
MET report
no. 27/2013

Oceanography

One-Layer Shallow Water Models on
the GPU

André R. Brodtkorb1, Trond R. Hagen2, Lars Petter Røed3

1SINTEF IKT, Avd. for Anvendt Matematikk
2SINTEF IKT, Avd. for Anvendt Matematikk
3MET, R&D Dep.

MET report
Title Date

One-Layer Shallow Water Models on the GPU December 19, 2013

Section Report no.

Ocean and Ice 27/2013

Author(s) Classification

André R. Brodtkorb, Trond R. Hagen, Lars Petter Røed ❥Free ③Restricted

Client(s) Client’s reference

Statoil Contract:

45022367955

Abstract

We describe the implementation of a numerical scheme for solving the linear, one-

layer shallow water equations on a graphics processing unit (GPU). The scheme we

use and its FORTRAN code is described in some detail in Røed (2012a) and Røed

(2012b) together with some benchmark cases. We have implemented this numeri-

cal scheme on a central processing unit (CPU) as well as on a GPU and run it for

the these benchmark cases. The results we get show that the GPU implementation

gives a speed-up over the CPU of slightly more than 200 times (cf. figure on front

page). This is highly promising regarding the possibilites of running a large number

of ensembles cost effectively on a computer and thereby increasing the accuracy of

short-term ocean current forecasts.

Keywords

GPU, Oceanography, Numerical Modeling, Shallow Water

Disciplinary signature Responsible signature

Lars Anders Breivik Øystein Hov

Contents

1 Introduction 1

2 Numerical Scheme 2

3 GPU Implementation 6

4 Verification and accuracy 8

5 Performance 10

6 Summary 10

Abstract

We describe the implementation of a numerical scheme for solving the lin-

ear, one-layer shallow water equations on a graphics processing unit (GPU).

The scheme we use and its FORTRAN code is described in some detail in

Røed (2012a) and Røed (2012b) together with some benchmark cases. We

have implemented this numerical scheme on a central processing unit (CPU)

as well as on a GPU and run it for the these benchmark cases. The results

we get show that the GPU implementation gives a speed-up over the CPU of

slightly more than 200 times (cf. figure on front page). This is highly promis-

ing regarding the possibilites of running a large number of ensembles cost

effectively on a computer and thereby increasing the accuracy of short-term

ocean current forecasts.

Meteorologisk institutt
Meteorological Institute
Org.no 971274042
post@met.no

Oslo
P.O. Box 43 Blindern
0313 Oslo, Norway
T. +47 22 96 30 00

Bergen
Allégaten 70
5007 Bergen, Norway
T. +47 55 23 66 00

Tromsø
P.O. Box 6314
9293 Tromsø, Norway
T. +47 77 62 13 00

www.met.no
www.yr.no

Meteorologisk institutt
Meteorological Institute
Org.no 971274042
post@met.no

Oslo
P.O. Box 43 Blindern
0313 Oslo, Norway
T. +47 22 96 30 00

Bergen
Allégaten 70
5007 Bergen, Norway
T. +47 55 23 66 00

Tromsø
P.O. Box 6314
9293 Tromsø, Norway
T. +47 77 62 13 00

www.met.no
www.yr.no

Meteorologisk institutt
Meteorological Institute
Org.no 971274042
post@met.no

Oslo
P.O. Box 43 Blindern
0313 Oslo, Norway
T. +47 22 96 30 00

Bergen
Allégaten 70
5007 Bergen, Norway
T. +47 55 23 66 00

Tromsø
P.O. Box 6314
9293 Tromsø, Norway
T. +47 77 62 13 00

www.met.no
www.yr.no

1 Introduction

Today’s oceanographic forecasts are based on highly complex numerical mod-

els capturing to a high degree of accuracy the different physics that dominates

oceanic motion. While these models are accurate in a statistical sense, they of-

ten exhibit large errors regarding ocean current forecasts. This is mostly due to

large uncertainties in the knowledge of the initial state, but also to a lesser degree

the forcing (atmospheric input, river discharges, lateral input at open boundaries,

etc.). An alternative to running a single highly complex model, is to run an en-

semble of simpler models differing only in their initial state, and select those that

match observations best for the forecast. This approach requires a large number

of runs, and thus high performance of the simpler model.

In Røed (2012a), a set of ocean models and numerical schemes are pre-

sented. The presented equations are thought to capture varying degrees of the

physics that dominate short term ocean currents. The models presented are a

one-layer model, in which the ocean is modeled with uniform density throughout

the water column, a 2-layer model, in which the ocean is modeled as a bottom

layer with one density and an upper or top layer with a second density, and finally

a 11

2
-layer model, which can be thought of as a simplification of the 2-layer model

in which the bottom layer is assumed to be very deep compared to the upper

layer. It should be emphasized that the equations to solve are basically the same

for these three models, consisting of what is commonly referred to as the rotating,

shallow water equations. Two numerical schemes are presented for the one-layer

model. The first scheme uses a linearization of the equations assuming that the

surface elevation and thereby the currents are small. The second scheme keeps

the non-linear nature of the equations. In Røed (2012b), a Fortran reference

implementation of the linear model is presented together with nine benchmark

cases and their results.

The graphics processing unit (GPU) is the device used to render the image

on screen. The GPU has over the last decade been used in a variety of different

non-graphics applications, and shown to outperform the traditional CPU by 5-50

times Brodtkorb et al. (2010). The non-rotating, shallow water equations have

also been shown to be very well suited for implementation on the GPU Brodtkorb

et al. (2011).

1

Figure 1: Sketch of the variables in the one-layer linearized model.

The report is organized as follows. We present the numerical scheme in Sec-

tion 2, while we present the GPU implementation of the scheme in Section 3.

Furthermore, in Section 4, we present a verification of the GPU solutions against

the CPU solutions for the nine benchmark cases presented in Røed (2012b).

Here we show that most of them provides results agreeing within floating point

precision (10−6). In Section 5 we investigate the perfomance ratio and show that

the GPU implementation outperforms the CPU solver 200 times. Finally Section

6 offers a short summary.

2 Numerical Scheme

In this section, we briefly review the numerical scheme for the linear one-layer

shallow water model. For a more thorough discussion, we refer the reader to Røed

(2012a,b). The numerical scheme is based on linearization around a mean depth,

so that for a spatial coordinate (x, y) we have that the water depth is h(x, y, t) =

H(x, y) + η(x, y, t) where η(x, y, t) is sea surface deviation away from the equilib-

rium depth H(x, y), U(x, y, t) is the depth averaged velocity in the x-direction, and

V (x, y, t) is the depth averaged velocity in the y-direction (Figure 1).

The numerical scheme uses a staggered grid so that the different variables

are placed one half grid length apart as illustrated in Figure 2. For simplicity we

2

Figure 2: Staggered grid in which the different variables are at different spatial locations.

The water disturbance, or sea level, η, is the circle at cell centers, and the velocities, U

and V , are placed at cell intersections along the x- and y-axis respectively.

Figure 3: A full simulation cycle. First, the values of U at the next timestep are computed.

These are then used in the computation of V at the next timestep, and finally we update

η using U and V at the next timestep.

define the following notation for the different variables:

µi+1/2,j+1/2 = µ
(

xi+1/2, yj+1/2

)

= µ ((i+ 1/2)∆x, (j + 1/2)∆y) , (1)

Ui,j+1/2 = U
(

xi, yj+1/2

)

= U (i∆x, (j + 1/2)∆y) , (2)

Vi+1/2,j = V
(

xi+1/2, yj
)

= V ((i+ 1/2)∆x, j∆y) . (3)

We define µi+1/2,j+1/2 to be at the center of cell (i, j), Ui,j+1/2 to be at the in-

tersection between cell (i, j) and (i + 1, j), and Vi+1/2,j to be at the intersection

between cell (i, j) and (i, j+1) (Figure 1). In addition, we define V̄i,j+1/2 to be the

reconstructed value of V at the location of Ui,j+1/2.

The numerical scheme consists of three stages, as illustrated in Figure 3. We

3

(a) Un+1

i,j+1/2 (b) V n+1

i+1/2,j (c) ηn+1

i+1/2,j+1/2

Figure 4: Computational stencils used to compute U , V , and η.

start by computing the U component of the numerical momentum (Figure 4):

Un+1

i,j+1/2 =
1

Bi,j+1/2

[

Un
i,j+1/2 +∆t

(

fV̄ n
i,j+1/2 − P n

i,j+1/2 +Xn+1

i,j+1/2

)]

, (4)

in which

Bi,j+1/2 =

(

1 +
R∆t

H̄i,j+1/2

)

, (5)

P n
i,j+1/2 = gH̄i,j+1/2

ηni+1/2,j+1/2 − ηni−1/2,j+1/2

∆x
, (6)

Xn+1

i,j+1/2 =
1

ρ0
[τxs]

n+1

i,j+1/2. (7)

Here, B is due to the semi-implicit handling of the linear bottom friction source

term, and R is the friction coefficient. Similarly, we have that τxs is the x component

of the wind shear stress. We can compute the V momentum similarly, but using

the newly computed U momentum values (Figure 4):

V n+1

i+1/2,j =
1

Bi+1/2,j

[

V n
i+1/2,j +∆t

(

fŪn+1

i+1/2,j − P n
i,j+1/2 + Y n+1

i+1/2,j

)]

, (8)

in which

Bi+1/2,j =

(

1 +
R∆t

H̄i+1/2,j

)

, (9)

P n
i+1/2,j = gH̄i+1/2,j

ηni+1/2,j+1/2 − ηni+1/2,j−1/2

∆x
, (10)

Y n+1

i+1/2,j =
1

ρ0
[τxs]

n+1

i+1/2,j . (11)

4

(a) (b)

Figure 5: Reconstruction of variables: (a) The reconstruction of the velocity components

U at the location of velocity components V for internal nodes. (b) The reconstruction of

the velocity components U at the location of velocity components V for boundary nodes

when the boundary is closed. The reconstruction of V at U locations is similar.

Finally, we may compute the sea surface deviation using the newly computed U

and V momenta (see also Figure 4):

ηn+1

i+1/2,j+1/2 = ηni+1/2,j+1/2 −
∆t

∆x

[

Un+1

i,j+1/2 − Un+1

i+1,j+1/2

]

(12)

−
∆t

∆y

[

V n+1

i+1/2,j − V n+1

i+1/2,j+1

]

.

The numerical scheme consisting of (4), (8) and (12) requires evaluation of the

variable at other places than where it is defined, in particular the terms marked

with an overbar, e.g., Ūn+1

i+1/2,j in (8). We therefore need to reconstruct their values

using linear interpolation as illustrated in Figure 5. Note that for nodes close to

the edge, this reduces to a linear interpolation. Thus we get

Ūn
i+1/2,j =























1

2

[

Un
i+1,j−1/2 + Un

i+1,j+1/2

]

, i = 0

1

4

[

Un
i,j−1/2 + Un

i,j+1/2 + Un
i+1,j−1/2 + Un

i+1,j+1/2

]

, i ∈ [1, nx− 2]

1

2

[

Un
i,j−1/2 + Un

i,j+1/2

]

, i = nx− 1

(13)

V̄ n
i,j+1/2 =























1

2

[

V n
i−1/2,j+1

+ V n
i+1/2,j+1

]

, i = 0

1

4

[

V n
i−1/2,j + V n

i+1/2,j + V n
i−1/2,j+1

+ V n
i+1/2,j+1

]

, j ∈ [1, ny − 2]

1

2

[

V n
i−1/2,j + V n

i+1/2,j

]

, i = ny − 1

(14)

H̄i,j+1/2 =
1

2
(Hi−1/2,j+1/2 +Hi+1/2,j+1/2), (15)

H̄i+1/2,j =
1

2
(Hi+1/2,j−1/2 +Hi+1/2,j+1/2). (16)

5

Figure 6: Computational domain for two timesteps. The values at timestep n+ 1 can be

computed from the values at timestep n independently for each cell (illustrated here for a

three-point stencil).

3 GPU Implementation

The numerical scheme detailed in the previous section is essentially a stencil

computation. This means that the value of cell i, j at the next timestep can be

computed independently of all other cells as illustrated in Figure 6. Such stencil

computation suits the GPU perfectly, as the GPU is a highly parallel processor.

Our implementation of the numerical scheme results in three different kernels

that compute U , V , and η, respectively. Each of these kernels run after each

other sequentially (Figure 3), but exploit the inherent parallelism of the stencil

computations within each kernel. One of these kernels is outlined in Listing 1.

This kernel is essentially just like a regular CPU function, only that it executes in

parallel for all data elements, operates on data that is located on the GPU, and

stores the results also on the GPU. Furthermore, there are some extra variables

that determine which data element the function is being executed for.

In Røed (2012b), there are several boundary conditions that are outlined. The

open boundaries require an external solution that is used to represent what the

solution is outside the computational domain. We need to compute this exter-

nal solution simultaneously with the internal solution. The most efficient way to

do this, is to compute it simultaneously as we solve for the internal domain, as

shown in Figure 7. We do this by computing the external solution of U at the next

timestep simultaneously as we compute the internal solution of V . This hides the

6

Listing 1: GPU kernel that computes U at the next timestep.

/ /GPU Kernel t h a t evolves U i n t ime

__global__ vo id computeUKernel (Parameters params_ ,

Data data_ ,

f l o a t t_) {

/ / Data index ing va r i a b l e s

unsigned i n t i = b lock Idx . x∗blockDim . x + th read Idx . x ;

unsigned i n t j = b lock Idx . y∗blockDim . y + th read Idx . y ;

[. . .] / / Read i n p u t data , compute stresses , e tc .

/ / Store r e s u l t to main GPU memory

data_ .U[j] [i] = B∗ (U_current +

params_ . d t ∗ (params_ . f ∗V_m + P + X)) ;

}

Figure 7: Simulation cycle with external solution.

overhead of computing this external solution, which otherwise could be consid-

ered a relatively expensive function on the GPU.

7

4 Verification and accuracy

We have run the nine benchmark cases as defined in Røed (2012b), and com-

pared our results against the results produced by the Fortran reference code. The

benchmark cases are summarized in Table 1.

Closed Open Open boundary

boundary boundary with shelf

Uniform Along Shore 1A 1B 1C

Bell Shaped Along Shore 2A 2B 2C

Moving Cyclone 3A 3B 3C

Table 1: List of cases run. First column describes the wind forcing.

All cases have one boundary closed (wall), which is used to represent the

coast line, and the remaining boundaries vary with the case. The closed bound-

ary cases (cases 1-3 A) use a closed (wall) boundary condition, and the open

boundary cases (cases 1-3 B) use an open boundary condition in which the so-

lution outside the domain is prescribed by the external solution, and a numerical

sponge is used to impose these conditions. The open boundary cases with shelf

(cases 1-3 C) have a varying bathymetry that is used to represent a continental

shelf off the coast and an open boundary condition.

In addition to varying the boundary conditions and bathymetry, the wind stress

term is also varied. Cases 1 A-C use a uniform wind stress, cases 2 A-C use

a spatially varying wind stress, and cases 3 A-C use a spatially and temporally

varying wind stress mimicking a moving cyclone or low pressure system.

These benchmark cases are designed to test that the different parts of the

implementation work as expected, and all of our results are visually identical to

the reference, showing the same dynamics. Figure 8 show our results as plots

of time series of a single spatial location as the simulation progresses. All of our

results are within floating point precision (10−6) of the reference solution, except

for cases 3 B and 3 C. These two cases have a slight difference, but show the

same dynamics as the reference. The only difference in these two cases from the

others, is that they have a temporally and spatially varying wind stress term in the

8

Figure 8: Comparison of reference Fortran results and Cuda GPU results. The simula-

tion results are identical to within floating point precision, except for cases 3B and 3C. The

discrepancies between the reference and GPU solution in this case comes from different

interpretations of the moving wind stresses for the external solution.

external solution (used for the open boundary conditions). From this we conclude

that the discrepancy is due to a different interpretation of the temporal-spatial

location of the wind stress term in the external solution, and that the boundary

conditions and numerical scheme give the expected results.

9

5 Performance

We assess the performance and efficiency of our GPU implementation of the

numerical scheme by investigating the run-time as a function of domain size. As

the exact same operations are performed regardless of the initial conditions, we

find this a good measure. We run Case 1A with a varying grid size, and record the

run-time. The benchmark is run on an Intel Core i7-2600K @ 3.7 GHz equipped

with 8 GB RAM and an NVIDIA GeForce 480 GTX @ 1.4 GHz graphics card.

This is a commodity level CPU and commodity level GPU in a comparable price

segment. The CPU code is compiled with the "-O3" optimization flag using the

g95 Fortran compiler, and the GPU code is compiled using CUDA 4.1 in Visual

Studio 2010 using standard "Release" build settings.

Figure 9 shows our performance results. The Fortran solution is only able to

run simulation cases up-to roughly 40 million cells, while the GPU version was

able to run over 65 million cells. The least squares approximation of a linear

function to the measured run-times gives us an expected speed-up of over 200

times for reasonably sized domains. This is highly promising with regard to the

idea of running a large number of ensembles, as the GPU presumably will be able

to run two hundred times as many scenarios as the CPU within the same time

frame.

6 Summary

We have implemented a GPU version of a rotating, linear one-layer, shallow water

model, and run it for nine benchmark cases. We show that the GPU implemen-

tation is roughly 200 times faster than the CPU reference, while still producing as

accurate results. This is highly promising for running an ensemble of ocean cur-

rent predictions on the GPU which differ only in their initial state, since the GPU

provides the possibility of running 200 ensemble members within the same time

frame as it takes to run one ensemble member on the CPU.

10

Figure 9: Performance comparison of the CPU and GPU runtimes for different problem

sizes. The actual runtimes are marked as blue diamonds, and the red line is a least

squares approximation of the data using a linear functional. The GPU version is approxi-

mately 200 times faster than the CPU version.

References

Brodtkorb, A. R., C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. Storaasli (2010),

State-of-the-art in heterogeneous computing, Scientific Programming, 18(1), 1

– 33.

Brodtkorb, A. R., M. L. Sætra, and M. Altinakar (2011), Efficient shallow water

simulations on GPUs: Implementation, visualization, verification, and valida-

tion, Computers & Fuids, 55, 1–12, doi:10.1016/j.compfluid.2011.10.012.

Røed, L. P. (2012a), Documentation of simple ocean models for use in ensem-

11

ble predictions. Part I: Theory, Tech. Rep. 3/2012, Norwegian Meteorological

Institute.

Røed, L. P. (2012b), Documentation of simple ocean models for use in ensemble

predictions. Part II: Benchmark Cases, Tech. Rep. 5/2012, Norwegian Meteo-

rological Institute.

12

