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1 Introduction 

When analysing trends and variability of climatic time series will the accuracy and 
consistency of the underlying observations be of extreme importance. A homogenous 
representation of climate only exists when variations in the time series are solely results 
of variations in weather and climate (Easterling et al, 1996). Changes in the technical 
and/or environmental conditions such as relocations, change in instruments and sensors, 
change of observers, change of observing practices, new buildings etc. at observation 
stations might seriously affect the measurements in such a way that sudden shifts 
(homogeneity breaks) in the time series will be introduced. Other conditions such as 
land use changes, urban development and changes in vegetation introduce trends in the 
time series that might deviate from the regional climate characteristics. Analysing and 
correcting for such external influences to achieve homogeneous climatic time series is 
therefore necessary before making an assessment of climatic change.  

During the last 10-15 years gridded climate data has been introduced in order to provide 
a continuous and consistent spatial description of climate. For that purpose several 
methods for estimating gridded climate datasets have been developed. Tveito et al. 
(2008) gives an overview of the main methodical principles and examples of 
applications of such. Up to now datasets based on observation gridding and spatial 
statistics approaches have been the ones that have provided the most reliable and 
unbiased information. In that context it is natural to investigate whether homogenized 
input data will improve the estimations of the gridding methods. 

This report presents an analysis of the effect of applying homogenised temperature and 
precipitation series for gridding. First are the theoretical backgrounds, basic 
assumptions and the data applied in the analysis presented. Thereafter the pre-
processing of data and the analyses is described, before a presentation and discussion of 
the results. At the end final remarks and conclusions are presented. 

1.1 Spatial interpolation and gridding 

Given that (i) the gridding method is perfect and the observations are associated with 
correct and representative metadata gridded data should by nature be homogenous, and 
(ii) the observation network is representative for the entire gridding domain, gridded 
data should be spatially and temporally homogenous. Neither of these criteria can in 
practice be fully fulfilled, at least not in areas with strong climatic gradients and 
complex topography such as Norway. 

When doing a spatial interpolation there are a few basic assumptions that need to be 
fulfilled. The most important are the assumptions that the process should be stationary 
in space, and that the co-variations between observation points can be explained by the 
distance between observations (a spatial covariance function). Normally isotropy is 
assumed, i.e. the spatial covariance is independent of geographical direction.  
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1.2 Spatial interpolation of temperature 

The assumption of second order spatial stationarity for temperature is not possible to 
fulfil in Norway. Strong gradients and complex topography makes that rather 
impossible. Direct spatial interpolation of temperature is therefore not possible without 
converting the observed temperature fields closer to fulfilling the second order spatial 
stationary criteria (Tveito and Førland, 1999). The Norwegian Meteorological Institute 
has for more than a decade produced daily gridded temperature data based on a residual 
kriging approach according to Tveito et al. (2000). Residual kriging (often also called 
kriging with an external trend) consist of two components. 

X� =  XS+XD      (1) 
where XD is a deterministic term, often described as a large scale global trend. This 
describes the temperature dependence of elevation, distance to sea etc. Tveito et al. 
(2000) suggested to apply five independent parameters to describe the deterministic 
trend; local elevation, average elevation within a 20 km circle, lowest elevation within 
the same circle, longitude and latitude. These five parameters are used to establish a 
linear relationship giving a climatological first guess field. In Tveito et al. (2000) are 
monthly trend expressions developed. When the trend component is removed from the 
observed values the result is a residual field that are close to fulfil the second order 
spatial stationarity assumption. The detrended values are then interpolated applying a 
spatial interpolation method e.g. kriging, which then is the stochastic term Xs in 
equation 1. 

When the interpolated field is estimated the trend expression is added back. This can be 
expressed as: 

T� =  ∑ λin
i=1 Ti +  �α0 + ∑ αjm

j=1 xj�    (2) 

where the first term is the spatial interpolation. i denotes the n observations entering the 
spatial interpolation. λi are the interpolation weights for each station, Ti are the 
observed temperatures. The second term is the deterministic trend where α0 is a 
constant, αj regression coefficients and xj the external predictor parameters.  

In this analysis the residual kriging algorithm established by Tveito et al (2000), and 
applied to produce the SeNorge v1.1. gridded data set (Mohr, 2008), been applied to 
assess the differences applying homogenised versus non-homogenised input data.  

1.3 Spatial interpolation of precipitation 

Spatial interpolation of precipitation is even more challenging. Precipitation is non-
continuous in time and space, skewly distributed with an absolute lower boundary 
(zero). This means that the assumption of normality and spatial stationarity cannot be 
fulfilled, and that method relying on such assumption should not be applied. In 
hydrology the approach of using nearest (representative) neighbour been a widely 
applied concept. This geometrical method (Fig 1a) is in hydrology known as the 
Thiessen method (Thiessen, 1911), but are in other disciplines also known as the 
Voronoï-diagrams or Dirichlet diagram, a method that can be traced back to Descartes 
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in the mid-17th century. The precipitation gridding applied in this study is based on the 
same geometrical principle, the Delaunay triangulation. The triangulation connects 
points with a three –dimensional mosaic of triangles (fig 1b) where the slope describes 
the spatial gradient of precipitation. In the MET Norway triangulation algorithm for 
precipitation a relative elevation factor compensating for orographic effects is included. 
See Mohr (2008) for further details. 

 
Figure 1. a) Thiessen polygones b) Delaunay triangles 

 

  

b) a) 
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2 Homogenised data 

2.1 Homogenized temperature series 

In this analysis estimations based on homogenised and non-homogenised temperature 
observations are compared. During the recent years a number of tools for assessing 
homogeneity of climate times have been developed (Lundstad and Tveito, 2016), and 
applied to adjust for inhomogeneities. Andresen (2011) performed a homogenisation 
analysis for 225 monthly temperature series in Norway applying the SNHT method 
(Alexandersson, 1986) and in this investigation the results from that analysis is applied 
as input data. Figure 3 shows the location of the 225 series.  

 

In order to obtain daily homogenised 
data from the monthly homogenisation 
a linear interpolation of monthly 
adjustment factors into daily 
adjustments following the concept of 
Vincent (2002) has been applied. The 
linear interpolation was chosen even 
though the average daily adjustment 
factors are different from the monthly. 
The motivation for that is there is no 
scientific basis from the monthly 
analysis that the adjustments based on 
climatology should be more extreme 
than the monthly average when 
considering the entire temperature 
distribution. Figure 4 shows an example 
of the interpolation of daily adjustments 
factors for homogenisation at the series 
24890 Nesbyen in 1961. The 
observations in 1961 where taken at a 
different location in 1961 (station ID 
24860) than the current location 24890. 
Figure 5 shows the monthly coefficients 
for the entire length of the series. 

 

 
Figure 3: Location of the 225 climate series 
assessed by Andresen (2011). Open 
symbols indicate locations of stations that 
are merged with the candidate series. 



 

 

 
Figure 4: Daily adjustment factor at 24890 Nesbyen in 1961. The red dots indicate the monthly 
adjustments factors obtained by Andresen (2011). 

 
Figure 5: Monthly adjustment factors at the series 24890 Nesbyen 1897-2008. 
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2.2 Homogenized precipitation series. 

The homogenized precipitation series applied are results of a preliminary analysis of 
long Norwegian precipitation series. 204 monthly precipitations series covering Norway 
south of 65°N and the period 1896-2015 have been analysed. These 204 series are based 
on 343 original precipitation observation series. Figure 6 show the locations of these 
204 target series and if they are adjusted for inhomogeneities.  

The MASH algorithm (Szentimrey, 2008,2011) was applied for the homogenization. 
This is an automatic procedure able to analyse large datasets fairly effectively. The 
analysis was done for three subregions; Eastern Norway, Southern and Western 
Norway, North-western Norway and Trøndelag) before the results were merged. The 
analysis identified inhomogeneities in 52% of the series.  

The analysis was carried out on monthly, seasonal and annual basis. The adjustments 
have been inspected manually in order to remove single year inhomogeneities in the 
monthly series. This is an identified weakness of the MASH method, which seems to be 
very sensitive to single anomalies in the time series and often introduce short 
inhomogeneities with compensating adjustments in consecutive years. The results 
shows that the spatial distribution of homogenous and series adjusted for 
inhomogeneities are well blended.  

The further analysis demand daily adjustment factors. These are achieved by applying 
the Vincent approach in the same way as for temperature.  
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Figure 6: Location of the homogenized precipitation series. Blue markers indicate series without 
inhomogeneities, red markers indicate series adjusted for inhomogeneities. 
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3 The analysis 

The analysis is carried out applying the ”leave-one-out” cross-validation version of the 
gridding methods. This a function normally applied to compare observations and 
independently spatially interpolated values to assess uncertainties of gridded fields. The 
concept is to remove the observation to be interpolated, and then use all remaining 
observations as input to the point estimation. This is repeated iteratively until all 
locations are independently estimated.  

To assess the effect of homogenisation the cross-validation is done both for 
homogenised and raw (un-homogenised input). For the series where the homogenisation 
is due to relocations metadata describing locations and elevations will vary throughout 
the period. In order to assess that the analysis is carried out in two modes: 

1. Keeping the metadata for the homogenised series for both the homogenised and 
un-homogenised series for the entire series. This means that metadata remain 
unchanged. 

2. Apply metadata for the original series (observation sites) throughout the period 
for the un-homogenised series. This means varying metadata. 

The principle is illustrated in figure 7, showing the changes in station elevation for the 
study period 1961-2008. 

 
Figure 7: Metadata modes in the analysis. Mode 1 is represented by the black solid line, while 
the dashed red line illustrate mode 2. This example is from the 24890 Nesbyen. 
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4 Results 

4.1 Temperature analysis 

The analysis of temperature is carried out for the period 1961-2008, a period of 49 
years. The results are summarized by statistical measures such as absolute bias 
(prediction error) and root mean square error (RMSE). The statistics are mostly 
presented as graphics. 

Figure 8 and 9 presents an overall assessment of the effect applying the two modes of 
metadata for non-homogenized data for all the series. It shows the monthly spread of 
root mean square error, showing very small, almost negligible differences between the 
two setups.  

Locally are the effects more visible. Figure 10 shows the elevation of the observation 
sites merged into series 29720 Dagali, series where the elevations have changed 
considerably during the analysis period. Figure 11 shows that for this location and 
locally will the use of correct metadata provide more robust gridded estimates (the red 
boxes shows generally smaller error values than the black). 

The comparison of estimations applying non-homogenized and homogenized data 
respectively at all stations does not show significant differences.  

Figure 8: Box-whisker plots of monthly RMSE for non-homogenized input for all stations 1961-
2008. Black boxes refer to constant metadata, red boxes refers to time variant metadata. 
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Figure 9: Box-whisker plots of annual RMSE for non-homogenized input for all stations. Black 
boxes refer to constant metadata, red boxes refers to time variant metadata. 

 

 
Figure 10. Elevations at the locations used to establish the long term temperature series 29720 
Dagali. 
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Figure 11 Box-whisker plots of annual RMSE 1961-2008 at Dagali. Black boxes refer to 
constant metadata, red boxes refers to time variant metadata. 

 
 
Figure 12. : Box-whisker plots of annual RMSE for all stations. Black boxes refer to 
nonhomognized series, green boxes refers to homogenized series. 
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Figure 13: Box-whisker plots of annual RMSE for all stations. Red boxes refer to 
nonhomogenized series and time variant metadata, green boxes refers to homogenized series. 

 

Figure 14 shows the annual variations in absolute error at Dagali. It shows that the use 
of correct metadata for the input series gives more significant improvement of the 
estimates than applying homogenized input series. An examination of the distribution of 
station-wise RMSE of the three setups also confirm that applying correct metadata on 
raw series give slightly better gridded estimates than both homogenized and non-
homogenized merged series.  

Figure 15 shows the frequency distribution of station wise estimation scores for all 
series. It can be seen that there are very small differences between the biases. The 
approach giving slightly better estimates are by applying raw data with correct 
description of metadata. 
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Figure 14: Spread of annual absolute biases 1961-2008 at Dagali. Red boxes refers to time 
variant metadata and non-homogenized input data, Green boxes refer to homogenized input 
data. 

 
Figure 15: Distribution of station-wise RMSE’s of grid estimates. Black curve represents 
merged non-homogenized input data, green curve merged homogenized data. Both these have 
static metadata. The red curve represents non-homogenized series with time-variant metadata. 
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4.2 Precipitation  analysis 

The precipitation analysis covers the period 1961-2015, a period of 55 years. In total 
204 series are investigated. The number of analysed series varies though over the 
period. It is rather stable around 200 stations until the mid-1990’ies when the network 
begin to be reduced, with a rapid decrease after 2005. The maximum of 204 stations 
appear in the 70’ies and 80’ies, and the minimum of 156 long term series in 2015. 
Figure 16 shows the development of the network.  

To be able to interpret and understand the results and effects of applying homogenized 
input series it is important to understand the performance characteristics of the spatial 
interpolation method itself. 

For validation of precipitation the ability to estimate precipitation occurrence is 
essential. One commonly used score is the probability of detection, POD based on a 
contingency table: 

 Precipitation observed, no=0 Precipitation observed, yes=1 

Precipitation estimated, no=0 N(0,0) N(1,0) 

Precipitation estimated, yes=1 N(0,1) N(1,1) 

 

POD =  
N(1,1)

N(1,0) + N(1,1)
 

(3) 

This criterion explains how many precipitation events observed that actually was 
estimated. It thereby tells how good the interpolation model is to model precipitation 
occurrence. It is a binary based indicator, and does not consider the precipitation 
amounts. Figure 17 shows the annual POD-scores for the entire network. It shows that 
more than in average almost 95 % of the precipitation events is estimated. The annual 
variability is between 92 and 96.2. 

Another criterion is the chance to estimate precipitation that has not occurred. This is 
often expressed as the false alarm rate FAR:  

FAR =  
N(0,1)

N(0,1) + N(1,1)
 

(4) 

The annual variability of this score is shown in figure 18, showing that the FAR varies 
between 18.7 and 29.3, with an average of 22.4. 

Daily precipitation is highly variable, and this large variability we have chosen to 
primarily to present the results as statistics based annually aggregated values. Then the 
noisy character of daily values will be supressed and the systematic biases, if any, 
become clearer.  

However, in figure 19 all observed and estimated values are presented. If the plot is 
examined thoroughly pairs of back and red markers can be identified. These represent 
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non-homogenized and homogenized values respectively and the plot do not reveal any 
systematic improvement of the estimates, meaning that the red dots should be closer to 
the diagonal line representing the prefect estimate. In figure 19 constant metadata are 
applied. Figure 20 present the similar plot but applying correct time-variant metadata. 
There is not possible to find any systematic improvement of the homogenized data in 
this analysis either. 

 

 
Figure 16: Station coverage during the precipitation analysis period. 

 
Figure 17: Annual probability of detection of precipitation 
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Figure 18. Annual false alarm rate (FAR) of precipitation 

 
Figure 19: Scatterplot of observed and estimated precipitation when metadata are constant in 
time. Black markers represent non-homogenized values, red markers homogenized values.  
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Figure 20: Scatterplot of observed and estimated precipitation when metadata are varying in 
time. Black markers represent non-homogenized values, red markers homogenized values 

 
Figure 21: Annual mean sums of predicted precipitation for non-homogenized input data (black) 
and homogenized input data (red). Metadata are constant over time. 
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Figure 22: Annual ratio (obs/est) between observed and predicted precipitation. Black curve 
represent non-homogenized data, red curve homogenized data. Metadata are constant over time. 

 
Figure 23: Annual variability in the two ratios described in figure 22. 
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When metadata varying in time is applied the general statistics shows the same 
characteristics. There is no systematic improvement of the estimates of precipitation 
when the input data are homogenized compared with estimations using non-
homogenized data. Figure 24 shows the annual mean sums for all stations for the two 
input data series. There are only minor differences between them. Figure 25 shows the 
mean annual ratio between observed and estimated precipitation applying non-
homogenized and homogenized input respectively. There are no systematic differences 
between the two series. In figure 26 and 27 are the mean ratios in relation to daily 
precipitation intensity presented. Figure 26 shows the result of the analysis applying 
constant metadata. There are small differences. Figure 27 compare ratios based on 
correct time variant and constant metadata. Also here are the differences small, but 
slightly in favour of the homogenized input. 

 
Figure 24. Annual mean sums of predicted precipitation for non-homogenized input data (black) 
and homogenized input data (red). Metadata are varying over time. 
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Figure 25: Annual ratio (obs/est) between observed and predicted precipitation. Black curve 
non-homogenized data, red curve homogenized data. Metadata are varying over time. 

 
Figure 26: Distribution of ratio between observed and estimated precipitation applying constant 
metadata as function of precipitation intensity (mm/day). Black colour represent 
nonhomogenized data, red data homogenized data. 
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Figure 27: Distribution of ratio between observed and estimated precipitation as function of 
precipitation intensity (mm/day). Black colour represent non-homogenized data applying 
timevariant metadata, red data homogenized data applying time constant data. 
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5 Discussion and conclusions 

This report presents an analysis of the effect of applying homogenized compared to 
non-homogenized input data for spatial interpolation with daily resolution. The results, 
based on leave one out independent cross validation shows very small differences 
between the different input data. 

For temperature the best estimates are achieved when applying geographical metadata 
for the original non-homogenized observations. This indicates that the spatial 
interpolation algorithms in general better account for these characteristics than the 
homogenization procedures. Spatial interpolation algorithms are developed to describe 
local and regional spatial variations in temperature, while homogenization procedures 
are meant to better explain long-term variations. 

For precipitation the differences for the input series also are small. The noise in the 
daily input series and the general uncertainty of the interpolation estimates are much 
larger than most homogeneity adjustments. On an annual scale they are about at the 
same order. Applying homogenized input for gridding does not generally improve the 
precision of the estimates. 

Changes in the station network have locally a greater impact on gridding estimates than 
the homogeneity of the input series (Tveito, unpublished research), especially when the 
interpolation method include predictors representing local effects such as elevation. The 
effect of changes in the station network should be investigated further.  

The homogenised data applied in this study are based on a homogenization of monthly 
temperature (Andresen, 2011) and precipitation series. The daily adjustments are 
linearly interpolated from monthly adjustment factors according to the principle 
presented by Vincent (2002). As described by Lundstad and Tveito (2016) are daily 
values related to the actual weather situation, and not to the climatology. The daily 
adjustment factors interpolated from monthly factors might therefore not be 
representative for all situations, and hence “weaker” when applied for spatial 
interpolation. Daily adjustment factors based on adjusting the temperature and 
precipitation distribution function should therefore be tested. So far only five 
Norwegian daily temperature series (Lundstad and Tveito, 2016) and five precipitation 
series (Lundstad, 2016) are homogenized according to this principle. It should be a goal 
to widen that analysis for all possible long daily temperature precipitation series. 
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