 2001.



9The ost funtions J3D and J4D are proportional to the posterior probability density p(xτ | Yτ ) ofthe model state under the Gaussian state spae model (eqn. 11). Thus the 3DV ar and the 4DV arapproahes are based on smoothing rather than on �ltering, they do not predit the "optimal" modelstate at the end of the data assimilation window but estimate the most likely model state givingrise to the set of observations. Beause the amount of observed quantities is muh smaller than thedimensionality of the model state, the prior assumptions on the model state have strong in�ueneon the posterior distribution of the model state. The ovariane of the prior distribution B does nothange in time, has a very simpli�ed struture and is statistially/analytially dedued.3.2. The general ensemble Kalman Filter formulation.A Monte Carlo approximation of the onditional probability density funtion p(xτ | Yτ ) provides onepossibility to propagate the foreast error ovariane matrix B in time, at least approximately.The ensemble of the model states, Xa
τ−∆τ =

[

Xa
1,τ−∆τ , . . . , X

a
N,τ−∆τ

], where N is the ensemble size, isassumed to represent the onditional probability density funtion of the model state p(Xτ−∆τ | Yτ−∆τ).Then the onditional preditive distribution of the model state p(Xτ | Yτ−∆τ ) is onsidered to berepresented by the ensemble Xf
τ =

[

Xf
1,τ , . . . , X

f
N,τ

], where eah ensemble member is propagatedforward in time by model dynamis,(14) Xf
i,τ = M(τ, τ − ∆τ)Xa

i,τ−∆τ + ηi,τ ,where the model error may be eventually sampled from ηi,τ ∼ N (0, Qτ). If a perfet dynamial modelis assumed, the model error term is omitted, namely Qτ ≡ 0.For instane, the onditional mean and the onditional ovariane of the model state at time τ ,given the set of observations assimilated during previous yles Yτ−∆τ , are assumed to be estimatedby means of the relationship
E(Xτ | Yτ−∆τ ) ≈xf

τ =

=
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N

N
∑
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Xf
i,τ

Cov(Xτ | Yτ−∆τ ) ≈Bf
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N − 1

N
∑
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(Xf
i,τ − xf

τ )(X
f
i,τ − xf

τ )
T = Zf

τ (Zf
τ )T

(15)
Here Zf

τ = (Zf
1,τ , . . . , Z

f
N,τ) denotes the ensemble of normalized foreast perturbations, Zf

i,τ =
1√

N−1
(Xf

i,τ − xf
τ ).The foreast step, the way how the ensemble of the foreast states at a new assimilation time isonstruted from the ensemble of the analysed state obtained from the previous assimilation time,is ommon for di�erent implementations of the ensemble �lter and is given in eqn. (14). Variousimplementations of the ensemble �lter propose di�erent analysis steps, the way how the ensemble ofthe foreast states, representing p(Xτ | Yτ−∆τ ) is transformed into the ensemble of the analysed statesto represent p(Xτ | Yτ ).



103.3. Di�erent implementations of the ensemble Kalman �lter.The ensemble Kalman �lter EnKF (Evensen, 1994, Houtekamer and Mithell, 1998) utilises the stan-dard Kalman �lter reursions to perform the analysis step. The best linear preditor of the modelstate xble
τ on the last innovation vτ = yτ −Hτx

f
τ , given the history of observations Yτ−∆τ , and its meansquared error Bble

τ are obtained using equation 6. The two �rst onditional moments are approximatedby simply setting E(Xτ | Yτ ) = xble
τ and V ar(Xτ | Yτ ) = Bble

τ . In other words, the ensemble Kalman�lter retains the "linearity" aspets of Kalman �ltering and assumes impliitly Gaussian distributionsfor unertainties in the foreast and the observations. The implementations of the EnKF ould roughlybe divided into 3 di�erent approahes:
• the ensemble Kalman �lter with perturbed observations, often assoiated with aronym EnKF (Burg-ers et al. 1998, Houtekamer and Mithell 1998),
• the square-root ensemble Kalman �lter, often assoiated with the aronym ESRF (Whitaker andHamill 2002, Tippett et al. 2003, Bishop et al. 2001, Ott and Coauthors. 2004), and
• the redued rank square-root Kalman �lter (Heemink, Verlaan and Segers, 2001, Cohn and Todling,1996, Verlaan and Heemink, 1997).All �ltering algorithms mentioned above are of the resaling type. The ensemble of foreast states,whih is supposed to sample the predition distribution p(Xτ | Yτ−∆τ), is transformed, stohastiallyor deterministially, into the ensemble of analysed states, whih is supposed to sample the posteriordistribution p(Xτ | Yτ).
• The ensemble Kalman �lter with perturbed observations.Under the ensemble Kalman �lter with perturbed observations eah ensemble member is updatedin the following way(16) Xa

i,τ = Xf
i,τ + Kτ (yi,τ −Hτ (X

f
i,τ )), i = 1, . . . , Nwhere Kτ is a Kalman gain matrix alulated from the ensemble of the foreast states(17) Kτ = Zf

τ (H̄τZ
f
τ )T (H̄τB

f
τ H̄T

τ + Rτ )
−1and yi,τ , i = 1, . . . , N is a simulated ensemble of perturbed observations, where the spread of theensemble re�ets the preision of the observations, namely yi,τ ∼ N (yτ , Rτ ) for eah i.The EnKF analysis update sheme provides a stohasti update of the ensemble of the model stateperturbations during the assimilation step. In order to onstrut the ensemble of analysed states, theensemble of the foreast states and the ensemble of observations are merged together in observationspae taking into aount the skill of both ensembles expressed via the respetive ensemble spread.While merging, the Gaussian assumptions on the underlying foreast error and observation errordistributions are made impliitly.The perturbed observation approah introdues an additional soure of sampling error. Under thissheme, the equations (6) for the sample mean and for the sample variane of analysed state aresatis�ed only on average, namely

E(X̄a
τ ) = xa

τ ,

E(Za
τ (Za

τ )T ) = Ba
τ ,taking into aount eqn. (15). At the same time one should stress that adding the noise in perturbationspae stabilizes the �lter by solving the rank-de�ieny problem in an innovative way.



11Pham (2001) proposes a similar Ensemble Kalman �lter, alled the seond-order-exat EnKF, basedon slightly di�erent onsiderations. During the analysis step the ensemble members are updated asfollows(18) Xa
i,τ = Xf

i,τ + Kτ (yτ − HτX
f
i,τ) + ǫi,τwhere ǫi,τ , i = 1, . . . , N , is a seond-order-exat sample from the Gaussian distribution,

ǫi,τ ∼ N (0, KτRτ (Kτ )
T ),with linear onstraints

N
∑

i=1

ǫi,τZ
f
i,τ = 0.In other words the ensemble, of the analysed perturbations Za

τ = 1√
N−1

(Xa
i,τ − xa

τ ) has ontributionsfrom the spae orthogonal to one spanned by the ensemble of foreast perturbations Zf
τ ,

Za
i,τ = Zf

i,τ − KτHτZ
f
i,τ + ǫi,τ .

• The square-root ensemble Kalman �lterUnder the ensemble square-root Kalman �lter (ESRF) the mean and the spread of the ensemble areadjusted so that they would exatly satisfy the equations (6).
Za

τ =Zf
τ C

Z̄a
τ =0

Xa
τ =xa

τ + Za
i,τ

(19)where C is an expliitly alulated transformation whih preserves the mean of the ensemble and underwhih the ovariane of the the analysis ensemble mathes its theoretial value, given by eqn. (6),namely(20) Za
τ (Za

τ )T = Zf
τ C(Zf

τ C)T = (I − KτHτ )Z
f
τ (Zf

τ )TThe ESRF provide a deterministi update of the ensemble of model perturbations during the assim-ilation step. In order to onstrut the ensemble of analysed states, the ensemble of foreast states isrotated and saled. The ensemble estimate of the foreast error ovariane matrix in observation spaeis used to determine the saling and rotation. Beause the mean and the variane of the onditionalensemble of the model state, given the whole set of observations up to time τ , satisfy equations 6 byonstrution, the Gaussian distributions for the foreast error and observation error are made impli-itly. The main drawbak of the method, in omparison with the perturbed observations approah, isthat the ensemble of analysed perturbations is sampled from the spae spanned by the ensemble offoreast perturbations only.There is an in�nite amount of square-root transformations C whih satisfy requirement (20). Bishopet al. (2001) propose an elegant solution to this equation whih allows an expliit look into the



12mehanism of Kalman Filtering. Wang et al. (2004) developed the sheme further to onstrut thetransformation preserving the mean of the ensemble.(21) C = G(D + I)−1/2GTwhere a diagonal matrix D ontains the (N-1) non-zero eigenvalues of the estimated foreast ovarianein ensemble spae, standardised by the observation error variane, (H̄τZ
f
τ )T R−1H̄τZ

f
τ , and a N ×(N −

1)-dimensional matrix G ontains the orresponding orthonormal eigenvetors of (H̄τZ
f
τ )T R−1

τ H̄τZ
f
τ .The multipliation from the right by GT provides a spherial simplex entering of the ensemble afterrotation and saling was performed. Beause matrix G is orthogonal, the ensemble of analysed statesis entered without destroying its square-root property.Besides that, Sakov and Oke, 2008, have shown that the symmetri transformation (eqn. 21) providesa unique solution. In the same paper Sakov and Oke generalised the sheme further by noting thatthe general mean-preserving solution for the ensemble Transform Kalman �lters may be written as(22) C = G(D + I)−1/2GT Upwhere Up is an arbitrary orthonormal mean-preserving matrix

Up1 = 1, Up(Up)T = IThey provided an e�ient algorithm for onstrution of a randommean-preserving orthogonal matrix
Up. With the transform de�ned by eqn. (22), a random ensemble of analysed states with the samplemean and sample variane exatly satisfying eqn. (6) an be onstruted.A variety of alternative algorithms to perform deterministi update of the ensemble during analysisexist. The main hallenge of the ensemble Kalman �lter is the neessity to invert the innovationovariane matrix, whih has dimensionality of number of observations. Di�erent algorithms proposedi�erent ways to overome this obstale. We mention some algorithms whih have reeived largeattention in the literature:(1) a diret approah implemented in the �rst step of the Physial-spae Statistial Analysis System(PSAS) algorithm (Cohn et al. 1998),(2) a serial assimilation of observations (Houterkamer and Mithell 2001, Bishop et al. 2001,Whitaker and Hamill 2002) and(3) the ensemble adjustment Kalman �lter (Anderson, 2001).As it was notied in Wang and Bishop (2003), the Ensemble Square-root Filters have a very �ateigenvalue spetrum due to the �ltering e�et of ovariane, eqn. (6).Beause the trae of the ensemble estimate of the model state ovariane annot exeed the ensemblesize, this �at eigenvalue spetrum indues a severe underestimation of the analysed error ovariane,and as a result a severe underestimation of the foreast error ovariane in the beginning of thenext assimilation time. This leads to �lter divergene. In fat, the whole derivation of the resalingmatrix C is impliitly based on the assumption that the ensemble of foreast perturbations is largeenough to represent adequately the foreast error ovariane matrix in observation spae, H̄τB

f
τ H̄T

τ .If the ensemble size is too small, the ensemble estimate of the foreast error ovariane will lakontributions from important diretions. To inrease the spread of the analysis ensemble by multiplyingthe transformed perturbations by an in�ation fator or to sample an additional unertainty are some



13possibilities to overome the problem. The spread of innovations an be used to design the in�ationfator (Wang and Bishop 2003, Dee 1995). The in�ation fator Πτ is de�ned as(23) Πτ = Πτ−1

√
ατwhere the parameter ατ is suh that(24) d̃T

τ d̃τ ≈ trace(H̃τατB
f
τ H̃T

τ + I).Here d̃τ is a vetor of the standardised innovations,
d̃τ = R−1/2

τ (yτ − Hτx
f
τ ),and H̃τ is a standardised observational operator, H̃τ = R

−1/2
τ H̄τ .When the in�ation fator is implemented the total transformation matrix at time τ beomes(25) Cτ = ΠτGτ (Dτ + I)−1/2GT

τReently, Wang et al. (2007) have shown that suh a simplistially designed in�ation fator (eq.24) leads to the overestimation of the true ovariane matrix in the subspae spanned by the ensemblemembers if the dimensionality of the ensemble is muh smaller than the dimensionality of the modelstate in the normalised observation spae. In order to improve the �lter performane they propose analternative resaling matrix(26) Cτ = ΠτGτ (ρDτ + I)−1/2GT
τwhere the salar fator ρ is the fration of the foreast error variane projeted into the ensemble spae.It an be estimated by(27) ρ =

d̃T
τ ET

τ Ed̃τ − (N − 1)

d̃T
τ d̃τ − pwhere p is the number of observations, N is the number of ensemble members and Eτ is a matrix ofthe eigenvetors of the model error ovariane matrix in normalised observation spae. As shown inBishop et al. (2001)

Eτ = H̃τZ
f
τ GτD

−1/2
τ /

√
N − 1The averaging is done over a number of independent ases in the expression for ρ.Noisiness of the ensemble estimate of the ovariane matrix is another problem whih originatesfrom the small ensemble size. A "ovariane loalisation" (Gaspari and Cohn 1999) whih expliitlydamps orrelations between model state omponents at long distanes is a pratial way to improvethe quality of the ensemble estimate of the ovariane matrix. Buehner 2005 proposed a ovarianeloalisation sheme appliable in the framework of the ETKF. The mistreat of the statistial balanesand long-sale variation are dangers of this approah. Filtering noise diretly in ensemble spae isanother possibility to handle the problem. Ott and oauthors (2004) solved the problem assoiatedwith the rank-de�ieny of the ensemble square-root �lters by implementing a loal Ensemble KalmanFilter. In this approah the analysis at eah grid-point is performed simultaneously using the modelstate variable omponents and the observations in a loal region entered at that point. Beause theassimilation is performed independently in eah loal region, the smoothness of the analysed �eld mustbe onsidered. In order to ahieve this, the assimilation proedure is expliitly onstrained to hoosethe analysis perturbations whih minimize the distane to bakground state. Notie that the bakwards



14ensemble rotation, provided by the spherial simplex entering in the ETKF resaling sheme, servesfor the same purpose.The ensemble of analysed states is strongly orrelated with the ensemble of foreast states, suh thatthe ensemble resaling sheme (eqn. 21) preserves the pattern. There is a hope that this approah willredue the aliasing of the long sale variations whih appears due to loal assimilation sheme. Anotherstrong side of this approah is the loal Gaussian approximation to the non-Gaussian problem in aseof non-linear dynamis. The global ensemble Kalman �lter, whih assumes impliitly the Gaussiandistribution of the unertainty about the model state, annot perform data assimilation properly inthat ase. However, a loal Gaussian state spae model an provide an e�ient approximation of a non-Gaussian model state provided that the loal neighbourhood is seleted suessfully. The loal ensembleKalman �lter is supposed to desribe well atmospheri proesses assoiated with loal energetis, suhas the baropropi and barolini instabilities, downstream development of the upper-tropospheri wavepakets, antiylinu wave breaking and other phenomena.
• Redued Rank Ensemble Kalman Filter.In the Redued Rank Kalman Filter the full-rank ovariane matrix of the model state is approx-imated by a matrix with a redued rank. The redued rank approah an be implemented via anensemble square-root Kalman �lter as well when the N ensemble members are seleted in the diretionof N leading eigenvetors of the ovariane matrix. The redued rank square-root ensemble Kalman�lter algorithm was initially proposed by Verlaan and Heemink ( 1997, RRSQRT). The analysis stepis deterministi and is based on the square-root Kalman �lter analysis update
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(28)
Here Lf

τ is a matrix of perturbations, Lf
τ = [I1,τ , . . . , Iq,τ ] and Πτ is a projetion onto the q leadingeigenvetors of the matrix a

τ (L
a
τ )

T . To initialize the �lter La
0 is taken to be the q largest eigenvetorsof the stati model error ovariane matrix B0

La
0 = [Ia

1,0, . . . , I
a
q,0]To propagate the perturbations the dynamial step (eqn. 14) is generalized by implementing a �nitedi�erenes approah
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(29)Notie that if ǫ = 1 the equation above oinides with (eqn. 14). The model error an be easilyaounted for assuming
L̃f

τ =[Lf
τ , Q

1/2
τ ]

Lf
τ =Πf

τ L̃
f
τ .



15Here Πf
τ is again a projetion matrix on the q leading eigenvetors of the matrix a

τ (L
a
τ )

T and Qτ is amodel error ovariane matrix at time τ . Heemink et al. (2001) propose extensions to the redued rankensemble Kalman: to niely ombine deterministi and probabilisti updates of the analysis ensemble.Under the Partially Orthogonal Ensemble Kalman �lter (POEnKF), the matrix of ensemble La
τ onsistsof the q largest eigenvalues of Ba

τ , I1,τ , . . . , Iq,τ , and N random ensembles ξ1,τ , . . . , ξN,τ to better sampleunertainty about xa
τ

[La,τ , Ea,τ ] = [I1,τ , . . . , Iq,τ , ξ1,τ , . . . , ξN,τ ].For initialisation of the �lter, the random ensemble is sampled from the Gaussian approximation tothe model state distribution, ξi,0 ∼ N (xa
0, B0). During the analyses step the foreast error ovarianematrix is estimated
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(30)where Π∗
τ is a projetion of the random ensemble to the spae orthogonal to the spae spanned by Lf

τ .The analysis update of the ensemble is performed in aordane with (eqn. 28) for the deterministipart of the ensemble, La
τ and in aordane with (eqn. 16) for the random part of the ensemble, Ea

τ .In the Complementary Orthogonal Subspae Filter for E�ient Ensembles (COFFEE) the randompart of the ensemble, Ef
τ is expliitly onstrained to sample from the subspae orthogonal to the Lf

τ .(31) Ef
τ = [ξ1,τ − xf

τ + η1,τ , . . . , ξN,τ − xf
τ + ηN,τ ]where ηi,τ ∼ N (0, (I − Πf

τ )L
f
τ (L

f
τ )

T (I − Πf
τ )

T ).Heemink et al. (2001) shows that adding of strutured random noise to the redued rank Kalman�lter signi�antly improves it behaviour.The Singular Evolutive Extended Kalman �lter (SEEK) developed by Pham et al. (1998b) and theSingular Evolutive Interpolated Kalman �lter (SEIK) developed by Pham 1997 an be onsidered tobe a type of redued-rank Kalman �lter. The idea behide SEEK �lter is to make orretion only inthe diretion where error is ampli�ed or is large, keeping at the same time the error small in otherdiretions. Ideally, the redued-rank ovariane matrix should span the attrator whih is of low rank.However it seems to be an unrealisti task to approximate the attrator of so ompliated non-linearsystem in suh a simple way. In essene, all ensemble Kalman �lter implementations severely su�erfrom the problem of rank de�ieny. Whatever resaling sheme is seleted, the rank of the sampleovariane of the analysed states will be bounded from above by the amount of ensemble members.
• The partile type ensemble �ltersIn all algrorithms disussed above the impliit resampling of the model state during the assimilationyle is done mainly in order to ompensate for the underestimation of the ovariane of the model stateerrors, whih arises from a rank-de�ieny of the ensemble Kalman �lter. Besides these algorithms, anumber of elegant ensemble �lter implementations based on the partile �lter idea are proposed in theliterature (van Leeuwen (2003), Kim et al. (2003), Chin et al. (2007)). The partile �lters are non-parametri. The onditional distribution p(Xτ−∆τ | Yτ−∆τ) is approximated by a disrete distribution,loated on N analysis states, xa

i,τ−∆τ , i = 1, . . . , N , with equal probability, p1,τ−∆τ = p2,τ−∆τ = . . . =
pN,τ−∆τ = 1/N . The onditional distribution p(Xτ | Yτ−∆τ) is approximated by disrete distribution,loated at N foreast states xf

i,τ , i = 1, . . . , N , with the same probability pi,τ = 1/N . The model



16dynamis, eqn (14), are used to propagate the partiles forward in time. To approximate the onditionaldistribution p(Xτ | Yτ ) at a new assimilation time, the probabilities of partiles pi,τ are hanged. Theyare not anymore equal to eah other, while the partile themselves remain untouhed. To improveperformane of the partile �lter, a resampling step is introdued. At the new assimilation time theensemble of analysed states xa
τ is resampled from the ensemble of the foreast states xf

τ in aordanewith modi�ed probabilities pi,τ . The onditional distribution p(Xτ | Yτ ) is again approximated by adisrete one, with equal probabilities, loated on partiles xa
i,τ , i = 1, . . . , N . The resampling prohibitsthe e�ient rank of the ensemble to derease during the assimilation yles.Even though the partile �lters theoretially are able to handle the data assimilation properly inase of non-linear and non-Gaussian state spae problems, the pratial appliability of these �ltersfor the meteorologial data assimilation is quite limited. The main problem is a very slow onvergeneof the non-parametri estimate (O(1/N)), espeially in ase of a large-dimensional model.A non-Gaussian extension of the EnKF that uses a mixture of Gaussian probability densities todesribe the probability density of the model state is an alternative to handle non-linear and non-Gaussian state spae models (Anderson and Anderson 1999, Bengtsson et al. 2003). Under thisapproah the onditional density p(Xτ | Yτ−∆τ ) is assumed to be

p(Xτ |Yτ−∆τ
) =

L
∑
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πf
l,τN (µf

l,τ , B
f
l,τ),where N (µf

l,τ , B
f
l,τ ) denotes a Gaussian density with mean µf

l,τ and ovariane matrix Bf
l,τ . All pa-rameters µf

l,τ , Bf
l,τ and mixing probabilities πf

l,τ are estimated from the ensemble of the foreast states
Xf

i,τ , i = 1, . . . , N , assuming that the size N of the ensemble is muh larger than the amount of theseleted lasses L. During the assimilation step, the onditional density p(Xτ | Yτ ) is approximatedby
p(Xτ | Yτ ) =

L
∑

l=1

πa
l,τN (µa

l,τ , B
a
l,τ ),where µa

l,τ and Ba
l,τ are updated in aordane with the Kalman �lter reursive formulas, eqn. (6),separately for eah lass L. The mixing probabilities are updated in suh way that the lasses loserto observations would have higher weights.3.4. The Hybrid Ensemble Kalman Filter - Variational assimilation sheme..The Hybrid Ensemble Kalman Filter-Variational Assimilation sheme has reeived muh attention inthe literature at present time (Wang et al 2007, Hamill and Snyder 2000). The idea of the hybrid shemeis to ombine the best possible ahievements of both the variational and the ensemble assimilationshemes. The suessful assimilation sheme must point out areas of strongest foreast unertaintyand try extrat as muh as possible information from the available observations in those areas. Whenthe data assimilation is performed under the Variational or the Ensemble Kalman sheme, in bothases the analysed state in eah gridpoint is a weighted sum of the foreast state and the surroundingobservations with weights being determined by the relative unertainty of both soures of information.That is why the realisti estimation of the urrent foreast unertainty, whih is large in dynamiallyunstable areas and low in the areas with dense observation network, is important for onstruting theanalysed state. Even if the number of observations available and utilized by data assimilation sheme



17at present is relatively large (from O(104) to O(106)), the dimensionality of the model state in highresolutions is still muh higher. The prior assumptions on the model state, expressed via the foreasterror ovariane matrix, in�uene strongly the onstrution of the analysed state. In order to performa proper extrapolation of the observations into the model state, the �ow-dependent struture funtionsof the foreast error ovariane are essential.The foreast error ovariane used in variational data assimilation shemes at present does not havethis property. It is stati and has simplisti struture funtions based on spatial homogeneity andisotropy. There is a hope that a foreast error ovariane matrix B, whih ombines together the fullrank stati foreast error ovariane matrix B3DV ar and the �ow-dependent rank-de�ient ensembleforeast error ovariane matrix Be, based on the Kalman �lter resaling ensemble, will improve thevariational assimilation sheme.The hybrid assimilation shemes are proposed in two di�erent formulations, whih are theoretiallyequivalent (Wang et al. (2007)). Hamill and Snyder (2000) use the same ost funtion as in 3D-Variational data assimilation (eqn. 12) but with the foreast error ovariane matrix B being equal(32) B := Bf
τ = αB3DV ar + (1 − α)(Zf

τ (Zf
τ )T · L)where Zf

τ is the ensemble of the normalised foreast perturbations, L is the presribed orrelationmatrix used for the ovariane loalisation and A · B denotes the Shur produt of the A and Bmatries, (A · B)i,j = Ai,jBi,j.Loren (2003) and Buehner (2005) propose a modi�ation to the ost funtion by augmenting theset of ontrol variables
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(33)whih is to be minimised with respet to the "optimal" inrement ∆xτ . The analysis inrement ∆xτis expressed via two sets of ontrol variables, namely the usual variational ones, whih are of the sizeof the model state, and a set of new ontrol variables assoiated with the �ow-dependent struturesresolvable by the ensemble
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(34)Here β1 and β2 are empirially estimated weights and matrix A is a �lter stabiliser.Buehner (2005) proposes to augment the ontrol variable set further in order to implement theovariane loalisation in the ontext of the ETKF. He points out that the square-root of the loalisedensemble ovariane an be expressed as(35) Zf
loc,τ = [diag(Zf

1,τ)L
1/2, diag(Zf2,τ)L

1/2, . . . , diag(Zf
N,τ)L

1/2],where, again, L is the presribed orrelation matrix for the loalisation, Zf
i,τ is the i-th perturbationand diag(Zf

i,τ) is a m × m diagonal matrix with the Zf
i,τ on the diagonal. Equation (35) expliitlyproves that the ovariane loalisation redues the e�et of sampling error. The square-root Zf

loc,τ ofthe sample estimate of the foreast error ovariane matrix has larger dimensionality, whih is at most
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Nr, in omparison with the dimensionality of the square-root matrix Zf

τ , whih is N . Here r is thedimensionality of L. In this ase the set of variational ontrol variables should be augmented by Nrnew ontrol variables assoiated with the �ow-dependent strutures.One important remark is that it is not straight-forward to apply the ovariane loalisation. Essen-tially, the ovariane loalisation laks physial bakground and destroys important balanes betweenthe model state omponents. For example, the geostrophi omponent wind omponents should be inan approximate linear balane with the spatial geopotential gradient. One possibility is to apply theloalisation to streamfuntion only and let other variable omponents to adjust to eah other after theloalisation.
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(36)The analysis inrement is related to the ontrol vetor as follows
∆xτ = ∆x1,τ + ∆x2,τ

= Uητ + Ueηe
τa

(37)where ητ is a set of ontrol variables assoiated with the struture of B3DV ar, U is a transformation fromthe ontrol vetor spae into the model spae, ηe
τ is a set of variables estimated from the ensemble ofthe foreast states Zf

τ and Ue is a transformation bak to the model spae that is supposed to preservesome important balanes expliitly. Matrix A is an empirial orrelation matrix (to be spei�ed) whihdesribes the struture of ai-2D �eld. The 2D-�elds ai an be of a muh oarser resolution than themodel state.Wang et al. (2007) has shown that the Hybrid Ensemble Transform- Optimal Interpolation shemean work even without loalisation in the ase of a simpli�ed dynamial model. The estimate of theforeast error ovariane matrix is stabilised by merging the rank-de�ient �ow-dependent ovarianematrix with the full rank stati ovariane matrix.4. Ensemble predition systemsThe methods disussed in the previous setion are all onerned with data assimilation. The issue ofdata assimilation is to merge the unertainty in the foreast model and in the observation in an optimalway in order to onstrut the initial model state for the weather predition. The ensemble methodsused in data assimilation allow to onstrut not only a deterministi initial state for the foreasting butto quantify the unertainty about the initial model state as well. The representation of unertainty isdone essentially through estimation/modelling of the analysis/foreast error ovariane. One may saythat for these models the Gaussian assumptions about the distribution of the model state are madeimpliitly. Even variational data assimilation shemes allow theoretially the quanti�ation of theunertainty about the initial model state. The inverse of the Hessian, whih determines the urvatureof the onditional probability density funtion, given observations, in a viinity of its maximum, ouldbe used as a measure of the unertainty. However, the huge dimensionality of the model state doesnot allow to perform the inverse.The ensemble predition systems (EPS) were proposed by Leith (exellent review is given by Ehren-dorfer (1997)) and have di�erent aim. A suessful EPS should sample the unertainty about the initial



19model state (the initial PDF) in suh a way that it ould desribe a relevant part of the PDF (usuallynon-Gaussian) during and after the integration period of interest for the phenomena of interest. Thephenomena of interest an often be related to the model state variable via non-linear small-dimensionaltransform. The EPS systems an roughly be divided into three groups dependent on how the initialensemble of perturbations is reated:(1) sampling of dynamially unstable diretions : the singular vetors optimized over ertain fore-ast length and error breeding;(2) sampling of the analyses errors :Kalman �lter based resaling;(3) omprehensive sampling of di�erent soures of unertainty about the foreasting system: asystem simulation approah.Combinations of these three approahes also exist.4.1. Singular Vetors.Singular vetors represent those diretions in the model spae at initial time that give the maximumlinear growth for a spei� foreast period and over prespei�ed area. Maximisation is performed withrespet to a ertain norm. Typially singular vetors are maximised using the energy norm both atthe initial and at the �nal time and are abbreviated TE SV (total energy singular vetors). TE SVare solutions of the following generalised eigenvalue problem(38) (M(t0, tp))
T P T EpPM(t0, tp)x = λE0xwhere λ is an eigenvalue orresponding to x, E0 and Ep is energy norms at the initial and at the�nal time, M(t0, tp) is a tangent-linear dynamial propagator over the period t0 < t ≤ tp and P is aprojetion operator to the prespei�ed area.The total energy norm is alulated via the total dry energy transformation, whih was �rst proposedby Talagrand (1981) and was studied in details by Errio (2000)(39) < x, Ex >=

∑
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2where l is a vertial model level, Dl is the vertial transformation, Dl = Pl+1/2 − Pl−1/2, ul, vl, tl and
Pl are wind omponents, temperature and pressure at the model level l, Ps is the surfae pressure,
cp = 1004 J K−1 kg−1 is the spei� heat for dry air at onstant pressure, Tr = 273 K is the referenetemperature and Rd = 287 J mol−1 K−1 is the gas onstant for dry air. This quantity was used togenerate initial perturbations in Buizza et al. (1993). The theoretial expression for the total energynorm an be found in Barkmeijer et al. (1999), for instane.In the ase of linear dynamis the set of singular vetors XSV k(t0) orresponding to di�erent λk,
λ1 > λ2 > . . . λN , would span the most rapidly growing diretion at the optimization time tp (tp = 48hours is typially assumed). The evolved singular vetors M(tp, t0)XSV k(t0) will form the E-orthogonalset at the optimisation time tp.The derivations of singular vetors is based on the model dynamis. These vetors are believed tosample the unstable linear subspae as e�iently as possible. To generate the initial perturbationsfor the EPS the singular vetors are resaled to represent the system with a realisti initial spread.Both the optimisation time and the phenomena of interest in�uene the onstrution of the singular



20vetors. For example, by maximizing the total energy norm in the small target area the system anbe designed for a spei� region and proess of interest.Suh singular vetors are alled Targeted Singular vetors. Frogner and Iversen(2001) and Hersbahet al. (2000) generated the targeted ensemble predition systems (TEPS) for parts of Europe. TEPSprovides the initial and the boundary �elds for LAMEPS, a high resolution limited area ensemble pre-dition model. The model seems to be suessful in foreasting extreme weather events and even largesale preipitation whih involves strong mesosale variability and is strongly in�uened by orography.A detailed desription and veri�ation of LAMEPS an be found in Frogner and Iversen (2002).To make EPS based on Singular Vetors more appropriate for the short range foreasting, theoptimized (at some future time, usually 24 or 48 hours) singular vetors may be ombined with theevolved singular vetors from the previous optimisation time. Hamill et al 2003 propose an alternativeapproah. They generate the ensemble of Analysis Error Covariane Singular Vetors (AEC SV) bysolving the generalised eigenvalue problem (eqn 38) but with the initial energy norm E0 in the equationabove being replaed with the inverse of the analyses error ovariane norm P−1
a . So the idea is tosample the quikly growing diretions, whih initially have strutures onsistent with the analysiserror ovariane. Hamill et al. (2003) have shown that evolved and appropriately resaled AEC SV

vtp satisfy the following generalized eigenvalue equation(40) E1/2
p Xf

tp(E
1/2
p Xf

tp)
T vtp = λvtpprovided that the ensemble size is large and that the model dynamis is nearly linear. The foreastensemble Xf

tp is obtained by dynamial forward integration of the analysis ensemble Xa
t0
, whih isgenerated using the ensemble square-root Kalman �lter algorithm (eqn. 20). Thus, the evolvedsingular vetors vtp are expressed as a linear ombination of the foreast ensemble, vtp = E

1/2
p Xf

tpa,where the vetor a is obtained solving an equivalent (eqn. 40) but smaller, with the dimensionality ofthe ensemble, eigenvalue problem(41) (E1/2
p Xf

tp)
T (E1/2

p Xf
tp)a = λaThen the initial AEC singular vetors ut0, whih are onsidered to give rise to vtp , are estimated asthe same linear ombination a but of the analyses ensemble Xa

t0
, namely

ut0 = Xa
t0a.The typial strutures of the initial-time AEC SV were signi�antly di�erent from the typial stru-tures of the total energy singular vetors (eqn. 38) and were similar to the subsequent foreast errorstrutures, but smaller in amplitudes. However, Buehner and Zadra (2006) show that the shape of theevolved singular vetors is almost independent of the initial norm.4.2. Breeding vetors.The analyses error, or the initial-time error, onsist of the random errors introdued by inauraies ofthe assimilated observations and the growing errors assoiated with the instabilities of the evolving �ow,whih are dynamially generated from the errors introdued at the previous assimilation times. Evenif the growing part of the error is only a portion of the total analysis error, their impat on the foreasterror is large. Therefore, reating an ensemble of initial states with a limited ensemble size seems to beappropriate to fous on the e�ient sampling in the diretion of growing errors (Ehrendorfer (1997),Toth and Kalnay (1997)). To sample the growing error diretion Toth and Kalnay proposed a methodalled breeding of the growing vetors. The idea is to add an arbitrary perturbation to the initial state



21at time t0, to let it grow for a short time period (t0, tp), while the error growth is approximately linear,and to downsale the evolved perturbation so that it has the amplitude of the initial perturbation. Theobtained perturbation is added to the analysis state at time tp and the proess is ontinued resetting.The down saling of the evolved perturbations helps to eliminate deaying diretions.Theoretially the breeding perturbations are related to the loal Lyapunov vetors of the atmosphere(Trevisan and Legnani (1995)).(42) λi = lim
t→∞

1

t
log2

[

pi(t)

pi(0)

]where p is a linear perturbation spanning the phase spae of a system with orthogonal vetors. Whenthe Lyapunov exponents are interpreted loally, eah of them an be assoiated with a perturbation.The breeding tehnique is based on the fat that any random perturbation introdued an in�nitelylong time earlier develops into the leading loal Lyapunov vetor, the perturbation p with the largestexponent λ (eqn. 42).Singular vetors (eqn. 38) provide another possibility to approximate the Lyapunov vetors. At thesame time, as we have mentioned above, both optimisation time tp and the optimisation area in�uenestrongly singular vetors too.In order to allow the initial perturbations onstruted via the breeding error tehnique resemblethe analysis error in a better way, a regional resaling is introdued. The idea is to have largerperturbation amplitude in the regions sparsely observed. The saling fator is a smooth funtion ofhorizontal loation. A perturbation traveling into a poorly observed oeani area is allowed to growfreely, while those reahing a well-observed area are saled down to the size of the estimated analysiserror (Augustine et al. (1992)).4.3. The perturbed observations approah.Houterkamer et al. (1996a) have developed an approah, alternative to the seletive sampling, togenerate the initial perturbation. This approah is in operational use at MSC sine 1996. The ini-tial onditions are generated by assimilating randomly perturbed observations, using di�erent modelversions in a number of independent data assimilation yles. This is a type of system simulationexperiment, when all unertain parts of the foreasting system are subjet to perturbations. In otherwords, the idea is to sample arefully all soures of unertainty whih determine the foreast error.Soures of unertainty that are onsidered to have a signi�ant impat on the foreast errors are ob-servation errors (both measurement and representativity), model errors (the e�et of unresolved salesand parametrisation of the physial proesses), data assimilation proessing errors (the unrealististruture-funtions of the ovariane matrix) and the erroneous boundary �elds (inluding imperfetestimation of the surfae �elds). To aount for all these soures of errors the initial perturbation aregenerated using di�erent sets of perturbed observations, di�erent dynamial models and di�erent setsof perturbed surfae �elds. At present the MSC sheme to sample di�erent soures of unertainty hassigni�antly developed further by allowing elaborated perturbations of essential parameters of physialparametrisation.4.4. The Kalman Filter based resaling.The Kalman Filter based resaling approah (ETKF) to generate ensemble predition system an bealled a generalized breeding. The ensemble of the foreast perturbations is resaled into the ensembleof the analysis perturbations. Under the error breeding methodology the foreast perturbations are



22downsaled by a salar or an ad-ho matrix, in a ase of a masked breeding, into the analysis pertur-bations. In ontrast to this methodology, the foreast perturbations under the ETKF resaling shemeare downsaled into the analysis perturbations by a arefully designed resaling matrix whih re�etsboth the relative foreast/observations unertainty and the spatial observation distribution (eqn. 21).Theoretially, in ase of a full-rank model, the analysis perturbations generated by the ETKF forma square-root of the analysis error ovariane matrix. One drawbak of the ETKF resaling shemeis that if the number of the ensemble perturbations is muh smaller than the number of diretions towhih the foreast error variane projets, the transformation (eqn. 20) heavily underestimates theanalysis error ovariane matrix (Wang and Bishop 2003). A simplisti way to overome the problemis to multiply eah ensemble member by a salar to fore the spread of the analysis perturbations tobe onsistent with the analysis error variane on a spatially averaged basis. It is still questionableif the perturbations modi�ed in suh a heuristi manner are able to desribe the time developmentof the PDF of the model state. Wang and Bishop (2003) have shown that the fastest growth in theensemble perturbation subspae generated by the ETKF is larger in the total energy norm than thefastest growth in the ensemble onstruted via breeding.The fastest growth γ is de�ned via a linear ombination b of the perturbations to obtain the diretionof the fastest growth of the total energy over the prespei�ed time period,(43) max
bT (Zf
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,where S is an appropriate norm, the total energy norm (eqn. 39) in this ase. In fat, the linearombination b is a leading eigenvetor of A−1/2BA−1/2, where A = (Za
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tp and
t0 < t < tp is the optimisation period (Wang and Bishop 2003). Thus the fastest error growth is theleading eigenvalue of A−1/2BA−1/2.The analysis perturbations onstruted via the ETKF have a very �at spetrum, espeially inomparison with the perturbation onstruted via error breeding.Besides that the ETKF perturbation seems to be able to resolve a wider range of innovation varianethan the breeding perturbations.At the same time we would like to stress that the Kalman Filter based resalig shemes allow tosample the unertainty valid at the analysed time t0, measuring the unertainty via the variane-ovariane of the model state. This means that the Gaussian assumptions about the PDF of themodel state valid at t0 are done impliitly. It is questionable wether the ensemble of limited size ofthe analyses states onstruted in suh way and dynamially propagated forward to the time interestis able desribe adequately the relevant part of the PDF for the phenomena of interest.5. Verifiation of the Ensemble SystemsThe veri�ation of ensemble predition system for NWP involves some spei� problems. The qual-ity of the predition system an be evaluated only based on observations, beause only the observationsre�et the true state of the atmosphere. At the same time the assessment of the quality an be doneonly statistially, based on a large number of realizations of both observations and ensemble predi-tions. Sores whih are ommonly used for evaluating the ensemble predition system are extensivelydisussed in Toth et al. (2003) or Stanski et al. (1989).A veri�ation methodology for the ensemble predition system onerns three di�erent subjets:
• predition of the ourrene of a partiular binary event,
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• predition of a probability distribution of a random (one-dimensional) variable
• and representation of the unertainty about the estimate of the (full-dimensional) model state.To validate the predition of an ourrene of the partiular binary event E , as for example "thesurfae pressure is 3hPa smaller than its limatologial value",
• the Brier sore (the Probability sore) and its deomposition,
• the Relative Operating Charateristis (ROC) and the area under ROC and
• the Relative Eonomi Value are usually used.They all are based on the Reliability Diagram (a relation between foreasted and observed frequeniesof the binary event E) and try to produe quantitative summaries from it.A validation of the predition of the probability distribution of a random one dimensional variableis losely related to the validation of an ourrene of a partiular binary event. The random one-dimensional variable X is desribed via an enlosing set of binary events El = {X ≤ xl}, l = 1, . . . , L,with inreasing sequene of thresholds x0 < x1 < . . . xl < . . . < xL.
bullet Disrete and Continuous Rank Probability Sores, whih are generalizations of the Brier Sore,are ommon measures for the validation.Spei� measures based on the ensemble estimate of the probability distribution are reported often inparallel.
• The Rank histogram (Candille and Talagrand, 2005) the utilizes indistinguishability hypothesis(verifying observations should be free from observational error) and
• the Skill Sore (S) onerns the onept of a prior-posterior probability density in a Bayesianframework (a parametri estimate of the probability density) (Wilson et al., 1999). • the Skill Sore(S) onerns the onept of a prior-posterior probability density in a Bayesian framework (a parametriestimate of the probability density) (Wilson et al., 1999).A validation of the representation of the unertainty about the estimate of the model state is ofdi�erent nature. In appliations onerning "Gaussian" type data assimilation (Hybrid Variational orEnsemble Kalman Filter data assimilation) the unertainty about the point estimate of the model stateis represented through the variane-ovariane matrix of the foreast error. In that ase the validationshould primarily re�et how well the ensemble is able to span a subspae essential for the dynamialdevelopment of the variane-ovariane matrix. The diagnostis should re�et(1) the dynamial onsisteny and dominant sales of the variability(spetral densityand horizontal and vertial ross-orrelations withinand between model state omponents),(2) the spread-skill relationship(the "spread-skill" plot,the resolved range of innovations variane,Perturbation versus Error Correlation Analysis (PECA)) and(3) the span of the dynamially unstable diretions(fastest growth of perturbation energy in the ensemble spae,perturbation orrelation with the Eady index,

E-dimension).In the following we will onentrate on a desription of some of the validation tehniques mentionedabove and outline some basi relationships between them.



245.1. Predition of the ourrene of a partiular binary event.Let M denote the total amount of realizations of a predition of a partiular event of interest, E , overwhih the veri�ation is performed, let ri,j = {0, 1}, 1 ≤ i ≤ N , j = 1, . . . , M , denote the predition ofthe event E by the ensemble member i during the realization j and let oj = {0, 1}, 1 ≤ j ≤ M , denotethe observation of the event E during the realization j. The random quantities ri,j and oj are equal 1if E ours and equal 0, otherwise.The predited probability of the ourrene of E in the realization j, pj, is
pj =

1

N

N
∑

i=1

ri,j.For eah realization pj is a disrete random variable with N + 1 possible outomes, i.e. pj = πk,
πk := {0, 1

N
, 2

N
, . . . , N

N
} for eah j = 1, . . . , M . The distribution of pj will depend on the ensemblesize and the preditability of the event. Let gk = g(πk) := 1

M

∑M
j=1 Ipj=πk

, 0 ≤ k ≤ N , denote thefrequeny of the ourrene of the outome πk. Here IA is the index of a random event A: IA is 1 if
A is true, and IA is 0 if A is false. In the similar way let us denote ok, 0 ≤ k ≤ N , the frequeny withwhih the event E indeed ours in di�erent realizations of the predition system when it is preditedby the system with probability of the ourrene πk, ok = o(πk) := 1

M

∑M
j=1 ojIpj=πk

.
• The Reliability Diagramis a plot of ok against πk. The histogram of the probability realizations pj, j = 1, . . . , M or thefrequeny gk, k = 0, . . . , N is reported as well. This information is the omplete representation of theperformane of the ensemble predition system in prediting the event E .Several quantitative measures for the performane of the Reliability Diagram are proposed in theliterature.
• Brier sore (Brier, 1950)is de�ned as(44) B =

1

M

M
∑

j=1

(pj − oj)
2 = E(p − o)2 = E(E(p − o)2 | p)where p and o are random variables desribing the predited probability of ourrene and the our-rene itself of the event E . The better is the predition system the lower is Brier sore.Murphy 1973 proposed a deomposition of the Brier sore into three informative omponents. Let

g(p) and o(p) denote density funtions whih desribe orresponding relationship between the frequen-ies of ourrene gk or ok and the outomes of the predited probability πk, 0 ≤ k ≤ N . Let oc denotethe limatologial frequeny of the ourrene of the E , oc =
∑N

k=0 okgk. Then Murphy deompositionreads
B =Ep((p − o(p))2) + Ep(o(p)(1 − o(p)))
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(45)



25The �rst two terms in the Murphy deomposition of Brier sore B haraterize the predition sys-tem. The �rst term in the deomposition is alled a reliability (BSrel) and it measures the statistialonsisteny between the predited and the observed frequenies of ourrene of E . The seond term(BSres) is alled a resolution and it implies that the predited probability should be ase dependent(di�erent from the limatologial one). The third term is alled unertainty (BSs) and it depends onthe nature of the event E but not on the predition system.Sometimes Relative Brier Sore (BSS) and its deomposition are reported instead.
BSS =

B
BSs

=BSSrel + BSSres =

Ep(p − o(p))2

oc(1 − oc)
+ 1 − Ep(o(p) − oc)

2

oc(1 − oc)

(46)Inreasing the foreast lead time BSSrel grows and BSSres dereases. The development with timeof the total BSS will depend on the relative impat of both omponents.
• Relative Operating Charateristis or Reeiver Operating Charateristis (ROC)is an alternative qualitative measure of the performane of the EPS and it is losely related with theReliability Diagram (Mason and Graham, 2002). The ROC urve is a plot of Hit rate against False-alarm rate varying the strategy of predition of the event E by the ensemble system. For the ensemblesystem of size N there are N + 2 di�erent predition strategies of the event E : predit if at least l,
1 ≤ l ≤ N , ensemble members predit the event (Dl) and two degenerate predition strategies, namelynever predit (D0) and always predit (DN+1). For the seleted informative predition strategy Dl,
l = 1, . . . , N , the jth realization of the EPS will predit event E if and only if pj ≥ πl. Let mo =
1
M

∑M
j=1 oj denote the total amount realizations when the event E has ourred, ml

1 = 1
M

∑M
j=1 ojIpj≥πldenote the total amount of realizations when the event E was predited when it has indeed ourred,

m0
l = 1

M

∑M
j=1(1 − oj)Ipj≥πl

denote the total amount of realizations when the random event waspredited but has not ourred and m−1
l = 1

M

∑M
j=1 ojIpj≤πl

denote the total amount of realizationswhen the random event was not predited but has indeed ourred. For the degenerate preditionstrategies we have (m1
0, m

0
0, m

−1
0 ) = (0, 0, mo) and (m1

N+1, m
0
N+1, m

−1
N+1) = (mo, M − mo, 0).Then the Hit rate Hl and the False-alarm rate Fl orresponding to the predition strategy Dl,

l = 0, . . . , N + 1 are de�ned as follows
Hl =

m1
l

mo
, Fl =

m0
l

M − mo
.Plotting Hl against Fl for all l = 0, . . . , N + 1 we obtain ROC urve. The loser omes the urve tothe left upper orner ((H, F ) = (1, 0) - "the most hit the least false alarms" ) the better is the EPSsystem prediting E .

• The area under ROCis often is reported as another quantitative measure of the probabilisti skill of the EPS. Under ertainonditions, the area under ROC an be used to measure skillfulness of the EPS statistially. Areaunder ROC, A, an easily be alulated as(47) A = 1 − mo(M − mo)

F



26where F is a total number of "inversions" among realizations of the EPS. An "inversion" we alla situation when the predited probability of any hit pjhit
≥ 0, jhit : ojhit

= 1, is smaller than thepredited probability of any false-alarm pjfalse−alarm
, jfalse−alarm : ojfalse−alarm

= 0. The total amount ofall hits with the predited probabilities lower than eah false-alarm an be obtained easily from theranks of the realizations orresponding to eah hit, ri, i = 1, . . . , mo. The realizations are ordered bydereasing the predited probability of the random event E .If all predited probabilities are di�erent for di�erent realizations, the total number of "inversions"is given by the following formula(48) F =
mo
∑

i=1

ri −
mo(mo + 1)

2If ties are present among pj , as it is often the ase for the ensemble predition system, a orretion forthe ties should be done (DeLong et al. 1988). In that ase the area under ROC is obtained as(49) Aties = 1 − mo(M − mo)

Fties
= 1 − 1

mo(M − mo)

P
∑

p=1

hp(fp + f̃p)where P is a number of distint segments among pj, hp is a number of hit in segment p, fp is anumber of false-alarms with the predited probability of the event higher than that assoiated withsegment p and f̃p is a number of false-alarms with the predited probability of the event higher orequal than that assoiated with segment p.For large amount of realization the distribution of F an be well approximated by the Gaussian one:(50) F ∼ N (aF , bF ).where aF = mo(M−mo)
2

, bF = mo(M−mo)(M+1)
12

.The exat distribution of the F is known as well. It is has the same distribution as the Mann-WhitneyU-statistis (Bamber 1975), whih is symmetri and is de�ned via a reurrene formula (Conover, 1973,1999).The same distributional theory holds even for Fties with a ertain adjustment for ties (Conover,1999). For large number of realizations,(51) Fties ∼ N (aties
F , bties

F )where
aties
F =N (

mo(M − mo)

2
,

bties
F =

mo(M − mo)(M + 1)

12
− mo(M − mo)

12M(M − 1)

P
∑

p=1

(τp(τp + 1))(τp − 1))The Mann-Whitley U-statistis test di�erenes in entral tendenies of two independent samples.High observed value of F (Fties) will indiate that there is a statistially signi�ant di�erene betweenthe predited probabilities of the hit events and the false-alarm events. However, it is important that



27realizations of pj indeed form an independent sample in order to use the distribution of the statististo quantify the signi�ane.
• Relative Eonomi valueof the EPS is one more way to quantify the performane of the EPS. Relative Eonomi Value relatesBrie Sore and Relative Operating Charateristis between themselves. Relative Eonomi value learlydemonstrates the advantage of EPS systems in omparison with deterministi foreasts (Rihardson,2001).We say that if the veri�ation event E ours, it will ost the user Lu if he have already taken apreventive ation whih ost C or the user will pay the total ost Lu + La if he have not taken thepreventive ation. The user must selet a strategy to take the preventive ation or not by minimizingthe ost over a large number of ase, i.e by minimizing the expeted ost. If the user deides to protethimself by taking a preventive ation, he will do that always as soon as the event E is predited.Aepting the ertain predition strategy Dl = (m1

l , m
0
l , m

−1
l ), 0 ≤ l ≤ N + 1, the expeted expensewill be

eel =
m−1

l

M
(La + Lu) +

m0
l

M
C +

m1
l

M
(C + Lu)

= oc(Lu + La) + La(Fl(1 − oc)α − Hloc(1 − α))
(52)where α = C/La is a quantity whih will haraterize the user, namely whih fration of thepotential avoidable loss La the user is prepared to spend on the preventive ation, and oc = mo/M isa limatologial frequeny of the event E .Negleting information given by the EPS the user would base the seletion of strategy on the"limatologial frequeny" only. The optimal (expeted) limatologial expense eec is

eec = min{C + ocLu, oc(La + Lu)}This expression is based on the deterministi strategy to prevent always if the preventive ationgives positive gain an average (C < ocLa), orresponding to the degenerate predition strategy DN+1(HN+1 = 1, Fl+1 = 1), and to prevent never if the preventive ation osts on average too muh(C ≥ ocLa), orresponding to the degenerate predition strategy D0 (H0 = 0, F0 = 0).The Relative eonomi value Vl, dependent on the predition strategy Dl, is the redution in theexpeted expense due to the EPS in proportion to the redution in the expeted expense due a theperfet foreast,(53) Vl =
eec − eel

eec − eeperfwhere eeperf = oc(C +Lu) is the expeted expense based on the perfet foreast (Hperf = 1, Fperf = 0).It is possible to show that Vl ahieves the maximum value always for α = oc and that the maximalvalue depends on the seleted predition strategy and that it is equal to the Kiupers sore KSl of theforeast
Vmax,l = Hl − Fl = KSlThe Relative Eonomi value is positive only for a range of users, namely



28(54) m−1
l

M − m1
l − m0

l

< α <
m1

l

m1
l + m0

lEvaluating the EPS system from the perspetive of the user (α), the user must selet his optimalpredition strategy whih will give the largest Relative Eonomi value V opt(α) = Vlopt(α)(α). Howlose V opt(α) is to its the maximal value KSlopt(α) depends on how lose α is to the limatologialfrequeny oc.
• The Overall Eonomi valueis the expeted expense over all users. Let the population of users be desribed by a density funtion
u(α), 0 < α < 1. All users whih are predited to gain (in the long run) from the preventive ation((α < p) ≡ (C < pLa)) will take the preventive ation and all user whih are predited to lose in longrun on preventing (α ≥ p) ≡ (C ≥ pLa

) will take all ost if the event will happen indeed. The overalleonomi expense for a deterministi foreast p will be
eeF (p) =

∫ p

0

αu(α)dα + o(p)

∫ 1

p

u(α)dα.Here we assume that Lu = 0 for simpliity. The Overall Eonomi value for the EPS, eeF =
∫ 1

0
eeF (p)g(p)dp, an be deomposed into following omponents

eeF =

∫ 1

0

g(p)

∫ p

0

(α − o(p))u(α)dαdp + oc

= eec +

∫ 1

0

g(p)

∫ p

o(p)

(α − o(p))u(α)dαdp−
∫ 1

0

g(p)

∫ o(p)

oc

(o(p) − α)u(α)dαdp.

(55)For a �nite size ensemble,
eeF =

N
∑

k=0

gk

∫ πk

ok

(α − ok)u(α)dα −
N

∑

k=0

gk

∫ ok

oc

(ok − α)u(α)dα + eecFor the uniform distribution of users, u(α) ∼ U(0, 1), the overall expeted Eonomi value eeFbeomes diretly related to the Brier sore.
eeF =

1

2

N
∑

k=0

gk(πk − ok)
2 − 1

2

N
∑

k=0

gk(oc − ok)
2 +

1

2
oc(1 − oc) +

1

2
oc

=
1

2
(BSrel − BSres + BSs) +

1

2
oc

(56)In other words, the Brier sore is essentially the Overall Eonomial Value for users without prefer-ene.



295.2. Predition of the probability distribution of a salar random variable.
• The Ranked Probability Sore(RPS) is a generalization of the Brier sore and is used to evaluate the probabilisti ensemble preditionof a salar variable, x. The Ranked Probability Sore an be applied in Disretized (DRPS) or inContinuous (CRPS) form dependent on the support of the salar variable (a disrete or a ontinuousone). For evaluation of an ensemble predition system from the perspetive of a salar variable theRelative Ranked Probability Sore (RPSs) and it deomposition into normalized reliability (RPSrel)and normalized resolution sore (RPSres) an be applied. An extensive disussion on these sores isgiven in Candille and Talagrand (2005). For example, in disrete form the DRPSs, DRPSrel and
DRPSres are de�ned as follows

DRPS =
1

L

L
∑

l=1

B(El) = DPRSrel + DPRSres

unc =
1

L

L
∑

l=1

plc(1 − plc)

DRPSs =1 − DRPS

unc

DRPSrel =
1
L

∑L
l=1 E(pl − o(pl))

2

unc

DRPSres =1 −
1
L

∑L
l=1 E(o(pl) − pcl)

2

unc

(57)
where El = {x ≤ ξl}, ξ1 < ξ2 < . . . ξL, l = 1, . . . , L is a sequene of events, B(E) is the Brier sore sorefor the probabilisti predition of event E and plc is a limatologial frequeny for the ourrene ofevent El.
• The Continuous Ranked Probability Sore (CRPS)is obtained by transforming a �nite sum over thresholds in DRPS (eqn. 57) into an integral over x.(58) CRPS =

1

M

M
∑

j=1

∫

(Fj(ξ) − H(ξ − xobs,j))
2dµ(ξ) =

∫

B(Eξ)dµ(ξ)where B(Eξ) is the Brier sore for the event Eξ = {x ≤ ξ}, Fj(ξ) is the jth realization of the probabilitydistribution of the salar variable x, Fj(ξ) = P (Eξ) = 1
N

∑N
k=1 H(ξ − xkj), xkj is the predition ofthe random variable x by ensemble member k in the realization j of the EPS, H(y) is the Heaoyisidefuntion (H(y) = 0 if y < 0, Hy = 1 if y > 0) and dµ(ξ) is a measure with whih the integration isperformed.The Continuous Ranked Probability Sore an be deomposed into similar omponents as the Dis-rete Ranked Probability Sore(59) CRPS = Reli − Resol + UThe unertainty omponent U =

∫

Fc(ξ)(1 − Fc(ξ))dµ(ξ) is orresponding to unc in (eqn. 57).Here Fc(ξ) de�nes a limatologial probability funtion of the random variable x. Components Reliand Resol orrespond to the reliability and resolution omponents in the Brier Sore deomposition.



30Candille-Talagrand (Candille and Talagrand (2005)) and Hersbah-Lalaurette (Hersbah (2000)) aretwo di�erent deompositions of the CRPS into Reli and Resol omponents.
• The Rank Histogramis another measure of the probabilisti ensemble predition of a salar variable x. It measures whetherthe verifying observation xobs,j (negleting the observation error) is statistially indistinguishable fromthe N ensemble members xi,j , i = 1, . . . , N , j = 1, . . . , M . The Rank Histogram is de�ned as follows.It onsists of N + 1 bins sk:(60) sk =

M
∑

j=1

I{x[k−1],j≤xobs,j <x[k],j
, k = 1, . . . , N + 1where −∞ = x[0] < x[1] < . . . < x[k] < . . . < x[N ] < x[N+1] = +∞ are order statistis of the j-th realization of the ensemble predition system. The �atter is the Histogram, the more reliable isensemble predition system.The quantity(61) δ =

N + 1

MN

N+1
∑

k=1

(sk −
M

N + 1
)2measures the deviation of the histogram from a �at one. A value of δ whih is muh larger than1 means that the ensemble predition system is unreliable. Very small values of δ indiate thatobservations are not random or not independent.

• The Skill Soreis one more measure of the EPS based on the ensemble estimate of the probability distribution of arandom salar variable. Let E∆X denote a verifying event
E∆X = {| X − xobs |≤ ∆X}.Let Pc(E∆X) denote the limatologial probability of the event E∆X and Pens(E∆X) denote the oneestimated from the ensemble. From the Bayesian perspetive they will orrespond to the prior andthe posterior distribution of the event respetively.The Skill Sore gives a measure of Pens(E∆X) relative to Pc(E∆X):(62) Sc =

Pens(E∆X) − Pc(E∆X)

1 − Pc(E∆X)Under this soring measure the EPS is onsidered to be skillful in prediting event E∆X if theposterior probability of the event is larger than the prior one, in other words Sc is positive for theskillful EPS. The Skill sore is positively oriented and it is sensitive to the loation and sharpness ofthe ensemble estimated distribution with respet to the verifying observation. The Skill Sore takesinto aount di�erenes in the preditability of the event too, beause it is sensitive to the sharpness(and loation) of the limatologial probability as well.Beause the ensemble size in EPS is usually small, the Pens(E∆X) should be estimated parametrially.The predition of geopotential height and surfae and upper-air temperatures is found to obey a normaldistribution, the predition of preipitation obeys a Gamma or a Kappa distribution, the preditionof wind obeys a Weibull distribution, the predition of loud over obeys a Beta distribution and thepredition of the visibility is assumed to obey a lognormal distribution.



315.3. Representation of the unertainty about the model state estimate.When an ensemble system is used for "Gaussian" type data assimilation purposes, the main aim of theensemble is to adequately represent the initial unertainty about the model state and its development.For the "Gaussian" type data assimilation systems the ovariane matrix of the foreast error isonsidered to apture the unertainty about the estimate of the model state. A suessful ensembleshould not only apture the time-and-spae dependent variation of the spread of the distribution ofdi�erent model state omponents, but re�et also the �ow-dependent ross-orrelations between modelstate omponents. The best veri�ation tool is to run a period of data assimilation yles: suessfulensemble should improve the e�ieny in assimilating observations. However, it is a real hallenge toonstrut the proper estimate of the foreast error ovariane matrix when the dimensionality of themodel state is so high and the size of the ensemble is so small. A number of diagnostis and veri�ationtools an highlight spei� features of estimates of the foreast error ovariane matrix.
• Diagnosti plotsof the spetral variane of di�erent model state omponents as well as plots of the ross-orrelationsbetween model state omponents are very useful, investigating the dynamial onsisteny of the foreasterror ovariane estimate.
• The spread-skill relationshipis onsidered to be an important harateristi of the ensemble system. There is not any uniquequantity whih would summarize the spread of the ensemble.The spread-skill relationship plot is a plot root-mean-square error of the ensemble mean Em =

(P T
mPm)

1/2
S and the estimate of the ensemble spread Esp = ( 1

N

∑N
i=1(P

T
i Pi)S)1/2 . Here Pm = x̄ − xaand Pi = Xi − xm, where Xi denote the ensemble members i, 1 ≤ i ≤ N , x̄ denotes the ensemblemean, xa denotes the verifying analysis and subsript S denotes the norm. The total energy normis often used (eqn. 39). The orrelation between spread and skill is related with the magnitude ofthe spread variability, namely the more the spread departs from its limatologial mean value, themore useful is the spread as a preditor of skill (Whitaker and Loughe (1998)). The resolved range ofinnovation variane is one more way to measure spread-skill relationship of the ensemble (Wang andBishop (2003)). First, a satterplot of squared innovations against ensemble estimate of the variane inobservation spae is onstruted using all observation quantities. After that a relationship (regression)of the innovation variane on the ensemble variane is tried. For the perfet ensemble, when theobservation error, model error and foreast error are mutually unorrelated, the relationship shouldlook like as a stright line with 45 degrees slope, beause the innovation variane is a sum of the foreastand observation variane (taken in observation spae). Although in reality the representativity errorand the model error may be orrelated with the foreast error, still observing the resolved range of theinnovation variane an tell us something about how well the spread of ensemble represent the skill ofthe ensemble an be made.Wei and Toth (2003) propose another measure to quantify skill-spread relationship alled Pertur-bations versus Error Correlation Analysis (PECA). First the optimal linear ombination of ensembleperturbations Popt, whih gives the best predition of the foreast error Pm in L2 norm, is obtained:

Popt =

N
∑

i=1

αiPi,where the weights αi, 1 ≤ i ≤ N , are obtained by solving the least-square problem



32(63) min | Pm − Popt |L2The PECA is de�ned as a pattern anomaly orrelation between the foreast error Pm and the optimalperturbation Popt(64) PAC(Pm, Popt) =
cov(Pm, Popt)

var(Pm)1/2var(Popt)1/2The suessful ensemble should explain the largest part of the foreast error variane via the optimalperturbation. • Sampling of dynamially unstable diretionsis one more important harateristis of the ensemble in representing the foreast error variane-ovariane. The orrelation of the optimal perturbation with the Eady index (Hoskin and Valdes(1990)), the fastest growth of the energy of perturbations in the spae spanned by the ensemble inthe total energy norm and the E-dimension (Oszkowski et.al, 2005) an be used as measures of theensemble performane.The estimation of the fastest energy growth is given in the setion on Singular vetors (eqn. 43).The Eady index expresses the maximum normal mode error growth rate in barolini developmentsand it is de�ned as(65) σEady = 0.3125
f

Nb

du

dzwhere f is the Coriolis parameter, Nb is the buoyany frequeny and du
dz

is the vertial wind shear.Interpreting the orrelation one should remember that the Eady index orresponds to instabilitiesaused by barolini development only.The Ensemble dimension, also known as The Bred Vetor dimension, measures the e�etive dimensionspanned by a N-dimensional ensemble in a loal geographial region at a partiular time. The E-dimension haraterizes the e�etive number of dominant diretions in the vetor spae spanned bythe ensemble perturbations and is de�ned as(66) Edim(λ1, . . . , λN) =
(
∑N

i=1

√
λi)

2

∑N
i=1 λiwhere λi, i = 1, . . . , N are eigenvalues of the loal foreast error ovariane matrix BL = (P T

L PL)S. Heresubsript S denotes the total energy norm and PL denotes the ensemble of loal perturbations PL =
(PL,1, PL,2, . . . , PL,N). The loal perturbation PL,i ontains perturbations of all dynamial variables
Xj,i − x̄j of the global perturbation Pi, belonging to the loal area L. Small values of Edim, 1 ≤
Edim << N , re�et presene of a few leading diretions of variability (the remaining ones are smallompared to the leading ones) in the loal area and large values of the Edim. The large values of
Edim, Edim ≈ N , re�et the nearly equal spread of the variability among all diretion, what anorrespond to noise. Oszkowski et al. (2005) point out that a number of atmospheri senarios, suhas pure barolini instabilities, omplex proesses involving barolini and barotropi instabilities, thedivergene of ageostrophi geopotential �uxes et. result in a low E-dimension.



336. ConlusionsThe basi purposes of the urrent literature study ould be summarized as follows:
• to investigate the theoretial relationships between the sequential and variational data assimi-lation shemes espeially in a perspetive of the pratial implementation;
• to investigate the relationships between the ensemble data assimilations and the ensemblepredition systems.
• in addition we have provided a summary of widely used veri�ation methods to qualify theperformane of the ensemble predition and ensemble data assimilation systems.The variational data assimilation methods, suh as the Three-Dimensional and the Four-DimensionalVariational Data Assimilation Shemes, are suessfully implemented worldwide by the weather ser-vies for the operational weather predition. At the same time, there is a lot of spae for furtherimprovements.The Variational Data Assimilation shemes ompute a posterior mode of the probability density fun-tion, valid at the beginning of the data assimilation window, maximising the orrespondent densityfuntion numerially. The full rank bakground error ovariane matrix is neessary for the proe-dure of the numerial maximisation. The number of assimilated observation is of several magnitudessmaller that the dimensionality of the model state. Thus the prior assumptions about the probabil-ity density funtion at the beginning of the data assimilation window, expressed via the bakgroundforeast and the bakground foreast error ovariane matrix, will have strong impat on the posteriormode. The Variational Data Assimilation Shemes lak a�ordable proedure for the expliit updateof the evolution of the foreast/analysis/foreast-at-the-begging-of-the-next-assimilation-window errorovarianes. The stati onstant ovariane is used at the beginning of eah assimilation window, whatdegrade the performane of the variational assimilation shemes.The sequential data assimilations methods based on the Kalman Filter reursions would providethe Gaussian approximation to the posterior probability density funtion valid at the end of the dataassimilation window. However, the Kalman Filter reursions require an expliit forward propagationof the foreast error ovariane. The various implementations of the Ensemble Kalman Filter wereproposed in order to a�ord the pratial implementation of the sequential methods, where the foreasterror ovariane matrix in propagated forward approximately. First, a number of model states, anensemble, is seleted so that they together would represent ovariane matrix at the initial time;eah model state is propagated forward in time using the forward model propagator; the foreasterror ovariane at the time of interest is estimated from this propagated ensemble; the propagatedforeast ensemble is resaled/resampled into the analyses ensemble that should represent the updateof the unertainty about the model state after new observations are assimilated. However, the rankde�ieny of the model state ovariane estimate from the ensemble with a limited size reates seriousproblems implementing Ensemble Kalman Filter data assimilation shemes.Theoretially, the Hybrid Ensemble-Variational data assimilation sheme, where the the bakgroundovariane matrix is modelled via ontributions from both the full-rank stati onstant ovarianematrix and the rank-de�ient �ow-dependent ovariane matrix estimated from the ensemble of theforeast state, ould be an alternative method. However, it still should be proven that involving therank-de�ient estimate of the foreast error ovariane matrix would not degrade the performane ofthe variational assimilation sheme. The Shur-produt of matries is traditionally used to inreasethe rank of the ensemble estimate of the foreast error ovariane matrix. It is important to notiethat a Shur-produt of matries is not a linear transformation, therefore an extreme are should



34be taken on investigating impat of the Shur-produt on the physial balanes between the modelstate omponents. In the long term perspetive, the �ow-dependent foreast error ovariane matrixshould be modelled using loal strutures, suh as wavelets or Intrinsi Mode Funtions, with only theparameters estimated from the ensemble.The Data Assimilation Shemes provides a point estimate of the model state with a possibility toquantify unertainty about the estimate. The Ensemble Predition System are essentially di�erentfrom the Ensembles Methods for Data assimilation and they are onstruted with the aim to providea probabilisti inferene about some phenomena of interest (a low-dimensional transform of the modelstate variable) during and after a ertain integration period. For the long range foreasts, the Lyapunovexponent based tehniques, suh as singular vetors and breeding vetors, are traditionally used. Forthe shorter foreast range the initial model state will have an impat on the probabilisti infereneduring and after integration period. Thus Ensemble Predition Systems, whih adequately representthe probability distribution of the initial model state, are required. Sampling initial unertainty, theETKF based resaling sheme outperforms Breeding and Singular Vetors tehniques. The HybridETKF-PF (Partile Filters) Sheme has a potential to beome an e�ient ensemble predition systemfor the short-moderate range foreasts.The hoie of the veri�ation methods is important quantifying the performane of the EnsemblePredition Systems. The majority of the ommonly used veri�ation tools suh as the Brier Sore, Rel-ative Operating Charateristis and area under ROC as well as the Relative Eonomi Value representdi�erent quantitative measures of the performane of the Reliability diagram for the partiular eventof interest. It should be taken are when the onlusions are extrapolated on subspae of the modelstate support not overed by the event. The Overall Eonomi value an validate the performane ofthe Ensemble Predition system for the users with partiular preferene expressed through a ost-lossratio.Aknowledgements. This researh is funded by the eVITA program of the Researh Counil ofNorway, under ontrat 178894. The author is grateful to Nils Gustafsson and Ole Vignes for athoughtful reading and fruitful omments on this manusript.7. ReferenesAndersson, J.L., and S.L. Anderson, 1999: A Monte Carlo implementation of the nonlinear �lteringproblem to produe ensemble assimilations and foreasts. Monthly Weather Review 127, 2741-2758.Anderson, J.L., 2001: An ensemble adjustment �lter for data assimilation. Monthly Weather review129, 2884-2903.Augustine, S.J., S.L. Mullen, and D.P. Baumhefner, 1992: Examination of atual analysis di�erenesfor use in Monte Carlo foreasting. Pro. 16th Climate Diagnostis Workshop, Los Angeles, CA,NOAA/NWS/NMC/CPC, 375-378.Bamber, D., 1975: The area above the ordinal dominane graph and the area below the relativeoperating harateristis graph. J. Math. Psyhol., 12, 387-415.Barkmejer, J., R. Buizza and T,N. Palmer, 1999: 3D-Var Hessian singular vetors and their potentialuse in the ECMWF Ensemble Predition System. Quart. J. Roy. Meteor. So. 125, 2333-2351.Bek, A., and M. Ehrendorfer, 2005: Singular-Vetor-Based ovariane Propagation in a Quasi-geosprophy Assimilation System. Mon. Wea. Rev., 133, 1295-1310.Bengtsson, T., C. Snyder, and D. Nyhka, 2003: Toward a nonlinear ensemble �lter for high-dimensional systems. J. Atmospheri Researh 108(D24), 8775, doi:10.1029/2002JD002900.
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