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Abstract

A spatial interpolation method based on Optimal Interpolation (OI) has been devel-

oped for the daily (i.e. 06-06 UTC): minimum (TANRR), maximum (TAXRR) and

mean (TAMRR) two-meter temperature on Norwegian mainland. The OI combines

a model-derived background field with in-situ observations from the climate station

network. The model considered is the NORA10 high-resolution hindcast dataset.

For each day and variable, the OI scheme runs simultaneously with several differ-

ent configurations, such that an ensemble of analysis is obtained. The two main

products of the interpolation are the analysis ensemble mean and spread. The OI

scheme has been used to establish three gridded datasets within the Norwegian

gridded climate dataset (KliNoGrid): TANRR-Nor, TAXRR-Nor and TAMRR-Nor.

The time interval covers 33 years: from 1980 to 2012. The evaluation has been

carried out by means of summary statistics and case studies. In general, TANRR-

Nor, TAXRR-Nor and TAMRR-Nor are unbiased estimates of the actual temperature

and their precision is on average between 1◦C and 2◦C.
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1 Introduction

The Norwegian gridded climate dataset (KliNoGrid) is an ongoing project based on the

combination of remote sensing and/or numerical model output fields with in-situ obser-

vations. KliNoGrid aims at supporting hydrology, meteorology, climate research and

operational applications. The combination of information relies on statistical methods

to post-process model, or remote sensing, fields in order to to improve the accuracy and

precision of the final predictions by including the small-scale processes measured by the

point observations. Because of our interest in climate and hydrology, the gridded datasets

should extend as far back in time as possible. In addition, the predicted fields are avail-

able on a regular grid with 1Km of spacing in both Northing and Easting directions. The

grid covers the relevant catchments for the Norwegian hydrology. The KliNoGrid dataset

might be seen as complementary to the conventional climatological datasets, in the sense

discussed in Simmons et al. (2016), such as the seNorge datasets (Tveito et al., 2000;

Lussana et al., 2016b) which are based on in situ (i.e. point) observations only.

Currently, the KliNoGrid dataset includes daily and hourly precipitation fields based

on the combination of radar-derived precipitation estimates with rain gauge observations

(Lussana et al., 2016a). Furthermore, we are working on the production of high-resolution

gridded datasets of hourly wind covering a time interval of about 60 years.

In this report, the KliNoGrid products for two-meter daily minimum, maximum and

mean temperature are introduced. For consistency with the aggregation time currently

used for precipitation and temperature in hydrology, the daily aggregation is defined be-

tween 06 UTC of the previous day and 06 UTC of the day considered. As a consequence,

given the standard for the parameter labels in the climate database of the Norwegian Me-

teorological Institute (MET Norway) the labels of the daily variables are: TANRR for the

minimum temperature; TAXRR for the maximum temperature and TAMRR for the mean

temperature. Note that TANRR and TAXRR have been defined specifically within this

work, for they were not present in the climate database.

We have decided to combine the point observations for TANRR, TAXRR and TAMRR

with the information derived from the NORA10 high-resolution hindcast dataset available

at MET-Norway, which goes back in time to 1957. In particular, the two-meter temper-

ature fields have been downscaled from their original grid spacing (around 10Km) to

the 1Km grid and aggregated at the daily timescale as required by the three variables

of interest. The final daily gridded datasets are named: TANRR-Nor for the minimum
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temperature; TAXRR-Nor for the maximum temperature and TAMRR-Nor for the mean

temperature, such that both the observation labels and the NORA10 model background

are reported in the names.

The spatial interpolation is based on Optimal Interpolation (OI: Gandin and Hardin,

1965; Daley, 1991), which is a well-established statistical interpolation method in atmo-

spheric sciences (Lorenc, 1986), where it is used in data assimilation to provide the initial

condition for numerical simulations. In our case, the OI scheme has been adapted to ad-

just NORA10 model output fields given actual atmospheric in-situ observations, which

are assumed to be a more accurate and precise representation of the true atmospheric

state. The NORA10 two-meter temperature fields provide the background fields (prior),

which are combined with the TANRR, TAXRR and TAMRR observations. Because of

the mismatch between the full range of atmospheric scales influencing the point observa-

tions and the areal averages simulated by the numerical models, the issue of observation

representativeness must be taken into account. A discussion of the OI observation rep-

resentativeness error can be found in Lussana et al. (2010), here we simply mention that

even in the fortuitous case that an observation and a grid point share the same location one

should not expect an exact correspondence between the analyses and the observed values.

Rather, the spatial interpolation scheme should be able to filter out the effects of small-

scale processes influencing the point observations but which are not properly resolved by

the numerical model.

The OI is based on the assumption of Gaussian probability density functions for the

observation and background errors (i.e. deviations from the unknown truth), which is

an approximation that we have considered valid in our work, nonetheless it might be

worth mentioning that for daily extremes, such as TANRR-Nor and TAXRR-Nor, this is

a less satisfactory approximation than for TAMRR-Nor. As a consequence, we might be

justified in expecting a better quality (i.e. less uncertainty) for TAMRR-Nor fields than

for TAXRR-Nor and TANRR-Nor.

The OI scheme includes a spatial consistency test, as described in Lussana et al. (2010,

2016b).

The original parts of our OI scheme are the parameter estimation procedure and the

idea to consider an ensemble of analysis instead of a single best (i.e. minimum analysis er-

ror variance), linear, unbiased analysis. Our parameter estimation procedure selects those

OI configurations which are expected to provide the best analysis fields, as measured by

a likelihood function based on leave-one-out cross-validation. In general, the selection
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includes around 25 possible OI configurations, which we have considered enough to sam-

ple the distribution of OI parameter values or at least to give us an idea of their optimal

values. Consequently, several OI are performed for the same case, with the different con-

figurations. As a result, an ensemble of analysis fields is obtained, which is intended to

represent the sensitivity of the OI scheme to the selection of parameter values. For each

day and variable, the main final products of our OI scheme are the analysis ensemble mean

and spread, which is conveyed by the the standard deviation of the analysis ensemble.

The OI scheme has been used to establish the gridded datasets of TANRR-Nor, TAXRR-

Nor and TAMRR-Nor, which covers the time period from 1980 to 2012.

The report is organized as follow. The observations and the NORA10 characteris-

tics are reported in section 2. The spatial interpolation scheme is described in detail in

section 3.2 and its evaluation over a recent period of more than 30 years is presented in

section 4, together with two case studies.

2 Data

2.1 Observations

The Climate Database of the Norwegian Meteorological Institute (i.e. KDVH, Klima Data

Vare Huset) has been used as our source of observations. The daily total precipitation for

the generic day D is a key parameter for hydrology and it is defined as the accumulated

precipitation between 06 UTC of day D− 1 to 06 UTC of day D (i.e. parameter RR in

KDVH). Our choice has been to define the minimum, maximum and average two-meter

air temperature for the generic day D in a consistent way to RR. As a consequence, we

have:

• TANRR: daily minimum temperature (06-06 UTC);

• TAXRR: daily maximum temperature (06-06 UTC);

• TAMRR: daily mean temperature (06-06 UTC), arithmetic mean of 24 hourly val-

ues or a formula based mean value computed from fewer observations;

TAMRR is available in KDVH. Unfortunately, TANRR and TAXRR are not directly avail-

able, they must be obtained by post-processing the available temperature observations. In

particular, the two parameters we have used are:
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• TAN_12: lowest observed temperature in the last 12 hours;

• TAX_12: highest observed temperature in the last 12 hours;

the TAN_12 and TAX_12 observations are available twice a day: at 06 UTC and 18 UTC.

TANRR and TAXRR for day D are defined as:

TANRR = min
(
TAN_12day=(D−1),time=18UTC,TAN_12day=D,time=06UTC

)
(1)

TAXRR = max
(
TAX_12day=(D−1),time=18UTC,TAX_12day=D,time=06UTC

)
(2)

In Figure 1 the time series of available observations for TANRR, TAXRR and TAMRR

in the time period from 1980 to 2012 are shown. At the beginning of the time period,

the number of daily observations is around 200 for each variable, then they gradually

decrease to: around 100 for both TAXRR and TANRR; around 150 for TAMRR. From

2007 onward, a sharp increase in the data availability is clearly evident and in 2012 the

maximum values of around 270 daily observations for each variable are reached.

The Figure 2 gives a broad overview of the (spatially averaged) temperature trends

in the period under study as the 365-day centered moving anomaly respect to the mean

TAMRR value. The Figure might be useful in the interpretation of our results.

2.2 Model data

The NORA10 high-resolution hindcast dataset is described in Reistad et al. (2011). The

dataset has been obtained as a dynamical downscaling based on ERA40 from 1957 to

2002 and on ECMWF operational analyses from 2002 onwards. The NORA10 two-meter

temperature fields are available on a regular grid covering part of Northern Europe and

having around 10Km of grid spacing in both Easting and Northing directions. The fields

are available at hourly time resolution, then the definitions for TANRR, TAXRR and

TAMRR reported in section 2.1 have been used to aggregated the NORA10 hourly fields

into the corresponding daily values.

3 Methods

3.1 NORA10 downscaling to the seNorge2 grid

The NORA10 two-meter temperature fields described in section 2.2 are available on a

10Km- grid but our final grid has 1Km of grid spacing, then we had to downscale the

NORA10 fields to the finer 1Km-grid.
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The 1Km-grid is the same grid used for the seNorge version 2 products (Lussana

et al., 2016b) and it is characterized by the parameters:

• Coordinate Reference system. proj4 string="+proj=utm +zone=33 +datum=WGS84

+units=m +no_defs +ellps=WGS84 +towgs84=0,0,0"

• dimensions (number of grid points): easting = 1195 ; northing = 1550 ;

• grid spacing: easting = 1000 meter ; northing = 1000 meter.

The downscaling of the hourly temperature has been realized by means of a two-step

process:

1. a nearest-neighbor interpolation algorithm has been applied from the 10Km- to

the 1Km-grid. The so-obtained temperature values have been adjusted based on

the elevation difference to the 1Km-grid and a fixed gradient of −0.0065◦C/m has

been used:

T = T (nearest-neighbor)−0.0065 · [z(1Km_grid)− z(10Km_grid)] (3)

where z(. . .) indicates the point elevation on the specified grid and T stands for

temperature.

2. for each grid point, compute the vertical gradient by considering the temperature

values in a neighborhood box of ±20Km in both east-west and north-south direc-

tions, then apply the gradient correction taking into account the average temperature

value and elevation within the ±20Km box:

T = T (box_average)+box_gradient · [z(1Km_grid)− z(box_average)] (4)

If the gradient is not computable (too unstable), use −0.0065◦C/m as default gra-

dient.

As a downscaling tool, we have used the Gridded Post-Processor (gridpp, available at

https://github.com/metno/gridpp). Command lines:

1. gridpp input_file output_file -v T -d gradient constantGradient=-0.0065 minElevDiff=-

999

2. gridpp input_file output_file -v T -d gradient minElevDiff=-999 searchRadius=20

defaultGradient=-0.0065 averageNeighbourhood=1
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The NORA10 downscaled hourly temperature fields are then aggregated to the daily

timescale as specified in section 2 for each of the three variables of interest: TANRR,

TAXRR and TAMRR.

3.2 Statistical Interpolation

The Optimal Interpolation (OI) scheme combines the observed values stored in the KDVH

with the background field derived from NORA10. The OI scheme generates an ensem-

ble of possible analyses. For each of daily minimum, maximum and daily temperature,

respectively: TANRR-Nor, TAXRR-Nor and TAMRR-Nor, the OI scheme generates an

ensemble of possible analyses and the outputs are the ensemble mean and standard devi-

ation fields derived from such an ensemble of two-meter temperature analyses.

3.2.1 Optimal Interpolation

The Optimal Interpolation (OI: Gandin and Hardin, 1965; Kalnay, 2003) scheme has

been used to obtain the analysis vector. The same OI method has been applied to the

three variables: TANRR, TAMRR and TAXRR, though with different parameters. The

OI method implemented here is similar to the ones described in Uboldi et al. (2008);

Lussana et al. (2016b).

The notation introduced in Ide et al. (1997) is adopted. The vectors denoted by x...

indicate quantities at grid points, while the vectors denoted by y... indicate quantities at

station locations.

The linear observation operator H transforms quantities from the grid-space onto the

observation-space. For example, the background at station locations yb is obtained as:

yb = Hxb (5)

The observation operator we have used is similar to the second step of section 3.1. A box

of ±10Km around each station location is considered and the gradient is computed by

using a linear regression on the temperature values (at grid points) within the box as a

function of their elevations. Then, the m-th component of the background vector (i.e. at

the m-th station location) is:

yb
m = xb (box_average)+box_gradient · [zm − z(box_average)] (6)

where: zm is the elevation at the m-th station location; xb (box_average) is the average

value of temperature within the box; z(box_average) is the average elevation within the
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box. Both xb (box_average) and z(box_average) are computed by considering quantities

at grid points only.

The OI analysis xa on grid points is:

xa = xb + G̃
(
S̃+ ε2I

)−1
(

yo −yb
)

(7)

Where the subscripts a, b and o denote: analysis, background (i.e. NORA10 field)

and observation, respectively. The scalar ε2 ≡ σ2
o/σ2

b is the ratio between the background

and the observation error variances: ε2 = 0 implies assuming perfect observations, hence

exact interpolation; ε2 > 1 implies a greater confidence in the background field rather

than in the observations.

The OI gain matrix K = G
(
S̃+ ε2I

)−1 is expressed by means of: the background

error correlation matrix at station locations S̃ (the covariance matrix is S = σ2
b S̃); the G̃

correlation matrix having as elements the correlations between the background error at

grid points and the background error at station locations. Note that the observation error

covariance matrix, usually indicated as R, is set to σ2
o I, with all the observations having

the same error variance.

The correlation between two generic points ri = (xi,yi,zi) and r j =
(
x j,y j,z j

)
is spec-

ified by means of the correlation function γ:

γ
(
ri,r j

)
= exp

−1
2

(d
(
ri,r j

)
Dh

)2

+

(
∆z
(
ri,r j

)
Dz

)2
 (8)

Where d
(
ri,r j

)
is the horizontal distance between the two points, and ∆z

(
ri,r j

)
is the

difference between their elevations. Dh and Dz are the de-correlation distances in the hor-

izontal and vertical directions, respectively. The sum between square brackets in Eq. (8)

defines a new three-dimensional distance, where distances in the vertical and in the hori-

zontal directions have different weights. The function γ has been used for the specification

of S̃ and G̃.

In addition, a Spatial Consistency Test (SCT) has been implemented within the OI

scheme as described in Lussana et al. (2010, 2016b). In the current work, the i-th obser-

vation is flagged as suspect by the SCT and consequently not used in the OI if:

(yo
i − y̌a

i )(y
o
i − ya

i )

σ2
o

> 40 (9)

Where ya
i is the leave-one-out cross-validated analysis at the i-th location.
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The setting of OI parameter values is discussed in section (3.2.2). The gain matrix

in Eq. (7) is completely defined by the values of the three parameters: Dh, Dz, and ε2,

moreover the value of σ2
o is needed for the SCT.

3.2.2 OI Parameters

The OI parameter values are estimated for each day. Instead of a single best combination

of values, we have decided to take into account a set of OI parameter values for each day.

The analyses obtained by the OI scheme with the different configurations constitute our

ensemble.

In order to limit the computational time, the selection of the best OI parameter values

for
(
Dh,Dz,ε2) is constrained among all the possible combinations of the following sets:

• Dh = (10,25,50,75,100,125,150,175,200,300) [Km]

• Dz = (100,250,500,750,1000,1250,1500,2000) [m]

• ε2 = (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1) [-]

Consider the generic day d. In the OI parameter estimation, a time interval of 31 days

centered on d has been taken into account. Then, for each combination of parameters(
Dh,Dz,ε2) the value of σ2

o has been computed as (Lussana et al., 2010):

σ2
o =

∑31
t=1

[
(yo −ya)T

t
(
yo −yb)

t

]
∑31

t=1 Mt
(10)

where: the time index t assumes the values of the 31 days in the interval centered on d;

Mt indicates the number of observations available at time t.

The selection of the best set of OI parameter values are based on:

• the Cross-Validation score (Uboldi et al., 2008; Lussana et al., 2016b):

CVscore =
1

31

31

∑
t=1


√√√√ 1

Mt

Mt

∑
m=1

(yo
m − y̌a

m)
2

 (11)

• a likelihood function relating the empirical estimate of σ2
o +σ2

b to the theoretical

one.

The empirical estimate is (Desroziers et al., 2005):

(
σ2

o +σ2
b
)

emp =
1

31

31

∑
t=1

{
1

Mt

Mt

∑
m=1

(
yo

m − yb
m

)2
}

(12)
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The theoretical one is based on Eq. (10) and on the definition of ε2, then it can be

written as: (
σ2

o +σ2
b
)

theo = σ2
o +

σ2
o

ε2 (13)

Note that Eq. (12) is based on observations and model data, while Eq. (13) depends

on the analysis, thus on the values of
(
Dh,Dz,ε2). As a consequence, these two

Equations provides a further relation between the observed and model data and the

OI parameters.

In practice, to implement the relation we have defined the two vectors Lemp and

Ltheo:

Lemp = pnorm
(

innovation,mean = 0,sd =
(
σ2

o +σ2
b
)

emp

)
(14)

Ltheo = pnorm
(
innovation,mean = 0,sd =

(
σ2

o +σ2
b
)

theo

)
(15)

The set innovation includes all the I innovation values yo
i −yb

i i = 1, . . . , I for all the

station locations and for the 31 days considered. The "pnorm" symbol indicates the

Gaussian distribution function values returned for each element of the innovation

set, given the parameters: mean value (mean) and standard deviation (sd). The

two vectors Lemp and Ltheo have the same number of elements I as the innovation

set. The value of a generic element of Lemp quantifies the likelihood of having

the corresponding innovation value given our estimate for the standard deviation as(
σ2

o +σ2
b

)
emp. A similar statement holds true for Ltheo and

(
σ2

o +σ2
b

)
theo.

The likelihood function J which quantifies the goodness-of-fit of the theoretical

estimate
(
σ2

o +σ2
b

)
theo to the empirical one

(
σ2

o +σ2
b

)
emp is then defined as:

J =
1
I

I

∑
i=1

(
Lemp

i −Ltheo
i

)2
(16)

where Lemp
i and Ltheo

i are the i-th elements of the vectors defined in Eq. (15). In our

definition of J, we have considered the entire distribution of the innovation values

instead of considering only the agreement between two values, such as the mean

values defined in Eqs. (12)-(13).

Let us go back to the selection of values for the OI parameters
(
Dh,Dz,ε2). Once set

a value for the triplet
(
Dh,Dz,ε2), the σ2

o value is automatically obtained by Eq. (10).

Consider the possible combinations of
(
Dh,Dz,ε2) listed above, then for each of them

the CVscore and J values are computed as in Eqs. (11)-(16), respectively. Our selection
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of best values for
(
Dh,Dz,ε2) includes those triplets for which: CVscore is within the

smallest 10% of values and at the same time J is within the smallest 25% of values.

The number of elements within a selection of best values of
(
Dh,Dz,ε2,σ2

o
)

is usually

around 25.

In the Figures 3-5 the time series for the median of Dh, Dz and ε2 distribution of

daily "best" values are shown. To facilitate the intercomparison between TAMRR-Nor,

TANRR-Nor and TAXRR-Nor, each Figure is composed by three panels (one for each

variable).

In Figure 3, the median of Dh is roughly around 100 Km for the three variables.

The Figure 4 shows Dz. For TAMRR-Nor and TANRR-Nor, the median of Dz varies

mostly between 500 m and 1000 m, while for TAXRR-Nor it varies more around 500 m.

With respect to ε2, in Figure 5 both TAMRR-Nor and TANRR-Nor show a gradual

increase of the median of their distributions, which means that the OI parameter optimiza-

tion procedure tends to give more weight to the NORA10-derived background over time.

In particular, the improvements in the model background due to the introduction of the

ECMWF operational analyses from 2002 onward are evident. The situation seems to be

different for TAXRR-Nor, which presents a ε2 rather stable in time.

In the Figures 6-8 the typical year for the empirical distribution of Dh, Dz and ε2

best values are shown. In general, the seasonal cycle is more important for Dz, which

has higher values during summer. In the case of TAXRR-Nor, ε2 in Figure 8 shows a

pronounced seasonal cycle too, which results in the attribution of more weight to the

observations in the summer.

The combined effects of the station distribution and of the OI parameter choices are

summarized in Figure 9 by means of the CVIDI-score (Lussana et al., 2016b) for the three

variables. The (dimensionless) CVIDI-score can assume values between 0 and 1 and as

reference values one may consider: < 0.45 for isolated grid points; > 0.85 for grid points

located in dense station areas. In general, the CVIDI-score is greater than 0.8: most of

the grid point are located in dense station areas and, as a consequence, the adjustment to

the background due to the observations can influence a large portion of the domain.

It might be worth noticing that for TAXRR-Nor in 2007 there is a period presenting a

sharp discontinuity in the CVIDI-score, which deserves further investigations.

3.2.3 Implementation choices
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Consider the selection of best values for
(
Dh,Dz,ε2,σ2

o
)
, then the best analyses of TANRR-

Nor, TAXRR-Nor and TAMRR-Nor are the mean of the corresponding ensemble of anal-

yses, xa:

xa = mean
(

xa
(

Dh,Dz,ε2,σ2
o

))
(17)

As an estimate of the ensemble spread, the standard deviations of the TANRR-Nor, TAXRR-

Nor and TAMRR-Nor analysis fields have been computed:

sda = standard_deviation
(

xa
(

Dh,Dz,ε2,σ2
o

))
(18)

sda is related to the uncertainty due both to the station distribution and to our selection of

the OI parameters.

As diagnostic tools, the average Integral Data Influence (IDI: Uboldi et al., 2008;

Lussana et al., 2016b) and its standard deviation have been computed:

xIDI = mean
(

xIDI
(

Dh,Dz,ε2,σ2
o

))
(19)

sdIDI = standard_deviation
(

xa
(

Dh,Dz,ε2,σ2
o

))
(20)

In our OI scheme, a SCT is performed for each element of the selection of best values(
Dh,Dz,ε2,σ2

o
)
. We have decided to flag an observation as suspect and discard it from

the OI if the observation fails just one of those SCT.

4 Results

In Figures 10-12 the time series for the daily biases for TAMRR-Nor, TANRR-Nor and

TAXRR-Nor, respectively, are shown. Each Figure is composed by three panels: the daily

averaged (over all the station locations) value of the innovation (i.e. observation minus

background) is shown on the top panel; the middle panel refers to the daily averaged ob-

servation minus CV-analysis and it can be interpreted as a result valid for the analysis at

grid points; the observation minus analysis daily average is shown in the bottom panel.

Ideally, the average of all these quantities should be close to 0◦C. However, the time se-

ries for the innovation shows the presence of a bias for all the variables: for TAMRR-Nor,

a negative bias is present and its magnitude is reduced over time; for TANRR-Nor a nega-

tive bias is present too and it remains stable in time; for TAXRR-Nor a positive, stable in

time bias is present. The innovation biases show a seasonal cycle, with the higher values

in winter. Our spatial interpolation scheme is able to effectively reduce the bias for all
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variables and throughout the whole year, as can be easily seen by comparing the ordinate

scales of the top panels with the other panels in the Figures.

The time series for the daily root-mean-square (RMS) for the innovation, CV-analysis

and analysis residuals are shown in Figures 13-15 for TAMRR-Nor, TANRR-Nor and

TAXRR-Nor, respectively. The daily root-mean-square of the CV-analysis residuals is

also called CVscore (Lussana et al., 2016b). As for the bias, also in the case of the RMS

of the different diagnostics our OI scheme is able to improve the precision of the predicted

temperature. Most noticeably, in the case of TANRR-Nor the RMS of the innovation is

on average around 3◦C, and up to 8◦C in the worst cases, while the CVscore is a bit less

than 2◦C on average and 4◦C for the worst cases.

The improved precision of the analyses compared to the model background is clearly

evident also in Figure 16, where the RMS are shown for a typical year, and in Figure-17

by considering the Northern and the Southern parts of the domain separately. The dif-

ferences between the analysis at station locations and at grid points are on average less

than 0.5◦C. Despite the difference in station densities between the sparser distribution of

stations in the North of Norway and the denser station network of the South, the precision

of the analysis is comparable. Note that both Figures 16- 17 show the seasonal cycle of

the RMS deviations. For TAMRR-Nor and TANRR-Nor, there is a clear signal of higher

uncertainties in the winter and a better precision in the summer. On the other hand, for

TAXRR-Nor the situation is different: the analyses are on average more precise in spring

and autumn, while during winter and summer they are characterized by similar uncertain-

ties.

The evaluation based on the (empirical) joint probability distributions for: background

and observation; CV-analysis and observation; analysis and observation are shown in

Figures 18- 23. In particular, the Figures 18, 20 and 22 show the density plots with the

empirical joint probability distributions; the Figures 19, 21 and 23 show the empirical

conditional probability density functions given a selection of the observed values and

the corresponding parameters (N(µ,σ), where µ is the mean and σ the standard devia-

tion) for the best-fitting Gaussian probability density function. The Figures 18, 20 and

22 are quite similar to each other and they show the impact of the OI scheme on the bias

adjustment and in the reduction of the uncertainty, especially for extreme values. The Fig-
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ures 19, 21 and 23 quantify the accuracy and precision of the background, CV-analysis

and analysis across the range of observed values. For negative temperatures, the analysis

is a less precise estimate of the true temperature than for positive values. For the most part

of the observed range of temperatures, our analysis does not show a significant bias and its

standard deviation is around 1◦C. In the case of TANRR-Nor, the most challenging cases

correspond to the occurrence of extremely low temperatures: for observed values around

−25◦C, our CV-analysis still has on average a bias of 4◦C and a standard deviation of 3◦C.

In the final part of our evaluation, two case studies are presented. We will focus on

the coldest and the warmest days within the time interval 1980-2012, which are: 11 Jan-

uary 1987 (coldest) and 2 August 1994 (warmest). In Figures 24-29 the maps for the two

case studies are displayed for TAMRR-Nor, TANRR-Nor and TAXRR-Nor. The analysis

fields are shown on the left panel, while the model background fields based on NORA10

are shown on the right. The dots both mark the station locations and show the observed

values. The overall adjustment of the background field towards the observations is evi-

dent and its effect is quantified by the significant improvements in the bias correction and

in the CVscore reduction (see the main title of each Figure). For example, in the case of

TANRR-Nor for 11 January 1987, the 192 observations available allow us to reduce the

bias of the predicted two-meter minimum field and to improve the precision of almost 2◦C

on average. Besides, it is clear that the OI scheme would strongly benefit from a denser

station network in Sweden and Finland.

As an example of the other available analysis products (see section 3.2.3), Figures 30

and 31 show the IDI fields and the ensemble spread (i.e. standard deviation). The IDI

fields in Figure 30 are the mean (on the left) and the standard deviation (on the right) of

the IDI ensemble. The standard deviations of the analysis ensemble, which represents the

ensemble spread, in the two case studies for TANRR-Nor (left panel, 11 January 1987)

and TAMRR-Nor (right panel, 2 August 1994) are shown in Figure 31. Both these prod-

ucts are expected to provide the users an estimate of the uncertainties related to our OI

scheme. In particular, the IDI-related products focuses on the impact of the station distri-

bution on the analysis, while the ensemble spread is related to the uncertainties introduced

by our selection of the OI parameters.
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5 Conclusions

A spatial interpolation scheme for daily minimum, average and maximum two-meter tem-

perature (TANRR-Nor, TAXRR-Nor and TAMRR-Nor, respectively) based on statisti-

cal interpolation has been developed and implemented at MET Norway. The statistical

method is an implementation of Optimal Interpolation (OI), which combines a model

derived background with in-situ observations from the climate database.

The model considered is the NORA10 high-resolution hindcast dataset, which has

been downscaled on the 1-Km grid often used for hydrology and climatology in Nor-

way. Two original procedures to obtain the daily (06-06 UTC) minimum and maximum

two-meter temperature observations from the standard parameters available in the climate

database have been implemented.

The standard OI scheme relies on an optimization procedure to set the OI parameters,

which are: the background and observation error variances and the error correlation func-

tions. The OI configuration plays a crucial part in the determination of the final analysis

quality. In this work, a selection of around 25 different OI configurations has been used

for each day and variable to obtain an ensemble of analysis fields. The OI configura-

tions have been selected among the ones which guarantees the best-possible results. The

OI products available to the users are: the analysis ensemble mean, the ensemble spread

and a diagnostic product based on the Integral Data Influence (IDI). The ensemble spread

reflects the sensitivity of our OI scheme to the choice of the OI parameters.

The evaluation shows that the NORA10 background fields present systematic differ-

ences if compared with the observed values. The OI scheme is able to adjust the analysis

for the presence of bias in NORA10 temperature fields and to improve the precision of

the predicted values. It has been verified that such improvements occur for the daily

minimum, maximum and average temperatures and throughout the whole year. Only for

extremely low temperature (below −25◦C), a significant bias is still present in the analy-

sis. For the most part of the observed range of temperatures, our analysis does not show a

significant bias and its standard deviation is around 1◦C.

Future developments might include: a refined downscaling of NORA10 onto the high-

resolution grid based on geographical elements; the inclusion of more data in the climate

database, especially from the neighboring countries of Sweden and Finland; the evalua-

tion of the ensemble spread as a descriptor of the actual analysis uncertainty.
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6 Figures
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Figure 1: Time series of the number of available observations (1 point=1 day) for:

TAMRR-Nor (top panel); TANRR-Nor (middle); TAXRR-Nor (bottom). Time interval:

1980-2012. 20
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Figure 9: Time series of the CVIDI-score (1 point=1 day) for: TAMRR-Nor (top panel);

TANRR-Nor (middle); TAXRR-Nor (bottom). Time interval: 1980-2012.
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Figure 10: TAMRR-Nor. Times series of the bias for: innovation O-B (top panel); CV-

analysis O-CVA (middle); residual O-A (bottom)
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Figure 11: TANRR-Nor. Times series of the bias for: innovation O-B (top panel); CV-

analysis O-CVA (middle); residual O-A (bottom)
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Figure 12: TAXRR-Nor. Times series of the bias for: innovation O-B (top panel); CV-

analysis O-CVA (middle); residual O-A (bottom)
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Figure 13: TAMRR-Nor. Times series of the root mean square for: innovation O-B (top

panel); CV-analysis O-CVA or CVscore (middle); residual O-A (bottom)
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Figure 14: TANRR-Nor. Times series of the root mean square for: innovation O-B (top

panel); CV-analysis O-CVA or CVscore (middle); residual O-A (bottom)

33



Figure 15: TAXRR-Nor. Times series of the root mean square for: innovation O-B (top

panel); CV-analysis O-CVA or CVscore (middle); residual O-A (bottom)
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