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Abstract

Ensembles of wave forecasts are often biased and underdispersive when validated

against site measurements. The main objective of this work is to develop a statistical

method for calibration of ensemble forecasts in order to provide reliable input to sim-

ulation tools for marine operations. As ensemble statistics indicate that the shape

of the forecast distribution should vary considerably in time and with the weather

situation the use of the flexible four-parameter Box-Cox t-distribution (BCT) is pro-

posed. The BCT regression method is applied to data at the FINO3 platform and

compared to both the raw ensemble forecasts and a simple quantile mapping tech-

nique applied to each ensemble member. In terms of general validation scores for

probabilistic forecasts the BCT method gave reliable forecasts that are up to 40%

better (CRPS) than the raw ensemble for significant wave height and up to 60%

better for wave period. The improvement due to the calibrated ensemble data set

is illustrated by comparing forecasted weather windows over the test period from

the deterministic dataset using α-factor, in the raw ensemble and in the calibrated

ensemble.
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Abstract

Ensembles of wave forecasts are often biased and underdispersive when validated against

site measurements. The main objective of this work is to develop a statistical method for

calibration of ensemble forecasts in order to provide reliable input to simulation tools for

marine operations. As ensemble statistics indicate that the shape of the forecast distribu-

tion should vary considerably in time and with the weather situation the use of the flexible

four-parameter Box-Cox t-distribution (BCT) is proposed. The BCT regression method

is applied to data at the FINO3 platform and compared to both the raw ensemble forecasts

and a simple quantile mapping technique applied to each ensemble member. In terms of

general validation scores for probabilistic forecasts the BCT method gave reliable fore-

casts that are up to 40% better (CRPS) than the raw ensemble for significant wave height

and up to 60% better for wave period. The improvement due to the calibrated ensemble

data set is illustrated by comparing forecasted weather windows over the test period from

the deterministic dataset using α-factor, the raw ensemble and the calibrated ensemble.
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1 Introduction

Utilising the information about uncertainty in the weather forecasts provided by ensemble

predictions is very important in many applications, in particular in offshore wind energy

projects where cost of installation and operation constitutes a large part of the overall cost

of the project. Ensemble prediction is a group of model runs using a forecast model, run

from nearly the same initial condition, only perturbed slightly for each member in the

ensemble. The control run is unperturbed and compares to a deterministic forecast. Usu-

ally, accurate deterministic models with data assimilation are applied for the first 2-3 days

ahead, while coarser (often global) ensemble systems are optimised for longer forecasts.

Since the atmosphere is a chaotic system, small differences in the initial conditions will

lead to very different realisations by a numerical forecast model over time. The European

Center for Medium-Range Weather Forecasts (ECMWF) runs a global atmosphere model

ensemble with 51 members at 32km spatial resolution and a wave model with 55km spa-

tial resolution. This ensemble prediction system (ENS) provides forecasts 15 days ahead.

An example of an ENS wave forecast for a location in the North Sea is shown in Figure 1.

In the example there is large spread, i.e. uncertainty, related to the increase in wave height

on days one and three. In between, on days two and four, the forecast is more reliable

(less spread). From day 7 and onwards, there is very little information to gain from this

forecast as the spread is even and the median rather constant. Experience shows that the

Figure 1: Example of ENS wave forecast. Blue curves are the single ensemble members.

The black curve is the ensemble mean.
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forecasts from the ENS are biased too low in the North Sea and the spread of the members

may be too weak (the ensemble is underdispersed). In this work the ENS-forecasts for

significant wave height (Hs) at FINO-3 are calibrated against wave observations from the

Acoustic Wave and Current Profiler (AWAC) at FINO-3 during May 2013 - April 2014

(Figure 2). The resulting forecasts are then validated during a test period 30 April - 31

July 2014 at FINO-3 and the predicted weather windows are compared to the α-factor

method (2).
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AWAC wave measurements at FINO3

Figure 2: Measurements of significant wave height at FINO3 1 May 2013 - 31 July 2014.

Data before 1 May 2014 (vertical bar) are used for calibration of the ensemble. The data

after 1 May 2014 is the test period used for validation and demonstration.

2 Data
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Data from the AWAC close to the FINO3 platform (55.195◦ N, 7.158◦ E) are organized for

the period 30 April 2013 to 31 July 2014. Measurements of significant wave height (Hs)

and upcrossing wave period (Tz) are interpolated to a temporal resolution of one hour.

The ensemble forecast data (51 members) are extracted from the ECMWF archive on a

latitude-longitude grid with a spatial resolution of 0.25◦ and then bilinearly interpolated

to the position of the AWAC. The variables significant wave height (GRIB code 229 in

table 140) and mean wave period based on second moment (GRIB code 221) are taken

from the 00 UTC run with lead times +0, +3, +6, ..., +72, +78, +84, ..., +240h.

3 Method

3.1 Statistical method

In a statistical forecasting framework the objective is to model how the probability distri-

bution of the wave variable of interest depends on information available at the time the

forecast is to be issued. The predictive information in this study comes from an ensem-

ble of forecasts from a wave model which has been compressed into two variables – the

ensemble mean and the ensemble standard deviation. Thus, the aim is to determine the

conditional distribution of the wave variable given the ensemble mean and standard devi-

ation. In many modeling situations a specific parametric probability distribution is chosen

a priori, as is done here. The problem is then reduced to model how its parameters de-

pend on the predictive information. The choice of probability distribution is not obvious,

but by studying how various ensemble statistics vary in time one can get an idea despite

sampling uncertainty. In Figure 3 the time variation of the ensemble mean, standard devi-

ation, skewness, and kurtosis of significant wave height is shown. Clearly, each of them

vary considerably in time. To allow for such variations a flexible parametric probability

distribution is therefore needed.

In this study, the Box-Cox t-distribution (BCT) is chosen. The BCT distribution is

characterized by four parameters µ , σ , ν , and τ which can be interpreted to be related

to the median, the coefficient of variation, the skewness and the kurtosis, respectively.

Brief investigations revealed that a reasonable model where all parameters are related to

ensemble statistics is not straightforward. Instead a local statistical modeling approach is

adopted. For every forecast to be made the training data cases are each assigned a weight

reflecting how similar it is to the current forecasting situation. Then a simple statistical

7
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Figure 3: Distributions of the ensemble statistics mean, standard deviation, skewness,

and kurtosis for significant wave height as a function of lead time. The distributions are

calculated over the whole data period 30 April 2013 - 31 July 2014. The box shows the

median, and the 25 and 75 percentiles, and the whiskers are the 5 and 95 percentiles. The

circles are the extremes.

model with the BCT distribution is fitted to the weighted data. The estimated distribution

at the new predictor is used as the probabilistic forecast and quantiles and probabilities of

events can be derived from this.

In the first step, each case in the training data is given a weight. Assume the predictors

(vectors) in the training set are denoted by x1,x2, ...,xn where n is the number of cases,

and let x be the predictor value of the forecast to be made. The weights are computed

using the so-called tri-cube weight function which is defined as

w(xi,x) = w0

(
‖θ � (xi − x)‖2

D(λn)

)
(1)

for any i ∈ {1,2, ...,n}, where � denotes elementwise vector multiplication and ‖ · ‖2 is

8



the Euclidean norm. The vector θ with elements in the interval (0,1) defines the relative

impact of each predictor variable in the weight process and its element is assumed to add

up to one. D(λn) is the Euclidean distance to the λn nearest predictor value where λ
controls the proportion of training cases with positive weight. The function w0 is defined

as

w0(u) =

{
(1−u3/2)3 if u ∈ [0,1]

0 otherwise.
(2)

Ideally the parameters λ and θ should be tuned for each lead time, but based on

previous experience λ is set to 0.2, that is only 20% of the training cases have impact on a

single forecast. The relative impact of the predictor variables ensemble mean and standard

deviation is set to 0.9 and 0.1, respectively. Prior to the weight process the variables are

standardized by dividing by their standard deviations (over the training time period).

In the BCT model only the location parameter µ is assumed to be dependent on the raw

ensemble, more precisely µ = µ0 +µ1MEDIAN, where MEDIAN denotes the ensemble

median. The remaining parameters are assumed to be constant, but unknown. Thus, in

total five parameters had to be estimated for each forecast. The model parameters are

fitted by maximum likelihood estimation using the Rigby and Stasinopoulos algorithm in

the GAMLSS R-package (1).

Calibration using the BCT distribution will result in well calibrated forecasts if the

modeling is done properly. It is, however, a more complex approach than for example

simple bias adjustment of each ensemble member using quantile mapping (QM). In order

to see the difference in skill a QM method is also applied. The quantile mapping is defined

by separately sorting the ensemble control forecasts and the measurements for the training

period, and then using linear interpolation to get a calibration function that can be applied

to each ensemble member forecast. The outcome is an ensemble of equal size as the

original/raw ensemble. It should be noted, though, that QM does not necessarily imply

well calibrated ensembles.

3.2 Forecast validation measures

For probabilistic and ensemble forecasts the most common summarizing statistics for

forecast quality is the continuous ranked probability score (CRPS) which is based on the

difference between the forecasted cumulative distribution function and the observation.
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Here, the CRPS for a single ensemble forecast is computed by

1
m

m

∑
i=1

| fi − y| − 1
2m2

m

∑
i=1

m

∑
j=1

| fi − f j| (3)

where f1, f2, ..., fm denotes the m members of a single ensemble forecast and y the corre-

sponding observation. The lower the CRPS is the better. For simplicity, the same formula

is also used for the calibrated BCT forecasts which are converted to ensembles by cal-

culating the 1/(m+ 1),2/(m+ 1), ...,m/(m+ 1) quantiles from the BCT distributions.

The CRPS for a set of forecasts is just the average CRPS over the forecasts. Further,

for comparing several forecast systems it is often easier to interpret CRPS relative to

some reference. The continuous ranked probability skill score (CRPSS) is defined as 1

- CRPS/CRPSre f where CRPSre f is the CRPS of a reference forecast system; in our re-

sults the raw ensemble forecast system are used as the reference. Thus, a positive CRPSS

indicates improvement over the reference forecast system.

CRPS summarizes the quality of the full probability distribution or ensemble fore-

casts, but the quality of forecasts for specific events, e.g. significant wave height less than

or higher than a threshold, is also of interest. A suitable metric for probabilistic forecasts

of such events is the Brier score (BS) which is defined as

1
T

T

∑
t=1

(pt −ot)
2 (4)

where pt is the probability for the event at time t, ot is binary variable indicating whether

the event occured, and T the number of forecasts. For the BCT calibrated forecasts the

probability of the event is calculated directly from the BCT distribution, while for the raw

and the QM calibrated ensemble it is the fraction of members for the event. The Brier

skill score (BSS) can be computed the same way as CRPSS.

Summarizing measures like CRPS and BS does not give the full picture of forecast

quality. For example, good probabilistic forecasts should be reliable, but at the same time

also sharp (low uncertainty). It is therefore instructive to assess both properties. In order

to measure reliability, the m= 51 ensemble members and the observation are concatenated

and the rank of the observation is computed. In a reliable forecast system the ranks of the

observations over time should be uniformly distributed. The degree of reliability can be

quantified using the reliability index defined as

1
m+1

m+1

∑
i=1

(ci −
1

m+1
)2 (5)
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where ci is the fraction of cases where the observation rank is i. In this study the validation

data set only consisted of 92 cases which due to the relative large size of the ensemble

would imply high sampling uncertainty in the score. Prior to computing the score the

observation ranks are therefore grouped into 13 bins instead of the original 52 bins. The

second property, sharpness, is evaluated by computing the average widths of the central

90% and 50% forecast intervals.

The Brier score is a measure for probabilistic forecasts of binary events. In the context

of weather window forecasting probabilistic forecasts are often reduced to binary ones in

decision making process. To assess such forecasts the hit and false alarm rate are applied.

The hit rate is defined as the fraction of events which are correctly forecast, while the

false alarm rate is the fraction of non-events (no weather window) which are forecast as

weather windows.

3.3 Forecasting weather windows

Forecasting for an offshore operation requires a weather window of a certain length, which

satisfies a criterion with high probability. This is usually handled by defining an opera-

tional criteria based on the design criteria times a factor called the α-factor (2). The

forecasted value from a deterministic forecast should then be below the operational cri-

teria during the time of operation. A high value for the α-factor means high confidence

in the forecast. The α-factor takes a range of values dependent on the weather infor-

mation available. The cases considered here is the base case (Level C) and the situation

when a meteorologist is present at the site (Level A); table 4-1 and table 4-3 in (2). The

α-factor approach is applied on deterministic forecasts. Deterministic forecasts give the

most likely evolution of the weather as estimated by the forecast model, but does not in-

clude information of the predictability of the weather system, although this can vary quite

dramatically. Such information is however included in ensemble prediction systems and

this information may be utilised if the ensemble has realistic spread and no bias.

4 Results

In order to test the calibration methods the data are divided into a training and a test data

set. Data before May 2014 is applied for model estimation/training, while predictions are

made for the months May, June, and July 2014. All validation results to follow are for the

latter period.
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In Figure 4 summarizing measures for the quality of the significant wave height (Hs)

and wave period (Tz) forecasts are presented. In terms of the CRPSS the improvements

are clearly significant for both variables; up to about 40% and 60% for the shortest lead

times, respectively. For significant wave height the improvement is most pronounced for

the first three days, mainly because of the strong underestimation of forecasts uncertainty

in the raw ensemble forecast. The gain in mean error and mean absolute error (ME/MAE)

for Hs are more modest (at least relatively) and the ME possibly have less impact on

the CRPSS. For the wave period, on the other hand, the positive CRPSS can likely be

attributed to the large negative ME for the raw ensemble. The performance of the mod-

els is also assessed for 1.0 and 1.5 meter significant wave height threshold events. The

BSS showed more or less the same pattern as for CRPSS, though with stronger periodic

variations. As expected, the fully calibrated ensemble (BCT) gave better scores than the

ensemble data set which is just bias corrected (QM) most likely due to the better theoret-

ical foundation of the BCT.

The reliability and sharpness of the forecasts are shown in Figure 5. Clearly, the raw

ensemble is inferior with respect to reliability up to day five for Hs and for all lead times

for Tz. The latter can be linked to the strong negative ME for all lead times. Thus, prob-

abilities derived directly from the raw ensemble could not be trusted. The poor reliability

of QM at lead time +0h is due to no variation/uncertainty at this lead time which is in-

herited from the raw ensemble. Apart from that, the reliability of the calibrated methods

seemed adequate.

The performance of the forecasts are also assessed in a weather window decision con-

text and compared to the α-factor approach. The α-factors are taken from (2, Table 4-1)

(base case) and applied to the raw control forecast (ensemble member no. 0). Two defi-

nitions of weather windows are considered – significant wave height below 1.0 and 1.5m

(α-factor of 0.65 and 0.705, respectively). Since this type of weather window forecasting

is a deterministic approach the ensemble and probabilistic forecasts had to be converted to

’yes’ or ’no’ forecasts. Three probability thresholds are used: 1, 0.1, and 0.01%. That is,

if the probability of exceeding the wave threshold are less than the probability threshold

the forecast is converted to ’yes’ (weather window) and ’no’ otherwise. Note that for the

raw and QM calibrated ensembles (of size 51) the conversion is in practice independent

on the probability threshold. For these the ensembles are set to ’yes’ when all ensemble

members are below the wave threshold.

The outcome of the inter-comparison is summarized in Figure 6 showing the hit and

12



false alarm rates for the various forecasting approaches and weather window definitions.

For the first two days the α-factor approach gives the best forecasts. The raw ENS have

higher hit rates, but does not meet the certainty requirement as the false alarm rates are too

high. Both calibration methods provided quite conservative forecasts of weather windows.

For forecasts beyond two days the false alarm rates of the α-factor approach are too high.

This is expected since the α-factors are not designed for these forecast horizons.

Some of these results are also illustrated by counting the number of forecasted weather

windows in the different data sets over the test period. The test period provides a maxi-

mum number of 104 possible weather windows if we look for a weather windows starting

at the beginning of each forecast. (Due to the length of the forecasts, the files actually

covers 16 April - 28 July 2014.) From the ensemble, the deterministic forecast can be

represented by either the control run, the median or the mean of the members. We here

consider the design Hs of 2.0 and 1.5m. The α-factor related to a design wave height

of 2.0m (1.5m) and a weather window length of 72 (24) hours is given by approximately

α = 0.78 − 0.15 leadtime
72 (α = 0.72 − 0.13 leadtime

72 ) for level C, which is recommended

when only a standard offshore forecast is available. If a meteorologist is present, higher

values α = 0.86− 0.17 leadtime
72 (α = 0.80− 0.15 leadtime

72 ) is applied to the deterministic

forecast (2). Alternatively, if the ensemble forecast is able to represent the uncertainty

in the weather forecast, the α-factor could be avoided. In that case one of the ensemble

members could be used directly to forecast weather windows. Since there are 51 ensem-

ble members, each member represents a probability of almost 2%. Tables 1 - 4 compares

the number of weather windows (’yes’) from using members (ENS50, ENS49 etc.) of

the calibrated ensemble (BCT), the raw ENS and deterministic forecast (applying the α-

factor on the control run, the median and the mean of the ensembles) under the condition

of observed weather window (’yes’/’no’ in far left column). The ensemble member num-

ber 50 (ENS50) is here defined as the member predicting the highest wave height at any

given time. Likewise for the other members (ENS49-ENS45).

The effect of the calibration is evident. The BCT forecasts have fewer weather win-

dows, but no false ones neither for the α-factor method nor the first two ensemble mem-

bers in any of the scenarios. The raw ensemble gives two false weather windows using the

high α-factor in table 2 and one can clearly not rely on the highest values of the members

as there are three false weather windows predicted using ENS50 in table 1 and four in

table 3.

There is not much difference in using the control run, the mean or the median of

13



Table 1: Number of weather windows of 72 hours and design criteria Hs< 2m. The α-

factor 0.78 according to Level C, standard wave forecast is applied to the control run

(Ctrl), the median (Med.) and the mean of the ensemble. Top part: BCT calibrated

forecast; Bottom part: Raw ensemble.

Obs Forecast Ctrl Med. Mean ENS50 ENS49 ENS48 ENS47 ENS46 ENS45

Yes Yes 41 42 42 32 48 51 57 58 59

Yes No 27 26 26 36 20 17 11 10 9

No Yes 0 0 0 0 0 2 2 2 3

No No 36 36 36 36 36 34 34 34 33

Yes Yes 44 45 46 53 60 63 63 64 66

Yes No 24 23 22 15 8 5 5 4 2

No Yes 0 0 0 3 6 6 8 8 8

No No 36 36 36 33 30 30 28 28 28

BCT in the α-factor method. The method is rather conservative for standard weather

forecast with around 41-42 predicted 72-hour 2.0m weather windows of a total of 68 and

around 39-40 predicted 24-hours 1.5m weather windows of a total of 67 observed. With

a meteorologist on site, the α-factor method predicts 46-48 and 44-46 of the weather

windows, respectively.

The ENS50 of the calibrated ensemble (BCT) is too conservative in predicting the

72-hours 2.0m weather window (table 1), where only 32 weather windows are forecasted.

Using ENS49 would result in 48 correctly forecasted weather windows in Table 1 and

51 24-hours 1.5m weather windows in table 3. This is less conservative than with the

α-factor method, while still avoiding false predictions. A challenge is to estimate the

certainty of this result, for which a longer data set is needed.

Table 2: As for table 1 but with α-factor 0.86 according to Level A, meteorologist on site.

Obs Forecast Ctrl Med. Mean

Yes Yes 46 48 48

Yes No 22 20 20

No Yes 0 0 0

No No 36 36 36

Yes Yes 55 58 58

Yes No 13 10 10

No Yes 2 2 2

No No 34 34 34

14



Table 3: Number of weather windows of 24 hours and design criteria Hs< 1.5m. The

α-factor 0.72 according to Level C, standard wave forecast is applied to the control run

(Ctrl), the median (Med.) and the mean of the ensemble. Top part: BCT calibrated

forecast; Bottom part: Raw ensemble.

Obs Forecast Ctrl Med. Mean ENS50 ENS49 ENS48 ENS47 ENS46 ENS45

Yes Yes 39 40 40 49 51 53 54 54 54

Yes No 28 27 27 18 16 14 13 13 13

No Yes 0 0 0 0 0 0 0 0 0

No No 39 39 39 39 39 39 39 39 39

Yes Yes 44 44 44 60 63 64 64 64 64

Yes No 23 23 23 7 4 3 3 3 3

No Yes 0 0 0 4 4 4 4 6 7

No No 39 39 39 35 35 35 35 33 32

Table 4: As for table 3 but with α-factor 0.80 according to Level A, meteorologist on site.

Obs Forecast Ctrl Med. Mean

Yes Yes 44 45 46

Yes No 23 22 21

No Yes 0 0 0

No No 39 39 39

Yes Yes 53 53 53

Yes No 14 14 14

No Yes 0 0 0

No No 39 39 39

5 Discussion and Conclusions

The main objective of the study was to provide well calibrated ensemble forecasts for

input to a simulation tool for marine operations. In that context it has been demonstrated

that the quality of ensemble forecasts can be considerably improved by means of statis-

tical calibration; and maybe most important of all that properly calibrated probabilistic

forecasts are reliable which is a prerequisite for any decision making based on probabilis-

tic forecasts. There are, however, scope for improvements. For example, the dynamical

information about forecast uncertainty inherent in raw ensemble forecasts has not been

fully utilized. Partly this is because forecast quality measures like CRPS only weakly

penalizes uncertainty/spread. The CRPS is in practice strongly related to the bias of the
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location parameter (mean/median) of the probability distribution. Further work in this

direction is recommended.

A more direct application of forecasts is in deterministic forecasting of weather win-

dows with high degree of certainty – typically in the order of 99.99%. The calibration

methods in this study was not designed with this in mind and the results in terms of

weather window hit rates at 0.01 and 0.1% (Figure 6) were inferior due to the heavy

upper tails of the BCT distribution. The BCT distribution is very flexible and if any out-

liers due to measurement errors were present in the data then these will have significant

negative impact in the statistical calibration. By higher focus on the extreme quantiles

it should be possible to forecast weather windows with hit rates at least as high as for

the α-factor approach. The main reason is simply that ensembles include more informa-

tion about wave conditions than a single deterministic forecast do. Further, it would be

interesting to compare statistically calibrated forecast systems based on ensemble versus

dedicated (regional, fine scale) determinstic forecasts to quantify the potential gain.
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Figure 4: Continuous ranked probability skill score (CRPSS), Brier skill score (BSS),

mean absolute error (MAE) of the 50 percentile and mean error (ME) of ensemble mean

as a function of lead time. Significant wave height in the left column and wave period in

the right.
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Figure 5: Reliability index and sharpness for forecasts of significant wave height and

wave period as a function of lead time. Sharpness is given in terms of the average lengths

of 50% and 90% forecast intervals.
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Figure 6: Hit and false alarm rates for significant wave height thresholds 1.0 and 1.5m

and probability thresholds 0.01, 0.1, and 1%.
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