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1 Introduction

This report describes the combination of radar-derived precipitation estimates and rain-

gauge measurements, which is an activity included in the framework of MET-NVE com-

mon research activities for 2016 aimed at further promoting the use of radar-derived

precipitation estimates in the NVE operational daily routine, not only in tasks where a

qualitative information is needed (such as the monitoring of an ongoing extreme precip-

itation event) but also as a quantitative information to be used in snow- and hydrological

modeling. The precipitation field estimates derived from the network of weather radars

managed by MET do provide valuable information for the forecasting of floods, land-

slides and avalanches at NVE. The challenge is to achieve a realistic description for the

uncertainties of radar-derived precipitation fields allowing for the correction of systematic

errors and the combination of radar-derived estimates with other sources of information.

The radar data used is the hourly precipitation estimate obtained from the composite

of Norwegian weather radars. The in-situ observations used are stored in the Climate

Database at the Norwegian Meteorological Institute. Because of the dense network of

daily precipitation gauge available compared to the less dense -but quickly growing- net-

work of hourly gauge, our choice is to disaggregate the daily measurements to hourly

time steps so we can benefit from the best possible in-situ data coverage over the spa-

tial domain. An important point of this work is the development of automatic data quality

control routines to identify observations affected by gross measurement errors before they

enter the spatial interpolation procedure.

An Optimal Interpolation (OI: Gandin and Hardin, 1965) method is used for the com-

bination of radar-derived estimates and raingauge measurements. The OI implementation

presented in this report is similar to Soci et al. (2016); Mahfouf et al. (2007). The com-

bined analysis fields constitute the first experimental release of the Norwegian Climate

Gridded dataset (KliNoGrid) RR1-Rad and RR-Rad products: an observation-based high

resolution dataset of hourly (RR1) and daily (RR) precipitation for the Norwegian main-

land covering the recent past. Currently, the time interval spanned ranges from July 2014

to February 2016.

In detail:

• Precipitation day/hour. An observation is considered to measure precipitation if its

value is greater than 0.1mm both for hourly and daily precipitation.
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• The three dimensional spatial coordinates associated with a generic point in the

space r are specified as triplets (x,y,z).

• the parameter rad.c(r) named radar attenuation coefficient at point r has been in-

troduced to take into account the effect on uneven radar data coverage over the

Norwegian mainland on the spatial interpolation. To have an idea of rad.c(r), see

Figs. 1 and 2. Given the radar-derived accumulated precipitation over a long time

period (in some cases we used 3 months, while in other 1 year has been used), we

will indicate as xRRlt−Rad the field over our grid points and as xRRlt−Rad (r) the pre-

cipitation at point r as extracted from xRRlt−Rad (nearest neighbor). The first step

to obtain rad.c(r) is to smooth xRRlt−Rad (we used raster library in R software: we

calculate focal -moving window- values for the neighborhood of focal cells using

a 5x5 matrix of weights all set to the value of 1); then rad.c(r) is set as a number

between 0 and 1, which represents the largest xRRlt−Rad quantiles not greater than

xRRlt−Rad (r).

• Observations

– yo, column vector of dimension M (i.e. M-vector): observed daily precipita-

tion (i.e. from 06 UTC of yesterday to 06 UTC of today):

– t = 1, . . .24 and it is assumed that these are the 24 hours constituting the 24-

hour interval spanned by yo.

– ỹo (t) , M̃ (t)-vector: hourly precipitation actually observed for hour t.

– yo (t) , M (t)-vector: best estimate of the hourly precipitation observed for

hour t. It is the union of ỹo (t) and the disaggregation of yo over hourly time

steps.

– In our case, M (t)≥M > M̃ (t)

• Background

– xb (t), I-vector: radar-derived hourly precipitation at grid points.

– yb (t), M (t)-vector: radar-derived hourly precipitation at station locations.

The radar product is estimating hourly precipitation at grid points so we need

to apply a function to transform estimates at grid points in estimates at sta-

tion locations, such a function is called observation operator. In our case, the
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observation operator is the nearest neighbor interpolation routine, which in

linear algebra can be specified as a matrix H:

yb (t) = Hxb (t)

where H is equal to zero almost everywhere except for one single element for

each line, which is set to 1 and it selects the grid point closer to the correspon-

dent location of interest.

2 KliNoGrid RR1-Rad andRR-Rad pseudocode

The pseudocode describing the spatial interpolation process is:

1. read: configuration file, grid specification, digital elevation model, grid mask (grid

definition, see Appendix A )

2. read long-term radar-derived accumulated precipitation field (i.e. background field)

and transform it to the radar attenuation coefficient field (see the Introduction and

Figs. 1-2)

3. read daily and hourly observed values from the MET Norway’s Climate Database

4. read hourly radar-derived precipitation fields (see Sec. 3)

5. observation operator is applied to obtain both the hourly radar-derived precipitation

values and the radar attenuation coefficient values at the output locations (see the

Introduction and Sec. 4)

6. automatic data quality control, plausibility tests (see Sec. 5.1)

7. automatic data quality control, compare observations with background (see Sec. 5.2)

8. simultaneous application of Spatial Consistency Test (SCT) and disaggregation of

daily to hourly precipitation (see Appendix B)

9. Optimal Interpolation (OI) of hourly precipitation RR1-Rad (see Sec. 4 and Figs. 3,4,5)

10. OI of daily precipitation RR-Rad (see Sec. 4 and Figs. 6,7,8)

11. write output:
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(a) analysis, background and Integral Data Influence (IDI) on a regular grid;

(b) analysis, leave-one-out cross-validated analysis, background and Integral Data

Influence (IDI) at selected locations.

3 Radar-derived precipitation fields

In this work, the source of our information for radar data is the composite of the Nor-

wegian weather radars managed and post-processed by MET. The composite of radar

reflectivity fields is available at a sampling rate of 7.5 minutes, which means that each

hourly accumulated precipitation field is obtained by using 8 of these composite fields.

The transformation from reflectivity to rainfall rate is based on the classic Marshall and

Palmer (1948) relation, which is:

Z = 200R1.6 (1)

where Z (mm6 m−3) is the reflectivity factor and R (mmh−1) is the rainfall rate (American

Meteorological Society, 2016). The hourly accumulated precipitation field is then com-

puted from the 8 corresponding 7.5 minutes rainfall rate fields by assuming a constant

rain-rate in between two radar measurements.

4 Optimal Interpolation

For hourly precipitation, it is assumed that both the observations and the background field

are estimates of an unknown truth, which is denoted by the superscript t. The truth either

at grid points or station locations is obtained from the true hourly precipitation continuous

field as describe in Daley (1991), for example. We assume an additive error model:

yo (t) = Hxt (t)+ ε
o (t) (2)

xb (t) = xt (t)+η
b (t) (3)

where: H is the linear observation operator, which in our case is a matrix of dimen-

sions M (t) x I (see the Introduction); εo (t) is the observation error, M (t)-vector; ηb (t) is

the background error at the grid points, I-vector. The errors are assumed to be Gaussian,

with mean value equal to zero everywhere, moreover observation and background errors

are assumed to be independent, then:
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ε
o (t) ∼ N (0,R) (4)

η
b (t) ∼ N (0,B) (5)〈

ε
o (t)η

b (t)
〉

= 0 (6)

where R (M (t) x M (t) matrix) and B (I x I matrix) are the observation and back-

ground, respectively, error covariance matrices. Please note that since we’re using hourly

observation obtained through temporal disaggregation of daily observations (a process

involving the use of radar data, see Sec B), then Eq. (6) should be regarded as an approx-

imation.

Given our assumption, the best linear unbiased estimate of the truth xt (t) on the grid

is the analysis xa (t) (Daley (1991); Jazwinski (2007); Gandin and Hardin (1965)):

xa (t) = xb (t)+K
[
yo (t)−Hxb (t)

]
(7)

where the Kalman gain matrix is:

K = BHT (HBHT +R
)−1

(8)

See Figs. 3 and 4 for an example of analysis and background fields.

Analogously, the best linear unbiased estimate of the truth Hxt (t) at the station loca-

tions (or at any selected number of points on the domain) is the analysis ya (t):

ya (t) = Hxb (t)+W
[
yo (t)−Hxb (t)

]
(9)

where:

W = HBHT (HBHT +R
)−1

(10)

For the daily precipitation, we proceed as for the hourly precipitation except that the

background field is set to:

xb =
24

∑
t=1

xa (t) (11)

Then the analyses can be written as:
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xa = xb +K
[
yo−Hxb

]
(12)

ya = Hxb +W
[
yo−Hxb

]
(13)

See Figs. 6 and 7 for an example of analysis and background fields.

We need to specify the error covariance matrices. For the hourly precipitation, we

assume:

R ≡ σ
2
oh (t)I (14)

B ≡ σ
2
bh (t) B̃ (15)

B̃i j =

[
1+

∆distH
(
ri,r j

)
DH

]
· exp

[
−

∆distH
(
ri,r j

)
DH

]
·
{

1−
[
∆rad.c

(
ri,r j

)]2}(16)

ε
2 ≡

σ2
oh (t)

σ2
bh (t)

= 0.1 (17)

where: ∆distH
(
ri,r j

)
indicates the horizontal distance between the i-th and j-th points;

∆rad.c
(
ri,r j

)
indicates the radar attenuation coefficient difference between the i-th and

j-th points. When setting the spatial correlation function based on distance only (within

the same radar attenuation class), it is implicitly assumed that far from any radar location

the background field is equal to zero and the station network is dense enough to yield

useful information for hydrological application. It’s worth remarking that the combined

field of precipitation is not a simple product to handle by the final user because it includes

different spatial scales for different domain areas.

Analogously, for the daily precipitation, we assume:

R ≡ σ
2
odI

B ≡ σ
2
bdB̃

ε
2 ≡

σ2
od

σ2
bd

= 0.1

In practice, we’re using the same station distribution and error covariance matrices for

daily and hourly precipitation. We use the same value for the decorrelation distance DH

both for daily and hourly OI, which is set to 20Km. However, it’s important to remark that

the error covariance matrices differ in the specification of the error variances, nevertheless

9



their ratio ε2 is set in both cases to 0.1 (i.e. we trust far more the observations than the

background).

Given our assumption on the covariance matrices, Eqs. (8) and (10) can be rewritten

as (Uboldi et al. (2008)):

K = B̃HT
(

HB̃HT + ε
2I
)−1

(18)

W = HB̃HT
(

HB̃HT + ε
2I
)−1

(19)

As a result, the gain matrices depends only on our choices for DH and ε2.

Consider the m-th observation (it doesn’t matter here if hourly or daily), the correspon-

dent leave-one-out Cross-Validated (CV) analysis y̌a
m is defined as the analysis estimate

obtained for the m-th observation by using all observations except the m-th observation

itself. The CV analysis vector y̌a is the M-vector having the CV analysis as components.

Given a subset of N data to evaluate, the CV-score is defined as the root mean squared

difference:

CVscore =

√
1
N

N

∑
m=1

(y̌a
m− yo

m)
2 (20)

The CV score represents an estimate of the analysis error based on the idea that each

observation is used as an independent verification of the analysis field. The estimate is

conservative because of the implicit degradation of the local resolution of the observa-

tional network. The CV analysis is also useful for quality control tests on the observa-

tions.

The Integral Data Influence (IDI) of all the observations on the analysis at the m-th

observation location is introduced as:

yIDI
m =

M

∑
k=1

∂ya
m

∂yo
k
=

M

∑
k=1

Wmk (21)

The IDI vector yIDI is the M-vector having yIDI
m ,m = 1, . . . ,M as components.

Similarly, xIDI is the I-vector having xIDI
i , i = 1, . . . , I as components, where the IDI

of all the observations on the analysis at the i-th grid point is:

xIDI
i =

M

∑
k=1

∂xa
i

∂yo
k
=

M

∑
k=1

Kik (22)
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From a practical point of view, the IDI field could be conveniently seen as the analysis

field obtained when all observed values are set to 1 and all background values are set to

0. See Figs. 5 and 8 for examples.

The fusion of leave-one-out cross-validation and IDI concepts yields to the introduc-

tion of y̌IDI
m , which is the the Cross-Validated IDI (CV-IDI) of all the observations except

the m-th on the analysis at the m-th observation location:

y̌IDI
m =

M

∑
k=1

∂ y̌a
m

∂yo
k
= 1+

1
1−Wmm

(
yIDI

m −1
)

(23)

The CV-IDI vector y̌IDI is the M-vector having y̌IDI
m as components.

As a remark, the vectors yIDI, y̌IDI and xIDI are independent of the actual observed

values and they depend only on the station distribution, given the matrix elements.

5 Automatic Data Quality Control routines

We are using only daily and hourly observations flagged in the KDVH as:

• 0: Original value is checked and found OK. User value: OK

• 1: Value is controlled and corrected, or value is missing and interpolated. User

value: OK

• 2: Original value is not checked. User value: LU (slightly suspect)

Beside, as a further quality control condition we use only observations that are not black-

listed by the seNorge ver 2.0 automatic data quality control routines.

All the observations flagged as suspect by the following tests are not used in the OI.

The information is part of the program output for the users.

5.1 plausibility tests

For daily observations:

• a range test is performed with lower and upper thresholds set to 0mm ·h−1 and

500mm ·h−1, respectively.

For hourly observations:
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• a range test is performed with lower and upper thresholds set to 0mm ·h−1 and

200mm ·h−1, respectively.

• time consistency test. The total time series of 24 observations referring to a single

precipitation day is flagged as suspect if:

– the percentage of missing observations is greater than 90%

– there are more than 22 hours recording precipitation

5.2 Compare observations with the background (i.e. radar-derived data)

An hourly observation is flagged as suspect if:

• the observation doesn’t measure precipitation and the background estimates precip-

itation

• the observation measure precipitation and the background doesn’t estimates pre-

cipitation and the observation is located in a position r where we assume the radar

coverage is good enough (i.e. rad.c(r)> 0.8)

For the case of daily observations, we apply exactly the same rules and the background

values are extracted from the field of ∑
24
t=1 Hxb (t).

5.3 Spatial Consistency Test based on OI

The SCT applied here is described in Lussana et al. (2010) and in Appendix C. Our

particular application is detailed in Appendix B.

As stated in Sec. 4, the specification of the error covariance matrices differ between

daily and hourly OI because of the different error variances. As a consequence, we should

use different thresholds for the hourly and daily SCT, which are denoted as T h and T d in

Appendix B.

At this point of our work, we’re still using the same value for both daily and hourly

observations but we plan to investigate more this issue and to set different threshold val-

ues.

The current setup is:

T h
i ≡ T d

i =

20mm2 ·h−2 ,yo
i < 10mm ·h−1

yo
i ,yo

i > 10mm ·h−1
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6 Evaluation

The evaluation presented here is based on the separation of predictions (i.e. analysis, cv-

analysis or background) and observations in “yes, an event will happen” or “no, the event

will not happen” (dichotomous prediction). A threshold is specified to separate “yes”

and “no”. The verification is based on categorical statistics computed from elements in

contingency tables.

We focus on the following scores (see WWRP/WGNE Joint Working Group on Fore-

cast Verification Research http://www.cawcr.gov.au/projects/verification, which is reported

in Appendix D) : Probability of detection (POD); False alarm ratio (FAR); Bias score

(BIAS) and Equitable threat score (ETS).

The verification scores are shown in: Figs. 9-12 for the whole period; Figs. 10-13 for

the summer (JJA, June-July August 2015); Figs. 11-14 for the winter (DJF, December

2015-January 2016-February 2016). The dataset used for verification includes all the data

available over the spatial domain. The “yes”/”no” separation threshold is indicated on the

x-axis. The red curves (CV-Ya) refer to the verification of the leave-one-out cross vali-

dated analysis values y̌a against the observations yo and it is representative of the analysis

performance at grid points. The brown curves (Ya) refer to the verification of the analysis

values ya against the observations yo and it is representative of the analysis performance

at station locations (i.e. due to the observation representativity error, for example). The

yellow curves (Yb) refer to the verification of the background values yb against the ob-

servations yo and it is representative of the background performances at station locations.

It’s worth remarking that intense precipitation is a very rare event compared to the most

common case of light precipitation, for this reason some of the Figures show noisy results

for intense precipitation because of the very few events considered.

RR1-Rad In general, there is a clear evidence of the added value of the combined product

compared to the raw radar-derived one: the red and brown curves always shows

better results than the yellow one. The performances at station locations (Ya) and at

grid points (CV-Ya) are not too different, which might indicate reasonable choices

for the OI parameters. In the ETS scores RR1-Rad outperforms the background: the

quality of the performance decreases rather sharply with the increase in the precip-

itation intensity, nevertheless the RR1-Rad performances decreases slowly than the

background thus indicating the benefit of using in-situ observations. In the summer
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season we get better scores than in winter and the difference is particularly signifi-

cant for the background. In the case of light precipitation (less than 1mm ·h−1), the

BIAS is close to 1 indicating that the frequency of “yes” events is better predicted

than by using radar-derived data only and the POD value around 0.8 together with

FAR of 0.2 indicates skill of RR1-Rad in distinguishing between precipitation/no-

precipitation events. In the case of intense precipitation (greater than 10mm ·h−1)

the BIAS is between 0.2 and 0.4, which means that the predicted frequency of

“yes” events is far less than the observed one. This result, which is also valid for

the analysis, indicates that we need to reduce the uncertainty of the representativity

error component (which is part of the observation error) in our OI scheme: that’s

probably due to the fact that our assumptions in OI, such as both observation and

background are unbiased estimates for the truth, are not valid for intense precipi-

tation. On the other hand, we should investigate more in detail the procedure used

for the temporal disaggregation of daily to hourly precipitation, which may intro-

duce significant uncertainty especially for intense precipitation. As a last remark,

it’s quite interesting the increase in FAR in winter, which is not occurring during

summer.

RR-Rad for daily precipitation the evaluation shows much better results than for the hourly

case. There are many reason for that: we should expect a larger spatial coherence

for the RR1-Rad field than for RR1-Rad, furthermore the station network for daily

precipitation is denser and we don’t have to take into account the effect of the dis-

aggregation procedure. It’s useful to remark that for RR-Rad the background (Yb)

we’re considering in Figs. 12, 13 and 14 it’s not a raw radar-derived product but it’s

the sum of the 24 RR1-Rad fields (see Eq.(11)), while the analysis (Ya) refers to the

subsequent OI of Eqs. (12) and (13). It looks like the analysis is obviously improv-

ing the performances at station locations but for grid points (CV-Ya) is not really

capable of adding value to the background (i.e. the CV-analysis curves present

worse results compared to the background curves), as a consequence for grid points

may be better to use the sum of RR1-Rad as daily analysis value. This result might

indicate that we should use a different formulation for the error covariance matrices

in the RR-Rad OI than the one presented in Eq (16), perhaps without including the

radar attenuation coefficient, which is yet considered for RR1-Rad production. The

RR-Rad performances are still dependent on precipitation intensity, nonetheless the
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ETS shows a reasonable skill also for intense precipitation. It seems that the perfor-

mances in summer and winter are not significantly different, perhaps the RR-Rad

products show better performances in winter but that’s not really clear.

7 Conclusions

In the process of establishing an high-resolution climate gridded dataset for hourly and

daily precipitation on the Norwegian mainland (KliNoGrid: RR1-Rad and RR-Rad prod-

ucts), the first experiments on the combination of radar-derived fields and in-situ observa-

tions are described in this report.

The daily observed precipitation, which is measured by a dense network of stations,

is disaggregated to hourly precipitation in a way that is consistent with the subsequent

spatial interpolation of hourly values, as a consequence the in-situ observation network

used to correct the radar background is denser than the one we would have by considering

hourly measurements only.

The spatial interpolation method implemented is based on Optimal Interpolation (OI).

For locations which are far from any radar installation, the predictions are equivalent to

an OI based on raingauge observations only. The evaluation presented shows the benefit

of the combined products compared to the raw radar-derived product. The OI scheme

described here should be regarded as proof of concept and the presented results show that

the OI has practical potential. In addition, efforts have been devoted to the development of

an automatic quality control procedure, which must be further developed and thoroughly

tested in the near future.

The OI scheme itself may be improved: we may considered to include a transfor-

mation of the precipitation values before they enter the OI (in order to better fulfill the

requirement of Gaussian errors); the evaluation shows the worst performances for intense

hourly precipitation, which might be improved through the use of a better radar back-

ground (soon available) or with more realistic OI assumptions on the radar error.
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8 Figures
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Figure 1: 1-year (from July 2014 to August 2015) accumulated precipitation field ob-

tained from hourly radar-derived fields.
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Figure 2: radar attenuation coefficient field obtained from the accumulated precipitation

field shown in Fig. (1). The coefficients are presented here as “classes” (the coefficient is

equal to the class divided by 10).
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Figure 3: RR1-Rad analysis, 2015.06.01 05:00 UTC.
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Figure 4: RR1-Rad background (i.e. radar-derived precipitation estimate), 2015.06.01

05:00 UTC.
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Figure 5: RR1-Rad Integral Data Influence, 2015.06.01 05:00 UTC.
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Figure 6: RR-Rad analysis, 2015.06.01
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Figure 7: RR-Rad background, 2015.06.01.
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Figure 8: RR-Rad Integral Data Influence, 2015.06.01.
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Figure 9: RR1-Rad. dataset: from 2014.07.01 to 2016.03.01. Categorical statistics com-

puted from the contingency table: BIAS (top-left); POD (top-right); FAR (bottom-left);

ETS (bottom-right).
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Figure 10: RR1-Rad. JJA dataset: from 2015.06.01 to 2015.09.01. Categorical statistics

computed from the contingency table: BIAS (top-left); POD (top-right); FAR (bottom-

left); ETS (bottom-right).
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Figure 11: RR1-Rad. DJF dataset: from 2015.12.01 to 2016.03.01. Categorical statistics

computed from the contingency table: BIAS (top-left); POD (top-right); FAR (bottom-

left); ETS (bottom-right).
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Figure 12: RR-Rad. dataset: from 2014.07.01 to 2016.03.01. Categorical statistics com-

puted from the contingency table: BIAS (top-left); POD (top-right); FAR (bottom-left);

ETS (bottom-right).
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Figure 13: RR-Rad. JJA dataset: from 2015.06.01 to 2015.09.01. Categorical statistics

computed from the contingency table: BIAS (top-left); POD (top-right); FAR (bottom-

left); ETS (bottom-right).
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Figure 14: RR-Rad. DJF dataset: from 2015.12.01 to 2016.03.01. Categorical statistics

computed from the contingency table: BIAS (top-left); POD (top-right); FAR (bottom-

left); ETS (bottom-right).
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Appendix

A Output grid specifications

• Coordinate Reference system. proj4 string="+proj=utm +zone=33 +datum=WGS84

+units=m +no_defs +ellps=WGS84 +towgs84=0,0,0"

• dimensions (number of grid points): easting = 1195 ; northing = 1550 ;

• grid spacing: easting = 1000 meter ; northing = 1000 meter.

B Spatial Consistency Test (SCT) and disaggregation

of daily to hourly precipitation
This Section describes the simultaneous application of SCT and disaggregation of daily

to hourly precipitation. The notation acircb denotes the component-wise multiplications

between two vectors

• loop1.

– temporal disaggregation of daily precipitation to hourly precipitation (see Sec. B.1)

– loop2. For every timestep t = 1, . . . ,24

∗ loop3.

· ya (t) = yb (t)+W
[
yo (t)−yb (t)

]
· if max{[yo (t)−ya (t)]◦ [yo (t)− y̌a (t)]}> Th then

1. identify the i-th observation such that [yo
i (t)− ya

i (t)] [y
o
i (t)− y̌a

i (t)] =

max{[yo (t)−ya (t)]◦ [yo (t)− y̌a (t)]}

2. flag yo
i (t) as a suspect observation

3. if yo
i (t) is obtained by temporal disaggregation of a daily observa-

tion, then flag as suspect yo
i and all the derived hourly observations

yo
i (t) , t = 1, . . .24

4. restart loop 1

· else: no more suspect observations to flag, exit loop3.

31



∗ end loop3.

– end loop2.

– ySCTb = ∑
24
t=1 ya (t)

– ySCTa = ySCTb +W
[
yo−ySCTb]

– if max
{[

yo−ySCTa]◦ [yo− y̌SCTa]}> Td then

∗ identify the j-th observation such that
[
yo

j − ySCTa
j

][
yo

j − y̌SCTa
j

]
= max

{[
yo−ySCTa]◦ [yo− y̌SCTa]}

∗ flag as suspect yo
j and the associated hourly observations yo

j (t) , t = 1, . . .24

, if any.

– else: no more suspect observations to flag, exit loop1.

• end loop1.

B.1 temporal disaggregation of daily precipitation to hourly precipitation

Note: W′ is defined as W in Eq. (19) except that here we set DH = 50Km.

• loop. For every timestep t = 1, . . . ,24

– ỹa (t) = yb (t)+mathb fW ′
[
ỹo (t)−yb (t)

]
.

– if
(
ỹa (t)< yb (t)

)
then ỹa (t) = yb (t)

– if (ỹa (t)< 0) then ỹa (t) = 0

• end loop.

• loop over the daily observations to be disaggregated m = 1, . . . ,M

– if for some reason ỹa
m (t) is not defined for one or more t, then set the location

as not available for spatial interpolation

– ỹa
m = ∑

24
t=1 ỹa

m (t)

– in case ỹa
m does measure precipitation and:

∗ yo
m does measure precipitation, then cm (t) = ỹa

m (t)/ỹa
m , t = 1, . . . ,24

∗ yo
m does not measure precipitation, then cm (t) = 0 ,∀t

– in case ỹa
m does not measure precipitation and:

∗ yo
m does measure precipitation, then cm (t) = 1/24 ,∀t

32



∗ yo
m does not measure precipitation, then cm (t) = 0 ,∀t

• end loop.

• Finally, the disaggregated observations are obtained by using the coefficients:

yo (t) = c(t)◦ ỹo (t)

C SCT formulation for one single observation

This Section is mostly based on Lorenc (1984) and Lorenc and Hammon (1988). As in

the previous Sections, SCT stands for Spatial Consistency Test. The object is to check for

the presence of gross measurement errors in our observations.

Consider an observation and a prior estimate of the unknown true value (i.e. back-

ground) at one fixed location in space, we define the events:

T = (true value is between t and t +dt)

O = (observed value is between o and o+do)

B = (background value is between b and b+db)

G = (observation is affected by gross error)

Notation: discrete events are indicated as capital letters; their probabilities are denoted

by P(. . .); P(X |Y ) is the a posteriori probability of X , given that Y has occurred; the

continuous variables are in small letters; prior knowledge of b is implicit in all of our

probabilities; PDF stands for probability density function. The SCT we are describing is

based on the following approximation:

P(G|O)>
1
2
⇒ P(G|O) = 1 (24)

P(G|O)≤ 1
2
⇒ P(G|O) = 0

If given the observed value o (and first guess value b) we have a probability of gross

measurements error greater than 1
2 , then we assume that the observation is affected by

gross measurement error. As a consequence, the observation should be flagged as suspect

observation and not used in the interpolation procedure.
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To implement the test of Eq. (24), P(G|O) must be specified.

By using the Bayes’ theorem we can write:

P(G|O) = P(O|G)
P(G)

P(O)
(25)

If a gross measurements error is actually present, the corresponding observed value

is not informative of the true state of the atmosphere. In other words, a uniform PDF is

assumed for the P(O|G) term of Eq. (25):

P(O|G) = k do (26)

where k is a normalization constant related to the range (width 1/k) of plausible val-

ues, such that
∫+∞

−∞
k do = 1.

The term P(G) in Eq. (25) represents the a-priori probability of having a gross mea-

surements error and it may be regarded as a property of the measurements network. In

general, P(G) can be estimated by using the history of the measurements network.

The last term we have to specify in Eq. (25) is P(O), which we define taking into

account the possibility of having a gross measurement error:

P(O) = P(O|G) P(G)+P(O|G) P(G) (27)

If the observation is not affected by gross error, we assume a Gaussian PDF for the

observation error N(x,σ2):

P(O|G) = N(o− t,σ2
o )do

As a consequence:

P(O) =
[
kP(G)+N(o− t,σ2

o )P(G)
]

do (28)

By substituting Eqs. (26)-(28) in Eq. (25) and by assuming know the reliability P(G),

the test condition of Eq. (24) can be written as:

(o−b)2 > T 2(σ2
o +σ

2
b ) (29)
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with:

T 2 = 2ln
P(G)

P(G)
− ln

{
(σ2

o +σ
2
b )k

2}− ln(2π)

According to Lorenc (1986): ”we have thus derived an expression for the checking tol-

erance which is an empirically tuned parameter in many existing quality control scheme.”

Proof: By Substituting Eqs. (26)-(28) in Eq. (25) we obtain:

P(G|O) =
kP(G)

kP(G)+N(o−b,σ2
o +σ2

b )P(G)

Then we can rewrite inequality P(G|O)> 1
2 as:

kP(G)

kP(G)+N(o−b,σ2
o +σ2

b )P(G)
>

1
2

1

1+N(o−b,σ2
o +σ2

b )
P(G)
kP(G)

>
1
2

1+N(o−b,σ2
o +σ

2
b )

P(G)

kP(G)
< 2

1√
2π
(
σ2

o +σ2
b

)e
− 1

2

[
(o−b)2

σ2
o+σ2

b

]
P(G)

P(G)
< k

(o−b)2

σ2
o +σ2

b
> 2ln

[
P(G)

P(G)

]
−2ln(k)− ln(2π)− ln(σ2

o +σ
2
b )

End Proof.

Note1 If the occurrence of gross errors is allowed as a possibility and explicitly treated

in the theory, then the analysis PDF becomes distinctly bimodal. In contrast, in the stan-

dard OI the analysis PDF is always Gaussian (see Figs.(15) and (16)). Since operationally

we need a single best analysis, then we have the problem of picking the best value: the

local mode nearest the mean is the best.

When observation and background are close to each other, the best analysis is close to

the observation. If the difference between observation and background is gradually

increasing, we reach a point where the best analysis lies close to the background. The

turning point is P(G|O) = 1/2.
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Figure 15: probability density functions for background, observation and analysis in 4

idealized cases. Gaussian PDF are assumed for error distributions with [σ2
o = 0.1; σ2

b = 1]

(taken from ?).
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Figure 16: probability density functions for background, observation and analysis in 4

idealized cases. The error distributions are Gaussian but we introduce the possibility of

gross errors in the observation as in Eq. (27) [σ2
o = 0.1; σ2

b = 1; k = 0.017; P(G) = 0.06]

(taken from Lorenc and Hammon (1988)).
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Note2 In the case of more than one observation, we deal with similar equations but we

need to use P(Gi|O1∩O2∩ . . .∩ON) instead of P(O|G) and the final test formulation is

described in Lussana et al. (2010).

D Verification scores

for reader’s convenience we report the score definitions taken from WWRP/WGNE Joint

Working Group on Forecast Verification Research http://www.cawcr.gov.au/projects/verification

in Appendix

• Probability of detection (POD) or hit rate

– Answers the question: What fraction of the observed "yes" events were cor-

rectly forecast?

– Range: 0 to 1. Perfect score: 1.

– Characteristics: Sensitive to hits, but ignores false alarms. Very sensitive to

the climatological frequency of the event. Good for rare events. Can be ar-

tificially improved by issuing more "yes" forecasts to increase the number of

hits. Should be used in conjunction with the false alarm ratio.

• False alarm ratio (FAR)

– Answers the question: What fraction of the predicted "yes" events actually did

not occur (i.e., were false alarms)?

– Range: 0 to 1. Perfect score: 0.

– Characteristics: Sensitive to false alarms, but ignores misses. Very sensitive

to the climatological frequency of the event. Should be used in conjunction

with the probability of detection.

• bias score (BIAS):

– Answers the question: How did the forecast frequency of "yes" events com-

pare to the observed frequency of "yes" events?

– Range: 0 to ∞. Perfect score: 1.
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– Characteristics: Measures the ratio of the frequency of forecast events to the

frequency of observed events. Indicates whether the forecast system has a ten-

dency to underforecast (BIAS<1) or overforecast (BIAS>1) events. Does not

measure how well the forecast corresponds to the observations, only measures

relative frequencies.

• Equitable threat score (ETS)

– Answers the question: How well did the forecast "yes" events correspond to

the observed "yes" events (accounting for hits due to chance)?

– Range: -1/3 to 1, 0 indicates no skill. Perfect score: 1.

– Characteristics: Measures the fraction of observed and/or forecast events that

were correctly predicted, adjusted for hits associated with random chance (for

example, it is easier to correctly forecast rain occurrence in a wet climate than

in a dry climate). The ETS is often used in the verification of rainfall in NWP

models because its "equitability" allows scores to be compared more fairly

across different regimes. Sensitive to hits. Because it penalises both misses

and false alarms in the same way, it does not distinguish the source of forecast

error.
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