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Abstract

We review recent developments in the ensemble methods used in the meteorological data assimilation
and prediction systems. The probabilistic formulation of the sequential data assimilation and prediction
problem is discussed in the case of the linear state space models. The analytical solution to the problem is
possible only under restrictive conditions which are never met in practice. A systematized overview of lit-
erature on the computationally feasible approximate solutions to the sequential data assimilation problem,
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root and Reduced Rank) type based approach, is presented in this report in connection with non-linear
state space models. Some attention is devoted to the non-parametric inference about the meteorological
model state based on the Particle Filter approach. A hybrid Ensemble-Variation data assimilation when
the rank-deficient flow-dependent ensemble estimate is merged with the full rank constant in time analyt-
ically deduced estimate of the forecast error covariance matrix gives promising results. The second topic
of this report concerns strategies implemented at different weather services to construct the initial states
for ensemble prediction systems with the aim to quantify the uncertainty of the prediction of the events of
interest. We discuss both ensemble generation and verification methodologies.
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1. INTRODUCTION

The aim of the meteorological data assimilation is to determine an initial data field for numerical
weather prediction and to quantify its uncertainty. In general, this task coincides with the problem of a
model state observer for the non-linear system, governing the development of the atmosphere. However,
several specific features of the meteorological data assimilation makes the task quite challenging.

First of all, the number of observations is of several order of magnitude smaller than the dimension
of the model state variable. Therefore, prior information about the model state must be involved in
the construction of the model state observer (usually called the analysis state) and must be carefully
specified in order to overcome the lack of observations.

The information is usually introduced in the form of the standard first and second order moments:
the prior mean of the model state, specified through a short-range forecast and often called a back-
ground state or a first-guess field, and the prior variance-covariance matrix of the model state, which
contains statistical knowledge about the forecast errors and the physical balances between the different
components of the model state variable. Taking the complexity of the physical processes, governing the
development of the atmosphere, and the huge dimensionality of the model state O(10°) into account,
the careful specification of the prior information is a challenging task.

Secondly, the model state variable is just a discrete approximation to the continuous atmospheric
state which is observed. The time evolution of the model state is governed by discrete approximations
of continuous physical laws. The appropriate discrete approximation of balances as well as the variances
of short-range forecast errors strongly depend on the spatial and the temporal scales of motion. So, the
observed information must be assimilated taking into account the scale of the phenomena of interest
and the model and representativity errors which are caused by the discretisation.

Besides that, an efficient assimilation scheme must be robust to the non-linear dependencies between
observed quantities and the model state and must reflect both the spatial and temporal variation in
the distribution of observations.

One method to merge a background field and observed quantities in a way consistent with the
estimated accuracy of both sources of information was introduced first by Eliassen (1954) and inde-
pendently by Gandin (1963). Within the meteorological community this method is called the Optimum
Interpolation (OI). Under this method the analysed state is constructed as an optimal, in the sense of
minimum variance, linear combination of the background state and observed quantities and is a linear
regression of the model state on innovations (the deviations of the observed data from the background
state projected into observation space). The method was extended to the three-dimensional multi-
variate analysis (Lorenc, 1982) and was for a long period successfully used for operational weather
prediction by many weather services. Being a linear regression technique, the method does not require
any strong assumptions on the probabilistic distribution of the model state variable, besides existence
of second moments. Main disadvantage of the method is an ability to treat in a proper way only
observed quantities linearly related to the model state.

An important step forward in the numerical weather prediction was the development of three-
dimensional variational data assimilation scheme (3D-Var)(Parrish and Derber,1992) and its extension
to four-dimensional (4D-Var: 3D-Var plus a time-window) variational assimilation scheme (Le Dimet
and Talagrand, 1987, Courtier et.al, 1994). Under these methods, the analysed state is determined
through a posterior mode of the model state, given the observed quantities and with the background
state as a prior. A Gaussian distributional assumption on the prior is essential for the performance of
these methods. At the same time these methods provide an optimal solution even in case of a non-linear
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observational operator (the operator which transforms the model state variable into observed quanti-
ties). The valid physical balance (in essence static) relationship between different model state variable
components explicitly enters into the data assimilation procedure through the analytically deduced
and statistically derived forecast error covariance matrix. A time-invariant variance-covariance matrix
with a simplified structure of the forecast errors (spatial homogeneity and barotropic forecast error
structure) reduces efficiency of the data assimilation procedure when three-dimensional variational
data assimilation scheme is applied.

In four-dimensional variational data assimilation scheme the observational operator includes a dy-
namical propagation of the model state over the assimilation window, and in such a weight it provides
an implicit evolution of the forecast error variance-covariance matrix during this time window. This
implicit propagation of the static variance-covariance matrix by the model dynamics improves the
assumed structure of the forecast errors and the sequential observations will be given more proper
way in accordance with this. Still the same static variance-covariance matrix in the beginning of each
assimilation window, which neglect all information about previously assimilated observations, degrades
the assimilation procedure.

As it is well known, having linear dynamics and a linear observational operator under valid Gaussian
assumptions on the prior distribution of the model state, the optimal sequential estimation of the model
state is Kalman filter (Kalman, 1960, Kalman and Bucy, 1961). If these requirements are fulfiled, the
Kalman filter will provide the same solution as the four-dimensional variational assimilation scheme
provided that the variance-covariance matrix is properly specified in the beginning of data assimilation
window. However, because the numerical equations propagating the development of the atmosphere
are non-linear and the dimensionality of the model state variable is unfeasible huge, the Kalman filter
recursions cannot be used for the practical implementation of the data assimilation procedure.

A number of generalisations and extensions of the Kalman filter idea has been proposed for the
purposes of the meteorological data assimilation. A suboptimal Kalman filter, called the ensemble
Kalman filter in a number of versions, is one of the most successful extension of the classical Kalman
filter implemented in practice at many weather services. Ensemble Filter, when a number of forecasts
are propagated in time and updated sequentially from observations, has been developed in the attempt
to produce information about the probability distribution of the atmospheric state (Evensen, 1994;
van Leeuwen and Evensen, 1996; Toth and Kalnay, 1993, 1997; Houterkamer and Mitchell, 1998). The
fundamental problem of this approach is that the sample size of the practical ensemble is too small
in order to directly produce meaningful statistics about the complete distribution of the model state
given the observations.

Different assumptions and heuristic methods were tried to tackle this problem. This resulted in a
large number of practical implementations of the Ensemble Filter. In common for all implementations
is that the dynamical evolution of the probability distribution of the atmospheric state is carried out
through propagation of the initial (or analysed) ensemble of the model states forward in time by model
dynamics. In such a way a forecast ensemble is obtained. The way in which the forecast ensemble is
updated from observations into an analysed (or initial state) ensemble differs for different implemen-
tations of the Ensemble filter. Ensemble Filters could be crudely divided into
e the Resampling approach Ensemble filters (Kim et.al, 2003; Leeuwen 2003; Anderson and Anderson,
1999), where the ensemble of analysed states is resampled from the ensemble of the forecast states,
and
e the Rescaling approach Ensemble Filters, where the ensemble of forecast states is transformed into



an ensemble of the analysed states.

The Ensemble Kalman Filter (EnKF) belongs to the Rescaling approach Ensemble Filters and can
be divided into

(1) Perturbed Observations Ensemble Filter (EnKF), where the ensemble of forecast states is
stochastically updated during the assimilation step (Evensen, 1994; Houterkamer and Mitchell,
1998),

(2) Square-root Ensemble Filters (ETKF), where the ensemble of forecast state is deterministically
updated during the assimilation step (Cohn et al, 1998; Whitaker and Hamil, 2001; Anderson
2001, Bishop et al, 2001; Ott et al. ,2004) and

(3) the Reduced-Rank Kalman Filters where emphasis is put on the computationally feasible prop-
agation in time of the forecast error covariance matrix.

The Hybrid Ensemble Kalman Filter-Variational assimilation scheme, which utilizes the advantages
from both the Variational (the full-rank forecast error covariance matrix) and Ensemble Assimila-
tion Schemes (the flow-dependent uncertainty about the estimate of the model state), seems to be a
promising data assimilation technique. The summary on various practical implementations of the data
assimilation schemes, their advantages and simplifications, and theoretical relationships between them
are main topics of this report. Data assimilation schemes can provide not only a deterministic estimate
of the model state (the analysed state), but also quantify the uncertainty about the analysed state as
well. In variational approaches the inverse of the analysed variance-covariance matrix (the Hessian),
which determines the curvature of the conditional probability density function, given observations, in
a vicinity of its maximum (the analysed state), can theoretically be obtained during the assimilation
cycle. In the Ensemble Kalman Filter based approaches the uncertainty of the model state is rep-
resented through the ensemble estimate of the analysis error covariance matrix. A number of clever
ensemble prediction systems (EPS) were developed and implemented at different weather services in
attempt to provide a probabilistic inference about some phenomena of interest.

EPS systems differ by strategies to generate the initial ensemble of perturbations and can crudely
be classified into four different classes:

(1) error breeding (Toth and Kalnay, 1993,1997),

(2) singular vectors optimized over a certain forecast length (Buizza et al, 1993, Molteni et. al,
1996),

(3) Kalman filter based rescaling schemes and

(4) system simulation approaches.

A number of studies were performed with the aim to compare different global EPS (Wei and Toth,
2003; Buizza et al., 2005, Wang and Bishop, 2003). These indicated that

e the error breeding scheme may be superior compared with singular vectors at short lead times;

e the ETKF may be superior to the error breeding in a number of aspects;

e the local domain Ensemble Transform Kalman Filter (Ott et al. 2004 ) may outperform the global
domain Ensemble Transform Kalman Filter in resolving medium- and short- range synoptic systems.
Techniques to validate performance of the EPS, different commonly used criterion of verification and
relationships between them compose the second topic of this report.



2. THE NUMERICAL WEATHER PREDICTION AS A SEQUENTIAL UPDATE PROBLEM

2.1. A general formulation of the sequential update problem.

Let us denote X a m-dimensional state vector describing the atmosphere at time 7, 3, a p-dimensional
vector of observed quantities at time 7 and let us denote ), = {ys, s <t} a collection of all observations
available up to time t. The objective of the weather prediction is to construct of a conditional density
function p(X; | );) of the state of atmosphere, valid at the time moment 7, given observations ),
available up to the time moment ¢t < 7. The objective of the numerical weather prediction is to
construct the conditional density p(X, | );) of X,, the discrete approximation of the state of the
atmosphere X, given a set of the observations ). In case if 7 = ¢, the conditional probability density
p(X; | V;) is called the analysis density, and in case if 7 > ¢, the conditional density p(X, | V) is
called the forecast density.

Let us denote t;, i = 1,...,n a sequence of time moments when the data assimilation is performed,
M(t;, t;—1) the deterministic dynamical propagator of the model state from one assimilation time
to another and H,, the deterministic observation operator valid at time ¢;. The data assimilation
procedure can be described in the following way using the state space model terminology

Yt :Hti (th) + €t

1
( ) Xti :M (tla t’i—l)(Xti_l) + ﬂ—lgti_l

where ¢, is a p-dimensional observation error vector, &, , is a g-dimensional model error vector (¢ <<
m) and T;_; is a m x g-dimensional projection matrix. Both error terms are stochastically specified.

Even in the most general cases simplifying assumptions are done in order to justify the application of
the state space model theory for data assimilation. For instance, the model error and the observation
error are usually assumed to not depend on the state of the atmosphere

E( Xy tioa) =E&(tin), e(Xy,, ti) = e(ts)

The sequence of the conditional probability densities p(Xy, | Vi,), ¢ = 1,...,n, can be obtained by
solving the sequential probability density update problem: construct p(X;, | V) from p(X:, |, | Vi)
for i = 1,...,n, provided p(Xy, | Vi) = p(Xy,) is already specified. Applying the definition of the
conditional probability,

p(XtNyti) _ p<Xti7yyi ytiﬂ)p(ytiﬂ)
p(ytz) p(yti_l)

Applying the probability multiplication rule and the factorization of the density over parameter
A, , and utilizing the Markovian properties of the state space model, one can obtain

p(th | ytz) =

1
yti) = p<yti

C

(2) p(Xti

Xti)/p<Xti Xti71>p<Xti71 |yt¢71)dXt¢71
where c is a normalizing constant.

Here the construction of the conditional distribution is based on filtering. For each assimilation
cycle i, first the probabilistic knowledge about model state at time ¢;_;, based on the whole set of
history observations )}, ,, is propagated forward until the next assimilation time ¢;. Secondly, the
probabilistic knowledge about model state is updated from new observation y;,.



2.2. An analytical solution to the sequential update problem.

Under very restrictive conditions, when
e (K.1) the model dynamical propagator M(%;,¢;_1) and the observation operator H;, are linear,
e (K.2) the distributional assumption about the model £(¢;_1) and the observation €(t;) errors are
Gaussian, é(tzfl) ~ N(O, Qtfl), €<tl) ~ N(O, Rti),
e (K.3) the initial model state distribution is Gaussian, p(Xy, | Vi) = p(Xy,) := N (ay,, By,)
e (K.4) and the model and observations errors are mutually uncorrelated and uncorrelated with the
initial model state,
the sequential update of the conditional density function p(Xy, | J},) can be expressed analytically. In
this case the p(X3, | V;,) is Gaussian as well and is completely determined through its two first central
moments, p(X;, | Vi) := N(ay,, B;,). The parameters a;,, B;, can be recursively calculated via the
well-known standard Kalman filter equations:

a, = E(X, | Vi) —at + B{HI (R, + Mo, BIHE) ™ (yr, — Hual)

(3)
By, = Var(X,, | ¥.) = B[ — Bl HI (R, + H,,BIHE) ", B]

where af; and Bgz are the parameters of the predictive distribution of the model state p(Xy, | Vi,_,)
given the history of observations ), ,. The p(X;, | V;,_,) is Gaussian as well

at =E(Xy, | Vi) =Mt ticr)ay,
Bi}: = Var(Xti | yti—l) :M(tlﬂ t’i—l)Bti_lMT(tia t’i—l) + Qti—l

This estimate of the model state (eqn. 3) determines the best linear prediction of the model state
on the innovations and the most probable estimate of the model state given observations at the same
time. An innovation is a one-step ahead forecast error, v;, = vy, — F(H,, ) =Y — Hy, at The
Kalman filter recursions, which are strictly valid only under these firm conditions (K.1 -K.4), determine
not only the time evolution and the update of the conditional mean and the conditional variance of
the model state. They describe the development of the whole conditional probability density function
given the observations. If the conditions (K.1-K.4) are not valid strictly, the best linear prediction of
the model state on the innovations and the mean squared error of the prediction can be constructed.
The best linear prediction xble and the mean squared error Bfile are given by

(4)

(5) xi)fe :E( z‘—1) + COU<Xt¢7 Ut i71)<va’r( 1‘71))_1“&‘
Bfile :VaT(Xti | yti—l) - CO,U(Xti?,Uti | yti—l)(var(vti | yti—l))_lcov(Xti’vti | yti—l)_l’

If the model and observation errors are mutually uncorrelated and uncorrelated with the initial
model state (K.4), the equations (5) will have a form notationally similar to the Kalman filter update
equations (eqn. 3)

o4 —af + BLHI(H, BLHY + Ry) v

6
R Bb,le =B} — B/ HI(HFB{ H,, + R,,)""H,,B]

where at and Bf are the two first conditional moments of X, given the history of observation )}, |,
E(Xy, | Vi) and Var(X;, | Yi._,), respectively. However, this system (eqn. 6) does not provide the
sequential inference about the model state because l’?fe and Bfile do not coinside with the two first



6

conditional moments F (X, | V) and Var(Xy, | Vi) and do not give any rules on how to sequentially
update a{m and B!

tiy1”

2.3. Smoothing of the unobservable model state.

Smoothing is an alternative procedure to obtain the conditional probability distribution of the model
state based on observations. In this case the conditional distributions of the whole sequence of unob-
servable model states (Xy,, Xy,,...,X;,) given all available observations ), is constructed.

Applying the probability density multiplication rule and the Markovian properties of state space
model, one can obtain

1 n
(7) p(XtO7th7 s 7th ‘ ytn) = Ep(Xto) Hp(yti ‘ Xti)p<Xti ‘ Xtiﬂ)'
=1

Here ¢ denotes a normalizing constant.
Provided that conditions (K.2-K.4) holds, the posterior distribution p(X;,, Xy,,..., X, | 4,) is
Gaussian and is completely determined through its two first moments,

p(Xtoati s ath | ytn ~ N(&,B),
where a is a (n + 1) x m-dimensional vector, @ = (G, as,, 1y - - -, Gr,)" = (E(Xy, | Vi), E(Xy, |
Vi) E(Xy, | Y1,))" and B is a (n+ 1)m x (n + 1)m dimensional matrix, B;; = cov(Xy,, X, |
Vi), 0 <i,7 <n. Numerically, a mean and a variance of the Gaussian distribution can always be

obtained by calculating the maximum of the log-density and the curvature of the log-density at the
point of the maximum.

a=argminl(X,,..., X))

3

= argmin{—log p(Xy,) — Xi,) + log p( )}

(8) =1
- [ PL(Xs, .., X)) -1
B=|( OX, 0, )OSMSN]

Here the notation argmin means "argument that minimizes"

Notice that the joint distributions p(Xy,, X¢,,..., X, | Vi), @ = 0,...,n are multiplications of
Gaussian ones even if the Gaussian state space model is not linear (condition (K.1) holds). However,
the marginal distributions p(X;, | V.,), ¢ = 0,...,n, are Gaussian only if the Gaussian state space
model is linear (condition (K.1) holds). In condition (K.1) holds, the mode and the curvature at the
mode, @ and B, can efficiently be calculated applying the forward Kalman filter and the backward
Kalman smoother recursive equations (Durbin and Koopman, 2001).

If the perfect model is assumed (§;, =0, i =0,...,n — 1), the dimensionality of the minimisation
functional is dramatically reduced from (n + 1)m to m. In that case the whole uncertainty about the
unobservable model state originate from the initial conditions and p(Xy, | s, ) is the single conditional
distribution that should be determined.

) p(Xe 1 90) = 2(X) T ploe | X,



and p(X,, | V4,) ~ N(a, B),where
a = argminL(Xy, | Vi,)

n

= argmin{—log p(Xy,) Z (log p(y, | X4,))}
=1

= 82L(Xt0) -
B‘{ e }

For example, under a Gaussian state space model the minimisation functional L(Xy, | V;, ) is

(10)

L<Xt0 | ytn) :05(Xt0 - a’tO)TBi;1<XtO - a’to)_'_
(11) 0.5 3 (g, — Hu Mt t0) Xeo) T By (e, — Hi Mt 1) X.,)

i=1"

3

Still for a large-dimensional model state the design of the minimisation procedure (eqn. 10) is a
challenging task.

If the state space model is not Gaussian or the conditions (K.1-K.4) do not hold, the mode of the
posterior distribution (eqn. 7) still can be obtained by minimising the corresponding functional. Tt
is possible to construct a sequence of Gaussian approximative state space models that in the limit
will have a mode/a conditional mean, which will coincide with the mode of the original posterior
distribution (Durbin and Koopman, 2001).

3. APPROXIMATE SOLUTIONS TO THE SEQUENTIAL UPDATE PROBLEM.

In meteorological data assimilation the strict conditions (K.1-K.4) are never met. Both the dynam-
ical propagator and the observation operator are in principle non-linear, the model and observation
errors are correlated with the initial model state and these errors are assumed to obey the Gaussian
distribution just for simplicity. The degree of non-linearity and non-Gaussianity differs significantly
between different types of observations and between dynamical propagation of different spatial and
temporal scale phenomena. Relaxing some of these strict conditions, different approaches for approx-
imate solutions of the problem have been proposed and implemented at different weather services.
Essentially, they can roughly be divided into
e the variational type, which pretend to estimate mode of the conditional distribution p(Xy, | Vi)
(eqn. 9, 11),
and
e the regression type, which pretend to produce the best linear prediction xble of the X}, on the whole
sequence of available observations (eqn. 5, 6),
approaches.

Let us denote 7 a time moment for which the data assimilation should be performed and At to
be the length of the assimilation window. Then, under the variational approach, the analysed model
state 22 ~ E(X, | V,) is estimated by minimizing a certain functional, often called a cost func-
tion. The Three-dimensional Variational data assimilation scheme (3D-Var) and the Four-dimensional
Variational assimilation scheme (4D-Var) are used worldwide at different weather services with great
success. Both schemes are implemented in a so-called incremental formulation. This means the "o
timal” increment dz2 = x2 — z7 is obtained instead of estimating the whole analysed state. Here xi is
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the best available forecast of the model state at time moment 7 based on the history of observations,
vl = M(7,7 — At)x®_,_, and is often called the background state.

3.1. Variational data assimilation schemes.
e The 3-Dimensional Variational data assimilation scheme (3D-Var)
28 =zl 462"
ozt = argmin(J, + J,)
Jsp = Jy + J, =056 B~ 6z, + 0.5(H(x)) + H 0w, — y ) ' R H(2)) + H 0z, —y,) =
05050, + 0.5(H,(2) + H, U ', — yo )" RN (H () + .U ' — )

(12)

Here B is the matrix containing the covariances of the forecast errors of the model state, H, is a
tangent-linear observation operator around the background state, U is a square-root of the inverse of
the covariance matrix B, B~! = UTU, and 7, = Udx, is the control vector along which the mini-
mization of the cost function J3p is performed. Observations are first collected over the time period
(1 —0.5A7, 7+ 0.5A7), then projected to the time moment 7 and after that assimilated at the time 7.
e The 4-Dimensional Variational data assimilation scheme (4D-Var)

Let ¢; denote an actual time when an observation is carried out.
1% = xf 46z
ozt = argmin(Jy, + Jio + Je)
J4D = Jb + Jto + JC = 5.1’77_137151}7—

(12) Y (Hilaf) + Hebay — ) R (Hi(l) + Ho 8, — i)
1, 7<t; <T+AT
T+AT T+AT

+ (Toposar — O o) Qariosar — Y autt)
t=T1 t=T1

The 4-Dimensional variational data assimilation scheme is an extension of the 3D-Var. The incre-
ment dx, is propagated forward by the tangent-linear dynamical propagator up to the time moment
t; when the actual observations y;, are carried out, dz;, = M(ti, 7)0x,. In such a way model dynamics
are involved as strong constraints in the optimization procedure of the 4D-Var. The optional addi-
tional term J. in the cost-function Jyp expresses requirements of the smoothness of the solution in
time, one example originating from a low-pass digital filter. Because the dynamical forward integration
is involved in the data assimilation procedure, some type of initialisation is necessary. As shown in
Lynch and Huang 1992, the digital filter initialisation is very similar to the nonlinear normal mode
initialisation provided that there is a clear frequency separation between fastly propagating gravity
modes and slowly propagating Rossby modes. The gravity modes are associated with divergent mo-
tion and may be created from the unbalanced horizontal pressure gradient or even from the linearly
balanced initial state due to non-linear dynamics. The low-pass digital filter prohibits a drift away
of the model state due to adjustment of the solution to high frequency oscillations. Here x; denotes
the solution dynamically integrated forward up to the time moment ¢, z; = M(t,7)(xf + 622) and
a, t=1,...,7+ AT are the time filter weights. Formulation and discussion of the time filter weights
can be found in Gauthier and Thepaut 2001.
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The cost functions J3p and Jyp are proportional to the posterior probability density p(z, | V,) of
the model state under the Gaussian state space model (eqn. 11). Thus the 3DVar and the 4DVar
approaches are based on smoothing rather than on filtering, they do not predict the "optimal" model
state at the end of the data assimilation window but estimate the most likely model state giving
rise to the set of observations. Because the amount of observed quantities is much smaller than the
dimensionality of the model state, the prior assumptions on the model state have strong influence
on the posterior distribution of the model state. The covariance of the prior distribution B does not
change in time, has a very simplified structure and is statistically /analytically deduced.

3.2. The general ensemble Kalman Filter formulation.
A Monte Carlo approximation of the conditional probability density function p(x, | };) provides one
possibility to propagate the forecast error covariance matrix B in time, at least approximately.
The ensemble of the model states, X2 .. = | TreArs o ]‘(,77_&], where NV is the ensemble size, is
assumed to represent the conditional probability density function of the model state p(X,_a- | Vr_ar)-
Then the conditional predictive distribution of the model state p(X, | V,_a.) is considered to be

represented by the ensemble X/ = [Xf

iy ,X]{,J}, where each ensemble member is propagated

forward in time by model dynamics,

(14) Xi],tr = M(Tv T = AT) ’ia7T—AT + Nirs
where the model error may be eventually sampled from 7; , ~ N (0, Q,). If a perfect dynamical model
is assumed, the model error term is omitted, namely @, = 0.

For instance, the conditional mean and the conditional covariance of the model state at time T,
given the set of observations assimilated during previous cycles ), _a,, are assumed to be estimated
by means of the relationship

E(X’T | yT—AT) %l‘{ =

N
S,
=1

==

15
(15) Cov(X, | Yr_ar) =Bl =

N
e SO, - ) (X, - ) = ZU(2)

i=1

Here 2! = (Z{.,..
(X, — )

The forecast step, the way how the ensemble of the forecast states at a new assimilation time is
constructed from the ensemble of the analysed state obtained from the previous assimilation time,
is common for different implementations of the ensemble filter and is given in eqn. (14). Various
implementations of the ensemble filter propose different analysis steps, the way how the ensemble of
the forecast states, representing p(X, | Vr_a,) is transformed into the ensemble of the analysed states

to represent p(X, | V;).

.,Z]fVT) denotes the ensemble of normalized forecast perturbations, ZZ{T =
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3.3. Different implementations of the ensemble Kalman filter.

The ensemble Kalman filter EnKF (Evensen, 1994, Houtekamer and Mitchell, 1998) utilises the stan-
dard Kalman filter recursions to perform the analysis step. The best linear predictor of the model
state 2%¢ on the last innovation v, = y, — H,a/, given the history of observations Y, _a,, and its mean
squared error BY¢ are obtained using equation 6. The two first conditional moments are approximated
by simply setting E(X, | V,) = 2%¢ and Var(X, | Y;) = BY¢. In other words, the ensemble Kalman
filter retains the "linearity" aspects of Kalman filtering and assumes implicitly Gaussian distributions
for uncertainties in the forecast and the observations. The implementations of the EnKF could roughly
be divided into 3 different approaches:

e the ensemble Kalman filter with perturbed observations, often associated with acronym EnKF (Burg-
ers et al. 1998, Houtekamer and Mitchell 1998),

e the square-root ensemble Kalman filter, often associated with the acronym ESRF (Whitaker and
Hamill 2002, Tippett et al. 2003, Bishop et al. 2001, Ott and Coauthors. 2004), and

e the reduced rank square-root Kalman filter (Heemink, Verlaan and Segers, 2001, Cohn and Todling,
1996, Verlaan and Heemink, 1997).

All filtering algorithms mentioned above are of the rescaling type. The ensemble of forecast states,
which is supposed to sample the prediction distribution p(X, | V;_a-), is transformed, stochastically
or deterministically, into the ensemble of analysed states, which is supposed to sample the posterior
distribution p(X, | V;).

e The ensemble Kalman filter with perturbed observations.

Under the ensemble Kalman filter with perturbed observations each ensemble member is updated
in the following way

(16) X =X+ Koy, —HAX]), i=1,.. N

where K, is a Kalman gain matrix calculated from the ensemble of the forecast states

(17) K. = ZI(H.Z{)" (W, BIHT + R;)™

and y;, © = 1,..., N is a simulated ensemble of perturbed observations, where the spread of the

ensemble reflects the precision of the observations, namely y; , ~ N (y., R;) for each i.

The EnKF analysis update scheme provides a stochastic update of the ensemble of the model state
perturbations during the assimilation step. In order to construct the ensemble of analysed states, the
ensemble of the forecast states and the ensemble of observations are merged together in observation
space taking into account the skill of both ensembles expressed via the respective ensemble spread.
While merging, the Gaussian assumptions on the underlying forecast error and observation error
distributions are made implicitly.

The perturbed observation approach introduces an additional source of sampling error. Under this
scheme, the equations (6) for the sample mean and for the sample variance of analysed state are
satisfied only on average, namely

B(X?) = a2,
B(z2(28)") = B,
taking into account eqn. (15). At the same time one should stress that adding the noise in perturbation
space stabilizes the filter by solving the rank-deficiency problem in an innovative way.



11

Pham (2001) proposes a similar Ensemble Kalman filter, called the second-order-ezact EnKF, based
on slightly different considerations. During the analysis step the ensemble members are updated as
follows

(18) Xt =X+ K (y. — H X[ )+ eir

where ¢; -, i =1,..., N, is a second-order-exact sample from the Gaussian distribution,
€ir ~ N(0, K, Ro(K)T),

with linear constraints

N

Z Ei,TZiJfT =0.
i=1

In other words the ensemble, of the analysed perturbations Z% = \/%(X{TT — x%) has contributions

from the space orthogonal to one spanned by the ensemble of forecast perturbations Z7,
70 =z —K.HZ +¢
2, T 2,T TET T 61,7"

e The square-root ensemble Kalman filter

Under the ensemble square-root Kalman filter (ESRF) the mean and the spread of the ensemble are
adjusted so that they would exactly satisfy the equations (6).

70 =ziC
(19) 7% =0
X¢ =2+ Z¢,

where C'is an explicitly calculated transformation which preserves the mean of the ensemble and under
which the covariance of the the analysis ensemble matches its theoretical value, given by eqn. (6),
namely

(20) 78zt = Zic(zio)r = (1 - K. H,)ZH(Z))T

The ESRF provide a deterministic update of the ensemble of model perturbations during the assim-
ilation step. In order to construct the ensemble of analysed states, the ensemble of forecast states is
rotated and scaled. The ensemble estimate of the forecast error covariance matrix in observation space
is used to determine the scaling and rotation. Because the mean and the variance of the conditional
ensemble of the model state, given the whole set of observations up to time 7, satisfy equations 6 by
construction, the Gaussian distributions for the forecast error and observation error are made implic-
itly. The main drawback of the method, in comparison with the perturbed observations approach, is
that the ensemble of analysed perturbations is sampled from the space spanned by the ensemble of
forecast perturbations only.

There is an infinite amount of square-root transformations C' which satisfy requirement (20). Bishop
et al. (2001) propose an elegant solution to this equation which allows an explicit look into the



12

mechanism of Kalman Filtering. Wang et al. (2004) developed the scheme further to construct the
transformation preserving the mean of the ensemble.

(21) C=GD+1)*G"

where a diagonal matrix D contains the (N-1) non-zero eigenvalues of the estimated forecast covariance
in ensemble space, standardised by the observation error variance, (H,Z{)'R~VH,Z!, and a N x (N —
1)-dimensional matrix G contains the corresponding orthonormal eigenvectors of (H,Z!)T R-YH, Z/.

The multiplication from the right by G” provides a spherical simplex centering of the ensemble after
rotation and scaling was performed. Because matrix G is orthogonal, the ensemble of analysed states
is centered without destroying its square-root property.

Besides that, Sakov and Oke, 2008, have shown that the symmetric transformation (eqn. 21) provides
a unique solution. In the same paper Sakov and Oke generalised the scheme further by noting that
the general mean-preserving solution for the ensemble Transform Kalman filters may be written as

(22) C=G(D+I)"\2qTyr
where UP is an arbitrary orthonormal mean-preserving matrix
Url=1, Ur(U) =1

They provided an efficient algorithm for construction of a random mean-preserving orthogonal matrix
UP. With the transform defined by eqn. (22), a random ensemble of analysed states with the sample
mean and sample variance exactly satisfying eqn. (6) can be constructed.

A variety of alternative algorithms to perform deterministic update of the ensemble during analysis
exist. The main challenge of the ensemble Kalman filter is the necessity to invert the innovation
covariance matrix, which has dimensionality of number of observations. Different algorithms propose
different ways to overcome this obstacle. We mention some algorithms which have received large
attention in the literature:

(1) adirect approach implemented in the first step of the Physical-space Statistical Analysis System
(PSAS) algorithm (Cohn et al. 1998),

(2) a serial assimilation of observations (Houterkamer and Mitchell 2001, Bishop et al. 2001,
Whitaker and Hamill 2002) and

(3) the ensemble adjustment Kalman filter (Anderson, 2001).

As it was noticed in Wang and Bishop (2003), the Ensemble Square-root Filters have a very flat
eigenvalue spectrum due to the filtering effect of covariance, eqn. (6).

Because the trace of the ensemble estimate of the model state covariance cannot exceed the ensemble
size, this flat eigenvalue spectrum induces a severe underestimation of the analysed error covariance,
and as a result a severe underestimation of the forecast error covariance in the beginning of the
next assimilation time. This leads to filter divergence. In fact, the whole derivation of the rescaling
matrix C is implicitly based on the assumption that the ensemble of forecast perturbations is large
enough to represent adequately the forecast error covariance matrix in observation space, H,B{H?.
If the ensemble size is too small, the ensemble estimate of the forecast error covariance will lack
contributions from important directions. To increase the spread of the analysis ensemble by multiplying
the transformed perturbations by an inflation factor or to sample an additional uncertainty are some
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possibilities to overcome the problem. The spread of innovations can be used to design the inflation
factor (Wang and Bishop 2003, Dee 1995). The inflation factor II, is defined as

(23) HT = HT—l (675
where the parameter . is such that
(24) dvd, ~ trace(H,o. BIHY + I).

Here d7 is a vector of the standardised innovations,
d, = R7Y*(y, — H,al),

and fIT is a standardised observational operator, fIT = R;l/QHT.
When the inflation factor is implemented the total transformation matrix at time 7 becomes

(25) C, =11,G.(D, + I)"Y2GT

Recently, Wang et al. (2007) have shown that such a simplistically designed inflation factor (eq.
24) leads to the overestimation of the true covariance matrix in the subspace spanned by the ensemble
members if the dimensionality of the ensemble is much smaller than the dimensionality of the model
state in the normalised observation space. In order to improve the filter performance they propose an
alternative rescaling matrix

(26) C, =11,G.(pD, + I)"V/2GT

where the scalar factor p is the fraction of the forecast error variance projected into the ensemble space.
It can be estimated by

_ dT’ETEd, — (N —1)
£ZJT —D
where p is the number of observations, NV is the number of ensemble members and FE; is a matrix of

the eigenvectors of the model error covariance matrix in normalised observation space. As shown in
Bishop et al. (2001)

(27)

E,=H,Z!G.D-V?//N -1
The averaging is done over a number of independent cases in the expression for p.

Noisiness of the ensemble estimate of the covariance matrix is another problem which originates
from the small ensemble size. A "covariance localisation" (Gaspari and Cohn 1999) which explicitly
damps correlations between model state components at long distances is a practical way to improve
the quality of the ensemble estimate of the covariance matrix. Buehner 2005 proposed a covariance
localisation scheme applicable in the framework of the ETKF. The mistreat of the statistical balances
and long-scale variation are dangers of this approach. Filtering noise directly in ensemble space is
another possibility to handle the problem. Ott and coauthors (2004) solved the problem associated
with the rank-deficiency of the ensemble square-root filters by implementing a local Ensemble Kalman
Filter. In this approach the analysis at each grid-point is performed simultaneously using the model
state variable components and the observations in a local region centered at that point. Because the
assimilation is performed independently in each local region, the smoothness of the analysed field must
be considered. In order to achieve this, the assimilation procedure is explicitly constrained to choose
the analysis perturbations which minimize the distance to background state. Notice that the backwards
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ensemble rotation, provided by the spherical simplex centering in the ETKF rescaling scheme, serves
for the same purpose.

The ensemble of analysed states is strongly correlated with the ensemble of forecast states, such that
the ensemble rescaling scheme (eqn. 21) preserves the pattern. There is a hope that this approach will
reduce the aliasing of the long scale variations which appears due to local assimilation scheme. Another
strong side of this approach is the local Gaussian approximation to the non-Gaussian problem in case
of non-linear dynamics. The global ensemble Kalman filter, which assumes implicitly the Gaussian
distribution of the uncertainty about the model state, cannot perform data assimilation properly in
that case. However, a local Gaussian state space model can provide an efficient approximation of a non-
Gaussian model state provided that the local neighbourhood is selected successfully. The local ensemble
Kalman filter is supposed to describe well atmospheric processes associated with local energetics, such
as the baropropic and baroclinic instabilities, downstream development of the upper-tropospheric wave
packets, anticyclinuc wave breaking and other phenomena.

o Reduced Rank Ensemble Kalman Filter.

In the Reduced Rank Kalman Filter the full-rank covariance matrix of the model state is approx-
imated by a matrix with a reduced rank. The reduced rank approach can be implemented via an
ensemble square-root Kalman filter as well when the N ensemble members are selected in the direction
of N leading eigenvectors of the covariance matrix. The reduced rank square-root ensemble Kalman
filter algorithm was initially proposed by Verlaan and Heemink ( 1997, RRSQRT). The analysis step
is deterministic and is based on the square-root Kalman filter analysis update

Bl =L(L])"
K, =B'H'(H,B'’H' + R,)™!

(28) v =z + K, (y. — H,xl)
LY ={(I — K.u,)L, K. RY?}
L¢ =11, L2
Here L/ is a matrix of perturbations, L/ = [I,,,...,I,.] and IL, is a projection onto the ¢ leading

eigenvectors of the matrix 2(L2)”. To initialize the filter L2 is taken to be the ¢ largest eigenvectors
of the static model error covariance matrix By

La=[Ifg, .., I%]

’7q,0
To propagate the perturbations the dynamical step (eqn. 14) is generalized by implementing a finite
differences approach
] =M(7,7 — AT)(2%_y,)

(29) f 1 a a a
Ii,T :E{MT,T—AT(foAT + eli,TfAT) - MTKF—AT("L‘T - AT)}

Notice that if ¢ = 1 the equation above coincides with (eqn. 14). The model error can be easily
accounted for assuming

LT =[L1, Q"]

T

L =111
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Here 17 is again a projection matrix on the ¢ leading eigenvectors of the matrix 2(L2)” and Q, is a
model error covariance matrix at time 7. Heemink et al. (2001) propose extensions to the reduced rank
ensemble Kalman: to nicely combine deterministic and probabilistic updates of the analysis ensemble.
Under the Partially Orthogonal Ensemble Kalman filter (POEnKF), the matrix of ensemble L% consists
of the g largest eigenvalues of B¢, I, -, ..., 1, ., and N random ensembles &; ., ..., &{n  to better sample
uncertainty about x¢

[LG’T, EaJ] = [Il,’ra RN an—, glﬂ—, ce ,§N77—].
For initialisation of the filter, the random ensemble is sampled from the Gaussian approximation to
the model state distribution, & o ~ N (28, By). During the analyses step the forecast error covariance
matrix is estimated
Er =112 B!
) B —LI(LIY" + B ()
N—1
where II* is a projection of the random ensemble to the space orthogonal to the space spanned by L.
The analysis update of the ensemble is performed in accordance with (eqn. 28) for the deterministic
part of the ensemble, L% and in accordance with (eqn. 16) for the random part of the ensemble, E°.

In the Complementary Orthogonal Subspace Filter for Efficient Ensembles (COFFEE) the random

part of the ensemble, EY is explicitly constrained to sample from the subspace orthogonal to the L.

(31) EZ = [5177 - x{ + My SN — x{ + nNﬁ]
where 1, ~ (0, (I — T)LI(LE)T(I = TIE)T).

Heemink et al. (2001) shows that adding of structured random noise to the reduced rank Kalman
filter significantly improves it behaviour.

The Singular Evolutive Extended Kalman filter (SEEK) developed by Pham et al. (1998b) and the
Singular Evolutive Interpolated Kalman filter (SEIK) developed by Pham 1997 can be considered to
be a type of reduced-rank Kalman filter. The idea behide SEEK filter is to make correction only in
the direction where error is amplified or is large, keeping at the same time the error small in other
directions. Ideally, the reduced-rank covariance matrix should span the attractor which is of low rank.
However it seems to be an unrealistic task to approximate the attractor of so complicated non-linear
system in such a simple way. In essence, all ensemble Kalman filter implementations severely suffer
from the problem of rank deficiency. Whatever rescaling scheme is selected, the rank of the sample
covariance of the analysed states will be bounded from above by the amount of ensemble members.

e The particle type ensemble filters

In all algrorithms discussed above the implicit resampling of the model state during the assimilation
cycle is done mainly in order to compensate for the underestimation of the covariance of the model state
errors, which arises from a rank-deficiency of the ensemble Kalman filter. Besides these algorithms, a
number of elegant ensemble filter implementations based on the particle filter idea are proposed in the
literature (van Leeuwen (2003), Kim et al. (2003), Chin et al. (2007)). The particle filters are non-
parametric. The conditional distribution p(X,_a; | Yr_a,) is approximated by a discrete distribution,
located on N analysis states, i, _A., ¢ =1,..., N, with equal probability, p; - Ar = p2r—ar=... =

Pnr—ar = 1/N. The conditional distribution p(X; | V,_a,) is approximated by discrete distribution,
located at N forecast states z/ _, i = 1,..., N, with the same probability pir = 1/N. The model

1,T7
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dynamics, eqn (14), are used to propagate the particles forward in time. To approximate the conditional
distribution p(X, | ;) at a new assimilation time, the probabilities of particles p; , are changed. They
are not anymore equal to each other, while the particle themselves remain untouched. To improve
performance of the particle filter, a resampling step is introduced. At the new assimilation time the
ensemble of analysed states 2% is resampled from the ensemble of the forecast states 7 in accordance
with modified probabilities p; ;. The conditional distribution p(X, | ),) is again approximated by a
discrete one, with equal probabilities, located on particles z{ _,i=1,..., N. The resampling prohibits
the efficient rank of the ensemble to decrease during the assimilation cycles.

Even though the particle filters theoretically are able to handle the data assimilation properly in
case of non-linear and non-Gaussian state space problems, the practical applicability of these filters
for the meteorological data assimilation is quite limited. The main problem is a very slow convergence
of the non-parametric estimate (O(1/N)), especially in case of a large-dimensional model.

A non-Gaussian extension of the EnKF that uses a mixture of Gaussian probability densities to
describe the probability density of the model state is an alternative to handle non-linear and non-
Gaussian state space models (Anderson and Anderson 1999, Bengtsson et al. 2003). Under this
approach the conditional density p(X, | V,_a,) is assumed to be

L
p<XTD}7——AT) = ZW{TN<ILL{;T7 Bl{’r)’

=1

where /\/’(,ulfT,BlfT) denotes a Gaussian density with mean z/_ and covariance matrix B/ . All pa-

rameters ,ul - Blf - and mixing probabilities 7rlf _ are estimated from the ensemble of the forecast states

XZ{T, t=1,..., N, assuming that the size N of the ensemble is much larger than the amount of the

selected classes L. During the assimilation step, the conditional density p(X, | ),) is approximated
by

T|y7' Zﬂ-lT Ml’r’ T)’

where i, and Bj'_ are updated in accordance Wlth the Kalman filter recursive formulas, eqn. (6),
separately for each class L. The mixing probabilities are updated in such way that the classes closer
to observations would have higher weights.

3.4. The Hybrid Ensemble Kalman Filter - Variational assimilation scheme..

The Hybrid Ensemble Kalman Filter-Variational Assimilation scheme has received much attention in
the literature at present time (Wang et al 2007, Hamill and Snyder 2000). The idea of the hybrid scheme
is to combine the best possible achievements of both the variational and the ensemble assimilation
schemes. The successful assimilation scheme must point out areas of strongest forecast uncertainty
and try extract as much as possible information from the available observations in those areas. When
the data assimilation is performed under the Variational or the Ensemble Kalman scheme, in both
cases the analysed state in each gridpoint is a weighted sum of the forecast state and the surrounding
observations with weights being determined by the relative uncertainty of both sources of information.
That is why the realistic estimation of the current forecast uncertainty, which is large in dynamically
unstable areas and low in the areas with dense observation network, is important for constructing the
analysed state. Even if the number of observations available and utilized by data assimilation scheme
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at present is relatively large (from O(10%) to O(10%)), the dimensionality of the model state in high
resolutions is still much higher. The prior assumptions on the model state, expressed via the forecast
error covariance matrix, influence strongly the construction of the analysed state. In order to perform
a proper extrapolation of the observations into the model state, the low-dependent structure functions
of the forecast error covariance are essential.

The forecast error covariance used in variational data assimilation schemes at present does not have
this property. It is static and has simplistic structure functions based on spatial homogeneity and
isotropy. There is a hope that a forecast error covariance matrix B, which combines together the full
rank static forecast error covariance matrix Bspy,. and the flow-dependent rank-deficient ensemble
forecast error covariance matrix B., based on the Kalman filter rescaling ensemble, will improve the
variational assimilation scheme.

The hybrid assimilation schemes are proposed in two different formulations, which are theoretically
equivalent (Wang et al. (2007)). Hamill and Snyder (2000) use the same cost function as in 3D-
Variational data assimilation (eqn. 12) but with the forecast error covariance matrix B being equal

(32) B := B! = aBspye + (1 —a)(Z1(ZH)T - L)

where Z/ is the ensemble of the normalised forecast perturbations, L is the prescribed correlation
matrix used for the covariance localisation and A - B denotes the Schur product of the A and B
rnatrices, (A . B)Z,j = Al,]Bl,]

Lorenc (2003) and Buehner (2005) propose a modification to the cost function by augmenting the
set, of control variables

1 1

J :—'OZTIT + —aZA_la,T
2 2

33) 1

+ §(HT(1J; + Ax;) — yT)TR_l(HT(xi + A"ET)T —Yr)

which is to be minimised with respect to the "optimal" increment Az,.. The analysis increment Az,
is expressed via two sets of control variables, namely the usual variational ones, which are of the size
of the model state, and a set of new control variables associated with the flow-dependent structures
resolvable by the ensemble

Az, = 1Az, + (oAxy
(34) = Bi(Bspvar)*n + Bo(BE)2a,
= Bi(Bspvar)*nr + BaZla,
Here [3; and 35 are empirically estimated weights and matrix A is a filter stabiliser.
Buehner (2005) proposes to augment the control variable set further in order to implement the

covariance localisation in the context of the ETKF. He points out that the square-root of the localised
ensemble covariance can be expressed as

(35) Z}... = |diag(Z{ ) L'?, diag(Z fo..) L', ... diag(Z%; ) L'/,

loc,T
where, again, L is the prescribed correlation matrix for the localisation, Zi’f . is the i-th perturbation
and dmg(Z{T) is a m x m diagonal matrix with the ZZ{T on the diagonal. Equation (35) explicitly
proves that the covariance localisation reduces the effect of sampling error. The square-root ZL of

loc,T

the sample estimate of the forecast error covariance matrix has larger dimensionality, which is at most
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Nr, in comparison with the dimensionality of the square-root matrix Z/, which is N. Here 7 is the
dimensionality of L. In this case the set of variational control variables should be augmented by Nr
new control variables associated with the flow-dependent structures.

One important remark is that it is not straight-forward to apply the covariance localisation. Essen-
tially, the covariance localisation lacks physical background and destroys important balances between
the model state components. For example, the geostrophic component wind components should be in
an approximate linear balance with the spatial geopotential gradient. One possibility is to apply the
localisation to streamfunction only and let other variable components to adjust to each other after the

localisation.

J :%(5907)TB§5VM5$T + %aTA_la
(36) 2

1
+ §(HT(:U£ + Azx,) — yT)TR’l(HT(a:JTC + Aa:T)T —Y,)

The analysis increment is related to the control vector as follows
AI‘T = AZL’LT + A'TQﬂ—

(37) = Un, + Unja

where 7, is a set of control variables associated with the structure of Bspy,,, U is a transformation from
the control vector space into the model space, 7¢ is a set of variables estimated from the ensemble of
the forecast states Z/ and U® is a transformation back to the model space that is supposed to preserve
some important balances explicitly. Matrix A is an empirical correlation matrix (to be specified) which
describes the structure of a;-2D field. The 2D-fields a; can be of a much coarser resolution than the
model state.

Wang et al. (2007) has shown that the Hybrid Ensemble Transform- Optimal Interpolation scheme
can work even without localisation in the case of a simplified dynamical model. The estimate of the
forecast error covariance matrix is stabilised by merging the rank-deficient flow-dependent covariance
matrix with the full rank static covariance matrix.

4. ENSEMBLE PREDICTION SYSTEMS

The methods discussed in the previous section are all concerned with data assimilation. The issue of
data assimilation is to merge the uncertainty in the forecast model and in the observation in an optimal
way in order to construct the initial model state for the weather prediction. The ensemble methods
used in data assimilation allow to construct not only a deterministic initial state for the forecasting but
to quantify the uncertainty about the initial model state as well. The representation of uncertainty is
done essentially through estimation/modelling of the analysis/forecast error covariance. One may say
that for these models the Gaussian assumptions about the distribution of the model state are made
implicitly. Even variational data assimilation schemes allow theoretically the quantification of the
uncertainty about the initial model state. The inverse of the Hessian, which determines the curvature
of the conditional probability density function, given observations, in a vicinity of its maximum, could
be used as a measure of the uncertainty. However, the huge dimensionality of the model state does
not allow to perform the inverse.

The ensemble prediction systems (EPS) were proposed by Leith (excellent review is given by Ehren-
dorfer (1997)) and have different aim. A successful EPS should sample the uncertainty about the initial
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model state (the initial PDF) in such a way that it could describe a relevant part of the PDF (usually
non-Gaussian) during and after the integration period of interest for the phenomena of interest. The
phenomena of interest can often be related to the model state variable via non-linear small-dimensional
transform. The EPS systems can roughly be divided into three groups dependent on how the initial
ensemble of perturbations is created:

(1) sampling of dynamically unstable directions : the singular vectors optimized over certain fore-
cast length and error breeding;

(2) sampling of the analyses errors :Kalman filter based rescaling;

(3) comprehensive sampling of different sources of uncertainty about the forecasting system: a
system simulation approach.

Combinations of these three approaches also exist.

4.1. Singular Vectors.

Singular vectors represent those directions in the model space at initial time that give the maximum
linear growth for a specific forecast period and over prespecified area. Maximisation is performed with
respect to a certain norm. Typically singular vectors are maximised using the energy norm both at
the initial and at the final time and are abbreviated TE SV (total energy singular vectors). TE SV
are solutions of the following generalised eigenvalue problem

(38) (M(to,t,))" PTE,PM(to,t,)x = A\Eyx

where A is an eigenvalue corresponding to z, Ey and E, is energy norms at the initial and at the
final time, M(ty,1,) is a tangent-linear dynamical propagator over the period ty <t <t, and P is a
projection operator to the prespecified area.

The total energy norm is calculated via the total dry energy transformation, which was first proposed
by Talagrand (1981) and was studied in details by Errico (2000)

(39) <, Bx >= 3 (uf Dy + of Dy + 2247 Dity) + Ry, (In(P,))?
1 T

where [ is a vertical model level, D; is the vertical transformation, D; = P15 — Pi_1/2, w, v, t; and
P, are wind components, temperature and pressure at the model level [, P, is the surface pressure,
¢, = 1004 J K=t kg~ is the specific heat for dry air at constant pressure, T, = 273 K is the reference
temperature and Ry = 287 J mol~! K~! is the gas constant for dry air. This quantity was used to
generate initial perturbations in Buizza et al. (1993). The theoretical expression for the total energy
norm can be found in Barkmeijer et al. (1999), for instance.

In the case of linear dynamics the set of singular vectors Xgyx(to) corresponding to different Ay,
A1 > Ay > ... Ay, would span the most rapidly growing direction at the optimization time ¢, (¢, = 48
hours is typically assumed). The evolved singular vectors M(t,, to) Xsvi(to) will form the E-orthogonal
set at the optimisation time ¢,,.

The derivations of singular vectors is based on the model dynamics. These vectors are believed to
sample the unstable linear subspace as efficiently as possible. To generate the initial perturbations
for the EPS the singular vectors are rescaled to represent the system with a realistic initial spread.
Both the optimisation time and the phenomena of interest influence the construction of the singular
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vectors. For example, by maximizing the total energy norm in the small target area the system can
be designed for a specific region and process of interest.

Such singular vectors are called Targeted Singular vectors. Frogner and Iversen(2001) and Hersbach
et al. (2000) generated the targeted ensemble prediction systems (TEPS) for parts of Europe. TEPS
provides the initial and the boundary fields for LAMEPS, a high resolution limited area ensemble pre-
diction model. The model seems to be successful in forecasting extreme weather events and even large
scale precipitation which involves strong mesoscale variability and is strongly influenced by orography.
A detailed description and verification of LAMEPS can be found in Frogner and Iversen (2002).

To make EPS based on Singular Vectors more appropriate for the short range forecasting, the
optimized (at some future time, usually 24 or 48 hours) singular vectors may be combined with the
evolved singular vectors from the previous optimisation time. Hamill et al 2003 propose an alternative
approach. They generate the ensemble of Analysis Error Covariance Singular Vectors (AEC SV) by
solving the generalised eigenvalue problem (eqn 38) but with the initial energy norm Ej in the equation
above being replaced with the inverse of the analyses error covariance norm P, !. So the idea is to
sample the quickly growing directions, which initially have structures consistent with the analysis
error covariance. Hamill et al. (2003) have shown that evolved and appropriately rescaled AEC SV
vy, satisfy the following generalized eigenvalue equation

(40) BV X (BY2XT ) v, = My,

provided that the ensemble size is large and that the model dynamics is nearly linear. The forecast
ensemble Xt}; is obtained by dynamical forward integration of the analysis ensemble X¢, which is
generated using the ensemble square-root Kalman filter algorithm (eqn. 20). Thus, the evolved
singular vectors v;, are expressed as a linear combination of the forecast ensemble, v,, = E;/ 2th; a,
where the vector a is obtained solving an equivalent (eqn. 40) but smaller, with the dimensionality of
the ensemble, eigenvalue problem

(41) (ES2XI)T(BY2X] Ya = Xa

Then the initial AEC singular vectors u,,, which are considered to give rise to v,,, are estimated as
the same linear combination a but of the analyses ensemble X , namely

_ vya
Uty = Xtoa.

The typical structures of the initial-time AEC SV were significantly different from the typical struc-
tures of the total energy singular vectors (eqn. 38) and were similar to the subsequent forecast error
structures, but smaller in amplitudes. However, Buehner and Zadra (2006) show that the shape of the
evolved singular vectors is almost independent of the initial norm.

4.2. Breeding vectors.

The analyses error, or the initial-time error, consist of the random errors introduced by inaccuracies of
the assimilated observations and the growing errors associated with the instabilities of the evolving flow,
which are dynamically generated from the errors introduced at the previous assimilation times. Even
if the growing part of the error is only a portion of the total analysis error, their impact on the forecast
error is large. Therefore, creating an ensemble of initial states with a limited ensemble size seems to be
appropriate to focus on the efficient sampling in the direction of growing errors (Ehrendorfer (1997),
Toth and Kalnay (1997)). To sample the growing error direction Toth and Kalnay proposed a method
called breeding of the growing vectors. The idea is to add an arbitrary perturbation to the initial state
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at time to, to let it grow for a short time period (%o, ?,), while the error growth is approximately linear,
and to downscale the evolved perturbation so that it has the amplitude of the initial perturbation. The
obtained perturbation is added to the analysis state at time ¢, and the process is continued resetting.
The down scaling of the evolved perturbations helps to eliminate decaying directions.

Theoretically the breeding perturbations are related to the local Lyapunov vectors of the atmosphere
(Trevisan and Legnani (1995)).

(42) A = lim > log, L])’—<t)}

where p is a linear perturbation spanning the phase space of a system with orthogonal vectors. When
the Lyapunov exponents are interpreted locally, each of them can be associated with a perturbation.
The breeding technique is based on the fact that any random perturbation introduced an infinitely
long time earlier develops into the leading local Lyapunov vector, the perturbation p with the largest
exponent A\ (eqn. 42).

Singular vectors (eqn. 38) provide another possibility to approximate the Lyapunov vectors. At the
same time, as we have mentioned above, both optimisation time ¢, and the optimisation area influence
strongly singular vectors too.

In order to allow the initial perturbations constructed via the breeding error technique resemble
the analysis error in a better way, a regional rescaling is introduced. The idea is to have larger
perturbation amplitude in the regions sparsely observed. The scaling factor is a smooth function of
horizontal location. A perturbation traveling into a poorly observed oceanic area is allowed to grow
freely, while those reaching a well-observed area are scaled down to the size of the estimated analysis
error (Augustine et al. (1992)).

4.3. The perturbed observations approach.

Houterkamer et al. (1996a) have developed an approach, alternative to the selective sampling, to
generate the initial perturbation. This approach is in operational use at MSC since 1996. The ini-
tial conditions are generated by assimilating randomly perturbed observations, using different model
versions in a number of independent data assimilation cycles. This is a type of system simulation
experiment, when all uncertain parts of the forecasting system are subject to perturbations. In other
words, the idea is to sample carefully all sources of uncertainty which determine the forecast error.
Sources of uncertainty that are considered to have a significant impact on the forecast errors are ob-
servation errors (both measurement and representativity), model errors (the effect of unresolved scales
and parametrisation of the physical processes), data assimilation processing errors (the unrealistic
structure-functions of the covariance matrix) and the erroneous boundary fields (including imperfect
estimation of the surface fields). To account for all these sources of errors the initial perturbation are
generated using different sets of perturbed observations, different dynamical models and different sets
of perturbed surface fields. At present the MSC scheme to sample different sources of uncertainty has
significantly developed further by allowing elaborated perturbations of essential parameters of physical
parametrisation.

4.4. The Kalman Filter based rescaling.

The Kalman Filter based rescaling approach (ETKF) to generate ensemble prediction system can be
called a generalized breeding. The ensemble of the forecast perturbations is rescaled into the ensemble
of the analysis perturbations. Under the error breeding methodology the forecast perturbations are
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downscaled by a scalar or an ad-hoc matrix, in a case of a masked breeding, into the analysis pertur-
bations. In contrast to this methodology, the forecast perturbations under the ETKF rescaling scheme
are downscaled into the analysis perturbations by a carefully designed rescaling matrix which reflects
both the relative forecast/observations uncertainty and the spatial observation distribution (eqn. 21).
Theoretically, in case of a full-rank model, the analysis perturbations generated by the ETKF form
a square-root of the analysis error covariance matrix. One drawback of the ETKF rescaling scheme
is that if the number of the ensemble perturbations is much smaller than the number of directions to
which the forecast error variance projects, the transformation (eqn. 20) heavily underestimates the
analysis error covariance matrix (Wang and Bishop 2003). A simplistic way to overcome the problem
is to multiply each ensemble member by a scalar to force the spread of the analysis perturbations to
be consistent with the analysis error variance on a spatially averaged basis. It is still questionable
if the perturbations modified in such a heuristic manner are able to describe the time development
of the PDF of the model state. Wang and Bishop (2003) have shown that the fastest growth in the
ensemble perturbation subspace generated by the ETKEF is larger in the total energy norm than the
fastest growth in the ensemble constructed via breeding.

The fastest growth ~y is defined via a linear combination b of the perturbations to obtain the direction
of the fastest growth of the total energy over the prespecified time period,

3 T (Z])Tszl b
(43) MY (2T S Z8 b

where S is an appropriate norm, the total energy norm (eqn. 39) in this case. In fact, the linear
combination b is a leading eigenvector of A™V2BA~Y2 where A = (Z2)TZ¢, B = (Z,{;)TZt’; and
to < t < t, is the optimisation period (Wang and Bishop 2003). Thus the fastest error growth is the
leading eigenvalue of A~/2BA~1/2,

The analysis perturbations constructed via the ETKF have a very flat spectrum, especially in
comparison with the perturbation constructed via error breeding.

Besides that the ETKF perturbation seems to be able to resolve a wider range of innovation variance
than the breeding perturbations.

At the same time we would like to stress that the Kalman Filter based rescalig schemes allow to
sample the uncertainty valid at the analysed time ¢j;, measuring the uncertainty via the variance-
covariance of the model state. This means that the Gaussian assumptions about the PDF of the
model state valid at t, are done implicitly. It is questionable wether the ensemble of limited size of
the analyses states constructed in such way and dynamically propagated forward to the time interest
is able describe adequately the relevant part of the PDF for the phenomena of interest.

5. VERIFICATION OF THE ENSEMBLE SYSTEMS

The verification of ensemble prediction system for NWP involves some specific problems. The qual-
ity of the prediction system can be evaluated only based on observations, because only the observations
reflect the true state of the atmosphere. At the same time the assessment of the quality can be done
only statistically, based on a large number of realizations of both observations and ensemble predic-
tions. Scores which are commonly used for evaluating the ensemble prediction system are extensively
discussed in Toth et al. (2003) or Stanski et al. (1989).

A verification methodology for the ensemble prediction system concerns three different subjects:

e prediction of the occurrence of a particular binary event,
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e prediction of a probability distribution of a random (one-dimensional) variable
e and representation of the uncertainty about the estimate of the (full-dimensional) model state.

To validate the prediction of an occurrence of the particular binary event £, as for example "the

surface pressure is 3hPa smaller than its climatological value",

e the Brier score (the Probability score) and its decomposition,

e the Relative Operating Characteristics (ROC) and the area under ROC and

e the Relative Economic Value are usually used.

They all are based on the Reliability Diagram (a relation between forecasted and observed frequencies
of the binary event £) and try to produce quantitative summaries from it.

A validation of the prediction of the probability distribution of a random one dimensional variable
is closely related to the validation of an occurrence of a particular binary event. The random one-
dimensional variable X is described via an enclosing set of binary events & = {X < x;},l=1,..., L,
with increasing sequence of thresholds o < 1 < ...7; < ... < x.
bullet Discrete and Continuous Rank Probability Scores, which are generalizations of the Brier Score,
are common measures for the validation.

Specific measures based on the ensemble estimate of the probability distribution are reported often in
parallel.

e The Rank histogram (Candille and Talagrand, 2005) the utilizes indistinguishability hypothesis
(verifying observations should be free from observational error) and

e the Skill Score (Sc) concerns the concept of a prior-posterior probability density in a Bayesian
framework (a parametric estimate of the probability density) (Wilson et al., 1999). e the Skill Score
(Sc) concerns the concept of a prior-posterior probability density in a Bayesian framework (a parametric
estimate of the probability density) (Wilson et al., 1999).

A validation of the representation of the uncertainty about the estimate of the model state is of
different nature. In applications concerning "Gaussian" type data assimilation (Hybrid Variational or
Ensemble Kalman Filter data assimilation) the uncertainty about the point estimate of the model state
is represented through the variance-covariance matrix of the forecast error. In that case the validation
should primarily reflect how well the ensemble is able to span a subspace essential for the dynamical
development of the variance-covariance matrix. The diagnostics should reflect

(1) the dynamical consistency and dominant scales of the variability
(spectral density
and horizontal and vertical cross-correlations within
and between model state components),
(2) the spread-skill relationship
(the "spread-skill" plot,
the resolved range of innovations variance,
Perturbation versus Error Correlation Analysis (PECA)) and
(3) the span of the dynamically unstable directions
(fastest growth of perturbation energy in the ensemble space,
perturbation correlation with the Eady index,
E-dimension).

In the following we will concentrate on a description of some of the validation techniques mentioned
above and outline some basic relationships between them.
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5.1. Prediction of the occurrence of a particular binary event.

Let M denote the total amount of realizations of a prediction of a particular event of interest, &£, over
which the verification is performed, let r; ; = {0,1},1 <7 < N, j =1,..., M, denote the prediction of
the event £ by the ensemble member ¢ during the realization j and let o; = {0,1}, 1 < 7 < M, denote
the observation of the event £ during the realization j. The random quantities r; ; and o; are equal 1
if £ occurs and equal 0, otherwise.

The predicted probability of the occurrence of £ in the realization j, p;, is

1 N
= N Zri,j.
i=1

For each realization p; is a discrete random variable with N + 1 possible outcomes, i.e. p; = m,
= {0, + e N, ce %} for each 7 = 1,..., M. The distribution of pj will depend on the ensemble

size and the predictability of the event. Let g, = g(m,) 1= ; ZJ 1 Zp;=ry 0 < k < N, denote the
frequency of the occurrence of the outcome 7. Here Z 4 is the index of a random event A: T4 is 1 if
A is true, and Z4 is 0 if A is false. In the similar way let us denote oy, 0 < k < N, the frequency with
which the event £ indeed occurs in different realizations of the prediction system when it is predicted
by the system with probability of the occurrence my, o = o(my) 1= ﬁ Zj\il [ A—

e The Reliability Diagram
is a plot of o against m,. The histogram of the probability realizations p;,7 = 1,..., M or the
frequency g, K =0,..., N is reported as well. This information is the complete representation of the
performance of the ensemble prediction system in predicting the event £.

Several quantitative measures for the performance of the Reliability Diagram are proposed in the
literature.
e Brier score (Brier, 1950)
is defined as

(44) Z pj —0;)° = E(p—0)’=E(E(p—0)*|p)

where p and o are random variables describing the predicted probability of occurrence and the occur-
rence itself of the event £. The better is the prediction system the lower is Brier score.

Murphy 1973 proposed a decomposition of the Brier score into three informative components. Let
g(p) and o(p) denote density functions which describe corresponding relationship between the frequen-
cies of occurrence g, or o and the outcomes of the predicted probability 7, 0 < k < N. Let o. denote
the climatological frequency of the occurrence of the £, o, = ij:o orgr- Then Murphy decomposition
reads

B=E,((p — o(p))*) + E,(o(p)(1 — o(p)))

o) (p - / 9(p)(0(p) — 00)%dp + 0o(1 — 0,)

—
=~
ot
~
I
S—0.

M-

gi(m — or)” — ng (or — 0c)* + 0.(1 — o)
0 k=0

i
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The first two terms in the Murphy decomposition of Brier score B characterize the prediction sys-
tem. The first term in the decomposition is called a reliability (BS,¢) and it measures the statistical
consistency between the predicted and the observed frequencies of occurrence of £. The second term
(BS,es) is called a resolution and it implies that the predicted probability should be case dependent
(different from the climatological one). The third term is called uncertainty (BS;) and it depends on
the nature of the event £ but not on the prediction system.

Sometimes Relative Brier Score (BSS) and its decomposition are reported instead.

B
BSS —BSSrel + BSSres -

Ey(p — 0(p))2 1 E,(o(p) — Oc>2

oc(1 —o0,) 0c.(1—o0,.)

BSS =
(46)

Increasing the forecast lead time BSS,. grows and BSS,.s decreases. The development with time
of the total BSS will depend on the relative impact of both components.

e Relative Operating Characteristics or Receiver Operating Characteristics (ROC)

is an alternative qualitative measure of the performance of the EPS and it is closely related with the
Reliability Diagram (Mason and Graham, 2002). The ROC curve is a plot of Hit rate against False-
alarm rate varying the strategy of prediction of the event £ by the ensemble system. For the ensemble
system of size N there are N + 2 different prediction strategies of the event &£: predict if at least [,
1 <1 < N, ensemble members predict the event (D;) and two degenerate prediction strategies, namely
never predict (Dy) and always predict (Dyy1). For the selected informative prediction strategy D,
[l =1,...,N, the jth realization of the EPS will predict event £ if and only if p; > m. Let m, =
= Z]]\il 0; denote the total amount realizations when the event & has occurred, m} = - Z]]\il 0jLp.>m
denote the total amount of realizations when the event £ was predicted when it has indeed occurred,
m) = 1 Zj]‘/il(l — 0;)I,,>x, denote the total amount of realizations when the random event was

predicted but has not occurred and m; ' = ﬁ Z]]\il 0;L,,<x, denote the total amount of realizations
when the random event was not predicted but has indeed occurred. For the degenerate prediction
strategies we have (m$, m3, mg') = (0,0,m,) and (my_ ., m%. 1, my,) = (Mo, M —m,,0).

Then the Hit rate H; and the False-alarm rate F; corresponding to the prediction strategy Dy,
[=0,...,N+1 are defined as follows

1 mo
e e

Plotting H, against F; for all [ =0,..., N + 1 we obtain ROC curve. The closer comes the curve to
the left upper corner ((H, F') = (1,0) - "the most hit the least false alarms" ) the better is the EPS
system predicting £.

e The area under ROC

is often is reported as another quantitative measure of the probabilistic skill of the EPS. Under certain
conditions, the area under ROC can be used to measure skillfulness of the EPS statistically. Area
under ROC, A, can easily be calculated as

B me(M —m,)
(47) A=l me e
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where F is a total number of "inversions" among realizations of the EPS. An "inversion" we call
a situation when the predicted probability of any hit p;,., > 0, st : 0j,, = 1, is smaller than the
predicted probability of any false-alarm Djpatseatarms Jfalse—alarm O arse—aiarm = 0- The total amount of
all hits with the predicted probabilities lower than each false-alarm can be obtained easily from the
ranks of the realizations corresponding to each hit, r;, ¢ = 1,...,m,. The realizations are ordered by
decreasing the predicted probability of the random event .

If all predicted probabilities are different for different realizations, the total number of "inversions"
is given by the following formula

(48) F = Zn — 7m0(m; +1)
i=1

If ties are present among p;, as it is often the case for the ensemble prediction system, a correction for
the ties should be done (DeLong et al. 1988). In that case the area under ROC is obtained as

B me(M —my,) . 1 ~
(49) Aties—l_ﬁ_l mO(M_mO)th(fp+fp)

p=1

where P is a number of distinct segments among p;, h, is a number of hit in segment p, f, is a
number of false-alarms with the predicted probability of the event higher than that associated with
segment p and f, is a number of false-alarms with the predicted probability of the event higher or
equal than that associated with segment p.

For large amount of realization the distribution of F can be well approximated by the Gaussian one:

(50) F ~ N(CL]:, b]:)

mo(M—m mo(M—mo)(M+1
where a;:z%,b;:: o 12"( ),

The exact distribution of the F is known as well. Tt is has the same distribution as the Mann-Whitney
U-statistics (Bamber 1975), which is symmetric and is defined via a recurrence formula (Conover, 1973,
1999).

The same distributional theory holds even for F.s with a certain adjustment for ties (Conover,
1999). For large number of realizations,

(51) fties ~ N(a/t]Z;_GS’ bt]ées)
where
. o M _ o
a'es :_/\[(M7
P
ties _mO<M - mo)<M + 1) _ mO(M — mo) B
br = 12 12M (M — 1) ;(Tp(% + 1)) —1))

The Mann-Whitley U-statistics test differences in central tendencies of two independent samples.
High observed value of F (Fy.s) will indicate that there is a statistically significant difference between
the predicted probabilities of the hit events and the false-alarm events. However, it is important that
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realizations of p; indeed form an independent sample in order to use the distribution of the statistics
to quantify the significance.

e Relative Economic value

of the EPS is one more way to quantify the performance of the EPS. Relative Economic Value relates
Brie Score and Relative Operating Characteristics between themselves. Relative Economic value clearly
demonstrates the advantage of EPS systems in comparison with deterministic forecasts (Richardson,
2001).

We say that if the verification event £ occurs, it will cost the user L, if he have already taken a
preventive action which cost C' or the user will pay the total cost L, + L, if he have not taken the
preventive action. The user must select a strategy to take the preventive action or not by minimizing
the cost over a large number of case, i.e by minimizing the expected cost. If the user decides to protect
himself by taking a preventive action, he will do that always as soon as the event & is predicted.
Accepting the certain prediction strategy D; = (mj, m?,mfl), 0 <1< N +1, the expected expense
will be

-1

0 1
_my my my
(52) eer = (Lo + Lu) + 71 C + =1 (C + L)

= 0(Ly + Lo) + Lo(Fi(1 — 0.)a — Hijo.(1 — @)

where @« = C/La is a quantity which will characterize the user, namely which fraction of the
potential avoidable loss L, the user is prepared to spend on the preventive action, and o. = m,/M is
a climatological frequency of the event &£.

Neglecting information given by the EPS the user would base the selection of strategy on the
"climatological frequency" only. The optimal (expected) climatological expense ee, is

ee. = min{C + o.Ly, 0c(Ls + Ly)}

This expression is based on the deterministic strategy to prevent always if the preventive action
gives positive gain an average (C' < o.L,), corresponding to the degenerate prediction strategy Dy
(Hyvi1 = 1,F1 = 1), and to prevent never if the preventive action costs on average too much
(C > o.L,), corresponding to the degenerate prediction strategy Dy (Hy = 0, Fy = 0).

The Relative economic value V;, dependent on the prediction strategy D;, is the reduction in the
expected expense due to the EPS in proportion to the reduction in the expected expense due a the
perfect forecast,

ee, — ee
(53) V= T
€Cc — CCperf
where eep.,r = 0.(C'+ L,,) is the expected expense based on the perfect forecast (Hpe,r = 1, Fperp = 0).
It is possible to show that 1} achieves the maximum value always for a = o. and that the maximal
value depends on the selected prediction strategy and that it is equal to the Kiupers score KS; of the
forecast

Vmaz,l = Hl - E = KSI

The Relative Economic value is positive only for a range of users, namely
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-1

1
my my

(54) <a<

M —m} —m) m; +m)

Evaluating the EPS system from the perspective of the user («), the user must select his optimal
prediction strategy which will give the largest Relative Economic value V' (a) = Viept(o)(r). How
close V() is to its the maximal value K Sjort(o) depends on how close « is to the climatological

frequency o..

e The Owerall Economic value

is the expected expense over all users. Let the population of users be described by a density function
u(a), 0 < a < 1. All users which are predicted to gain (in the long run) from the preventive action
(( < p) = (C < pL,)) will take the preventive action and all user which are predicted to lose in long
run on preventing (o > p) = (C > pr,) will take all cost if the event will happen indeed. The overall
economic expense for a deterministic forecast p will be

cer(p) = /0 " qu(a)da + o(p) /p ' u(0)da,

Here we assume that L, = 0 for simplicity. The Overall Economic value for the EPS, eer =
fol eer(p)g(p)dp, can be decomposed into following components

cer = [ 9 [ (0= op)u(a)dadp + o,
el

oot [ 9) [ (0 olpute)dadp— [ o) [ (ofp) - a)u(a)dadp.
[ ], [ o]

For a finite size ensemble,

N Tk N Ok
cer =Y o [ e oul@)da =Y g [ (o a)ula)da + ec.
k=0 Ok k=0 Oe

For the uniform distribution of users, u(a) ~ U(0,1), the overall expected Economic value eep
becomes directly related to the Brier score.

1 N

N
1 1 1
eer = 3 E g(m — 0p)* — 5 E g(0e — o) + 500(1 —o.) + 20
(56) k=0 k=0

1 1
- E(Bsrel - BSres + BSS) + 506

In other words, the Brier score is essentially the Overall Economical Value for users without prefer-
ence.
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5.2. Prediction of the probability distribution of a scalar random variable.

e The Ranked Probability Score

(RPS) is a generalization of the Brier score and is used to evaluate the probabilistic ensemble prediction
of a scalar variable, x. The Ranked Probability Score can be applied in Discretized (DRPS) or in
Continuous (CRPS) form dependent on the support of the scalar variable (a discrete or a continuous
one). For evaluation of an ensemble prediction system from the perspective of a scalar variable the
Relative Ranked Probability Score (RPS;) and it decomposition into normalized reliability (RPS,)
and normalized resolution score (RPS,.s) can be applied. An extensive discussion on these scores is
given in Candille and Talagrand (2005). For example, in discrete form the DRPS,, DRPS,. and
DRPS,.s are defined as follows

L
1
DRPS == ; B(E)) = DPRS,¢ + DPRS,.,

L
1
=7 cl_ c
e =7 Sl =)

57 DRP
(57) DRPS, =1 — Res
unc
1 L 2
1 Elp —
DRPSrel _L Zl:l (pl O(pl))
unc
1 L 2
1 B _—
unc
where & = {z < &}, &G <& < ... &, L=1,..., Lis asequence of events, 5(€) is the Brier score score

for the probabilistic prediction of event £ and p;. is a climatological frequency for the occurrence of
event &;.

e The Continuous Ranked Probability Score (CRPS)
is obtained by transforming a finite sum over thresholds in DRPS (eqn. 57) into an integral over x.

(58) ORPS = ;3 [ (5(€) ~ HIE ) e) = [ BEIau

where B(&) is the Brier score for the event & = {z < £}, F;(€) is the jth realization of the probability
distribution of the scalar variable z, Fj(§) = P(&) = ~ SOV H(E — x3;), xy is the prediction of
the random variable x by ensemble member k in the realization j of the EPS, H(y) is the Heaoyiside
function (H(y) =0ify <0, H, = 1 if y > 0) and dp(&) is a measure with which the integration is
performed.

The Continuous Ranked Probability Score can be decomposed into similar components as the Dis-
crete Ranked Probability Score

(59) CRPS = Reli — Resol + U

The uncertainty component U = [ F.(£)(1 — F.(£))du(¢) is corresponding to unc in (eqn. 57).
Here F.(§) defines a climatological probability function of the random variable x. Components Rel:
and Resol correspond to the reliability and resolution components in the Brier Score decomposition.
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Candille-Talagrand (Candille and Talagrand (2005)) and Hersbach-Lalaurette (Hersbach (2000)) are
two different decompositions of the CRPS into Reli and Resol components.

e The Rank Histogram
is another measure of the probabilistic ensemble prediction of a scalar variable x. It measures whether
the verifying observation z,, ; (neglecting the observation error) is statistically indistinguishable from
the NV ensemble members z;;, ¢ =1,...,N, j =1,..., M. The Rank Histogram is defined as follows.
It consists of N + 1 bins s:

M
(60) St =Y Tlap ys<toy <opyr k=1, N+1

j=1
where —oo = xq < o) < ... < T < ... < 7N < Tv41] = +oo are order statistics of the j-

th realization of the ensemble prediction system. The flatter is the Histogram, the more reliable is
ensemble prediction system.
The quantity

_N+1N+1 M

- e

measures the deviation of the histogram from a flat one. A value of § which is much larger than
1 means that the ensemble prediction system is unreliable. Very small values of § indicate that
observations are not random or not independent.

o The Skill Score
is one more measure of the EPS based on the ensemble estimate of the probability distribution of a
random scalar variable. Let £ x denote a verifying event

5AX = {| X — Tobs |§ AX}

Let P.(Eax) denote the climatological probability of the event Eax and P.,s(Eax) denote the one
estimated from the ensemble. From the Bayesian perspective they will correspond to the prior and
the posterior distribution of the event respectively.

The Skill Score gives a measure of P,,s(Eax) relative to P.(Eax):

Pens(gAX) - PC(EAX)
1 — P.(Eax)

Under this scoring measure the EPS is considered to be skillful in predicting event Eax if the
posterior probability of the event is larger than the prior one, in other words Sc is positive for the
skillful EPS. The Skill score is positively oriented and it is sensitive to the location and sharpness of
the ensemble estimated distribution with respect to the verifying observation. The Skill Score takes
into account differences in the predictability of the event too, because it is sensitive to the sharpness
(and location) of the climatological probability as well.

Because the ensemble size in EPS is usually small, the P,,s(Eax) should be estimated parametrically.
The prediction of geopotential height and surface and upper-air temperatures is found to obey a normal
distribution, the prediction of precipitation obeys a Gamma or a Kappa distribution, the prediction
of wind obeys a Weibull distribution, the prediction of cloud cover obeys a Beta distribution and the
prediction of the visibility is assumed to obey a lognormal distribution.

(62) Sc =
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5.3. Representation of the uncertainty about the model state estimate.

When an ensemble system is used for "Gaussian" type data assimilation purposes, the main aim of the
ensemble is to adequately represent the initial uncertainty about the model state and its development.
For the "Gaussian" type data assimilation systems the covariance matrix of the forecast error is
considered to capture the uncertainty about the estimate of the model state. A successful ensemble
should not only capture the time-and-space dependent variation of the spread of the distribution of
different model state components, but reflect also the flow-dependent cross-correlations between model
state components. The best verification tool is to run a period of data assimilation cycles: successful
ensemble should improve the efficiency in assimilating observations. However, it is a real challenge to
construct the proper estimate of the forecast error covariance matrix when the dimensionality of the
model state is so high and the size of the ensemble is so small. A number of diagnostics and verification
tools can highlight specific features of estimates of the forecast error covariance matrix.

e Diagnostic plots
of the spectral variance of different model state components as well as plots of the cross-correlations
between model state components are very useful, investigating the dynamical consistency of the forecast
error covariance estimate.

e The spread-skill relationship
is considered to be an important characteristic of the ensemble system. There is not any unique
quantity which would summarize the spread of the ensemble.

The spread-skill relationship plot is a plot root-mean-square error of the ensemble mean FE,, =
(PZP,)Y? and the estimate of the ensemble spread E,, = (£ 3N (PTP)s)'/? . Here P, =7 — 1,
and P, = X; — x,,, where X, denote the ensemble members ¢z, 1 < i < N, x denotes the ensemble
mean, x, denotes the verifying analysis and subscript S denotes the norm. The total energy norm
is often used (eqn. 39). The correlation between spread and skill is related with the magnitude of
the spread variability, namely the more the spread departs from its climatological mean value, the
more useful is the spread as a predictor of skill (Whitaker and Loughe (1998)). The resolved range of
innovation variance is one more way to measure spread-skill relationship of the ensemble (Wang and
Bishop (2003)). First, a scatterplot of squared innovations against ensemble estimate of the variance in
observation space is constructed using all observation quantities. After that a relationship (regression)
of the innovation variance on the ensemble variance is tried. For the perfect ensemble, when the
observation error, model error and forecast error are mutually uncorrelated, the relationship should
look like as a stright line with 45 degrees slope, because the innovation variance is a sum of the forecast
and observation variance (taken in observation space). Although in reality the representativity error
and the model error may be correlated with the forecast error, still observing the resolved range of the
innovation variance can tell us something about how well the spread of ensemble represent the skill of
the ensemble can be made.

Wei and Toth (2003) propose another measure to quantify skill-spread relationship called Pertur-
bations versus Error Correlation Analysis (PECA). First the optimal linear combination of ensemble
perturbations P, which gives the best prediction of the forecast error F,, in L, norm, is obtained:

N
Popt = E aiPia
i=1

where the weights «;, 1 < ¢ < N, are obtained by solving the least-square problem
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(63) min | Py, — Popt |1,

The PECA is defined as a pattern anomaly correlation between the forecast error P,, and the optimal
perturbation P

cov( Py, Popt)
var(Pp)Y2var(Poy,)'/?

(64) PAC(P,,, Popt) =

The successful ensemble should explain the largest part of the forecast error variance via the optimal
perturbation. e Sampling of dynamically unstable directions
is one more important characteristics of the ensemble in representing the forecast error variance-
covariance. The correlation of the optimal perturbation with the Eady index (Hoskin and Valdes
(1990)), the fastest growth of the energy of perturbations in the space spanned by the ensemble in
the total energy norm and the E-dimension (Oszkowski et.al, 2005) can be used as measures of the
ensemble performance.

The estimation of the fastest energy growth is given in the section on Singular vectors (eqn. 43).

The Fady index expresses the maximum normal mode error growth rate in baroclinic developments
and it is defined as

f du
= 0.31251—
(65) O EBady = 0.3 5Nb e

where f is the Coriolis parameter, N, is the buoyancy frequency and % is the vertical wind shear.

Interpreting the correlation one should remember that the Eady index corresponds to instabilities
caused by baroclinic development only.

The Ensemble dimension, also known as The Bred Vector dimension, measures the effective dimension
spanned by a N-dimensional ensemble in a local geographical region at a particular time. The FE-
dimension characterizes the effective number of dominant directions in the vector space spanned by
the ensemble perturbations and is defined as

(i, VA

66 Egim(A, ..., AN) = 55—

(66) ( ) Sy

where \;, i = 1,..., N are eigenvalues of the local forecast error covariance matrix By, = (PL Pp)s. Here
subscript S denotes the total energy norm and P, denotes the ensemble of local perturbations Pp, =
(Pp1, Pra,...,Prn). The local perturbation Py ; contains perturbations of all dynamical variables

X, — x; of the global perturbation F;, belonging to the local area L. Small values of Egy,, 1 <
Egim << N, reflect presence of a few leading directions of variability (the remaining ones are small
compared to the leading ones) in the local area and large values of the Eg;,. The large values of
Egim, Egim =~ N, reflect the nearly equal spread of the variability among all direction, what can
correspond to noise. Oszkowski et al. (2005) point out that a number of atmospheric scenarios, such
as pure baroclinic instabilities, complex processes involving baroclinic and barotropic instabilities, the
divergence of ageostrophic geopotential fluxes etc. result in a low E-dimension.
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6. CONCLUSIONS

The basic purposes of the current literature study could be summarized as follows:

e to investigate the theoretical relationships between the sequential and variational data assimi-
lation schemes especially in a perspective of the practical implementation;

e to investigate the relationships between the ensemble data assimilations and the ensemble
prediction systems.

e in addition we have provided a summary of widely used verification methods to qualify the
performance of the ensemble prediction and ensemble data assimilation systems.

The variational data assimilation methods, such as the Three-Dimensional and the Four-Dimensional
Variational Data Assimilation Schemes, are successfully implemented worldwide by the weather ser-
vices for the operational weather prediction. At the same time, there is a lot of space for further
improvements.

The Variational Data Assimilation schemes compute a posterior mode of the probability density func-
tion, valid at the beginning of the data assimilation window, maximising the correspondent density
function numerically. The full rank background error covariance matrix is necessary for the proce-
dure of the numerical maximisation. The number of assimilated observation is of several magnitudes
smaller that the dimensionality of the model state. Thus the prior assumptions about the probabil-
ity density function at the beginning of the data assimilation window, expressed via the background
forecast and the background forecast error covariance matrix, will have strong impact on the posterior
mode. The Variational Data Assimilation Schemes lack affordable procedure for the explicit update
of the evolution of the forecast/analysis/forecast-at-the-begging-of-the-next-assimilation-window error
covariances. The static constant covariance is used at the beginning of each assimilation window, what
degrade the performance of the variational assimilation schemes.

The sequential data assimilations methods based on the Kalman Filter recursions would provide
the Gaussian approximation to the posterior probability density function valid at the end of the data
assimilation window. However, the Kalman Filter recursions require an explicit forward propagation
of the forecast error covariance. The various implementations of the Ensemble Kalman Filter were
proposed in order to afford the practical implementation of the sequential methods, where the forecast
error covariance matrix in propagated forward approximately. First, a number of model states, an
ensemble, is selected so that they together would represent covariance matrix at the initial time;
each model state is propagated forward in time using the forward model propagator; the forecast
error covariance at the time of interest is estimated from this propagated ensemble; the propagated
forecast ensemble is rescaled /resampled into the analyses ensemble that should represent the update
of the uncertainty about the model state after new observations are assimilated. However, the rank
deficiency of the model state covariance estimate from the ensemble with a limited size creates serious
problems implementing Ensemble Kalman Filter data assimilation schemes.

Theoretically, the Hybrid Ensemble-Variational data assimilation scheme, where the the background
covariance matrix is modelled via contributions from both the full-rank static constant covariance
matrix and the rank-deficient flow-dependent covariance matrix estimated from the ensemble of the
forecast state, could be an alternative method. However, it still should be proven that involving the
rank-deficient estimate of the forecast error covariance matrix would not degrade the performance of
the variational assimilation scheme. The Schur-product of matrices is traditionally used to increase
the rank of the ensemble estimate of the forecast error covariance matrix. It is important to notice
that a Schur-product of matrices is not a linear transformation, therefore an extreme care should
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be taken on investigating impact of the Schur-product on the physical balances between the model
state components. In the long term perspective, the flow-dependent forecast error covariance matrix
should be modelled using local structures, such as wavelets or Intrinsic Mode Functions, with only the
parameters estimated from the ensemble.

The Data Assimilation Schemes provides a point estimate of the model state with a possibility to
quantify uncertainty about the estimate. The Ensemble Prediction System are essentially different
from the Ensembles Methods for Data assimilation and they are constructed with the aim to provide
a probabilistic inference about some phenomena of interest (a low-dimensional transform of the model
state variable) during and after a certain integration period. For the long range forecasts, the Lyapunov
exponent based techniques, such as singular vectors and breeding vectors, are traditionally used. For
the shorter forecast range the initial model state will have an impact on the probabilistic inference
during and after integration period. Thus Ensemble Prediction Systems, which adequately represent
the probability distribution of the initial model state, are required. Sampling initial uncertainty, the
ETKF based rescaling scheme outperforms Breeding and Singular Vectors techniques. The Hybrid
ETKF-PF (Particle Filters) Scheme has a potential to become an efficient ensemble prediction system
for the short-moderate range forecasts.

The choice of the verification methods is important quantifying the performance of the Ensemble
Prediction Systems. The majority of the commonly used verification tools such as the Brier Score, Rel-
ative Operating Characteristics and area under ROC as well as the Relative Economic Value represent
different quantitative measures of the performance of the Reliability diagram for the particular event
of interest. It should be taken care when the conclusions are extrapolated on subspace of the model
state support not covered by the event. The Overall Economic value can validate the performance of
the Ensemble Prediction system for the users with particular preference expressed through a cost-loss
ratio.
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