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1 Introduction

In the CryoClim project, an operational service for long-term systematic climate 
monitoring of the cryosphere was developed. The service provides global sea ice and 
snow cover products, as well as Norwegian (mainland and Svalbard) glacier 
products. The focus of this follow-up project is to advance the current global snow 
mapping service in CryoClim. This includes improving the current algorithms, 
extending the time series, and adapting for improved input data series as well as for 
future sensors.

1.1 Status of the CryoClim snow monitoring service

The CryoClim project was running from 2008 to 2013, and included the partners the 
Norwegian Computing Center (NR), the Norwegian Meteorological Institute (MET), 
the Norwegian Water Resources and Energy Directorate (NVE) and the Norwegian 
Polar Institute (NPI). The aim of the project was to develop a web portal as well as 
cryosphere products. The portal would provide search, view and download functionality
for cryospheric climate products, both indicator data as well as gridded data. The portal 
is available at www.cryoclim.net.

1.2 The structure of the project and of this report

The main objective of the Sentinel for global snow mapping in CryoClim
(Sentinel4CryoClim) project is to advance the current global snow mapping service in
CryoClim to be compatible with the Copernicus Climate Change Service objectives and
position it as a candidate for snow monitoring in Copernicus. 
The following sub-objectives have been set:
1. Mitigate weaknesses in the single-sensor components of the algorithm (optical
and passive microwave radiometers) and multi-sensor multi-temporal data

6



fusion to further increase the accuracy and robustness of the product.
2. Extend the product with uncertainty estimates at the product and per-pixel
levels.
3. Advance the algorithms and processing chains with the inclusion of Sentinel-3
OLCI and SLSTR data.
4. Perform more extensive validation of the product in space and time, including
focus on inter-sensor issues in the time series.
5. Include the results in the CryoClim processing chain for snow and advance the
operational level of the processing.
6. Position the CryoClim snow sub-service as a candidate for snow monitoring in
Copernicus Climate Change Service.

In Phase 1 of the project, focus was on objectives 1, 2 and 6, as well as relevant parts of 
4 and 5. For Phase 2, the focus is on objectives 3 and 6 plus relevant parts of 4 and 5.  
Phase 2 of the project is divided in the following work packages:

• WP 1. Management
• WP 2. Mitigation of retrieval algorithm weaknesses
• WP 3. Development of product uncertainty estimates
• WP 4. Integration of Sentinel-3 data
• WP 5. Validation
• WP 6. Processing environment
• WP 7. Exploitation

MET has been responsible for or involved in (some of) the tasks in work packages 2 – 
6. METs work is described in this report. 
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2 Work package 2: Mitigation of retrieval algorithm 
weaknesses

The CryoClim daily multi-sensor multi-temporal snow cover product is based on an 
optical snow cover product and a passive microwave snow cover product, which are 
combined in a Hidden Markov Model (HMM). MET is responsible for the daily optical 
products, and NR is responsible for the fusion into the multi-sensor product. 
Development of the PMW component is a shared responsibility between MET and NR. 
All three data series are produced at MET. This chapter describes work related to 
improving the optical snow cover component.

2.1 A recap of the optical snow cover algorithm

The MET global optical snow cover chain processes all available swaths from the 
EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) AVHRR 
GAC data record. The calculations are based on a Bayesian approach using a set of 
signatures (instrument channel combinations) and statistical coefficients. For each pixel 
of the swath, the probabilities for the surface classes snow, land (snow-free ground) and
cloud are estimated. The statistical coefficients are derived from pre-knowledge of the 
typical behaviour of the surface classes in the various parts of the spectrum. An example
of an optical swath product can be seen in Figure 1 which shows a section of a NOAA-
19 swath from March 15 2009, 08:50 UTC.
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The processed swaths are gridded and averaged. Swath product pixels with a probability
for the class cloud larger than 40% are considered cloud-covered and are therefore not 
used in the averaged product. Averaging all available swath products from a 24-hour 
period gives daily, gridded, snow cover products containing probabilities for snow/no 
snow. A threshold is applied at 50% probability for snow, and a binary snow/no snow 
product is the result. The daily product has 5 km resolution. Figure 2 shows an example 
of a daily, gridded, optical product. See the snow sub-service report from CryoClim 
(Killie et al., 2013) for a more detailed description of the optical algorithm. As 
described further in Chapter 3, a first version uncertainty model was developed in Phase
1 of Sentinel 4 CryoClim (Solberg et al., 2017). In Phase 2 this is implemented for the 
global product. 
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Figure 1: A section of a NOAA-19 swath from March 15 2009, 08:50 UTC. The 
top row shows RGB colour composites using AVHRR channels 1, 2 and 4 (left) 
and AVHRR channels 2, 3B and 4 (right). The bottom row shows the 
probabilities for the classes snow (left), land (middle) and cloud (right). Red 
colour indicates high probability, blue colour indicates low probability. White 
shows areas of no product (water).



An aggregation period of 24 hours is not sufficient to give a cloud-free product. 
Furthermore, the algorithm uses satellite measurements of reflected sunlight, and the 
products will therefore have relatively large areas at the poles that have no data during 
local winter-time. The optical product can therefore benefit greatly from being 
combined with a PMW product.

Overall, the optical algorithm performs well. Validation work carried out in the 
CryoClim project shows that when comparing daily, optical snow cover products with 
snow observations from ground stations spread on the Northern Hemisphere for the year
2005, there was overall agreement between the ground observation and the satellite-
based optical snow cover product in 97% of the cases. In addition to the large-scale 
comparison against ground observations of snow depth, a local comparison between the 
optical snow cover product and 5 detailed snow maps for Jotunheimen was performed. 
The MET optical snow cover product correctly identified 94% of the pixels in these 
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Figure 2: The figure shows the Northern hemisphere daily, optical snow cover 
product for March 15 2010.



snow maps. More details on this work can be found in the CryoClim snow sub-service 
documentation (Killie et al., 2013).

2.2 Adapting to a new version of the input data

The Advanced Very High Resolution Radiometer (AVHRR) has been operating since 
1979 onboard operational meteorological satellites. The first version of the instrument 
measured in four spectral bands. From 1982 the 12.0 µm channel (Channel 5) was 
added  (AVHRR/2), and in 1998 the 1.61 µm channel (Channel 3A) was added 
(AVHRR/3). Channel 3A is the most interesting channel for snow cover identification. 
The AVHRR/3 instrument can however only transmit at 5 channels at the time, and 
therefore switch between Channel 3A and the 3.74 μm channel (Channel 3B). Details on
the different versions of the instrument can be found online1.

The AVHRR instrument has ~1 km nadir resolution but only data at a reduced resolution
(~4 km) is permanently archived and available with global coverage. This data is called 
Global Area Coverage (GAC) data. The CryoClim project used a fundamental climate 
data record (FCDR) for AVHRR GAC radiances and brightness temperatures covering 
1982 - 2009, kindly provided by the EUMETSAT CM SAF. The CM SAF FCDR was 
produced as part of a project to derive climate data records for cloud, surface albedo and
surface radiation budget products (CLARA-A1: CM SAF Cloud, Albedo And Surface 
Radiation dataset from AVHRR data, Karlson et al., 2013). The CM SAF has since 
made available a second edition (CLARA-A2) which covers the 34-year period from 
1982 until 2015 (Karlson et al., 2017). Among the improvements in the updated version 
of the level 1c data record for radiances and brightness temperatures are improved 
geolocation, removal of corrupt data and no overlap between orbits. For each swath file 
(GAC orbit) calibrated reflectances and brightness temperatures, sun and satellite zenith
and azimuth angles and scanline quality information are available. The output files are 
on HDF5 format and follow international Climate and Forecast Conventions. The Polar 
Platform System (PPS) cloud software 2 is used for the CLARA-A2 products. Detailed 
information can be found in the Algorithm Theoretical Basis Document (ATBD) and the
Product User Manual, both accessible from www.cmsaf.eu.  In addition to this data 
record the optical snow cover product in Sentinel4CryoClim uses historical model 
temperature data from ERA-Interim global reanalysis (Dee et al., 2011).  

1 https://www.wmo-sat.info/oscar/instruments/ is one suggestion.

2 The PPS cloud software is issued by the EUMETSAT Nowcasting Satellite Application Facility 
(NWC SAF).
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The global optical data record is based on this AVHRR GAC data record from the 
period 1982 to 2015 , that is the entire AVHRR/2 era and AVHRR/3 up until 2015. The 
MET optical algorithm was developed using AVHRR/3 data only. AVHRR/2 has no 
Channel 3A, which is the preferred channel (over 3B) when available as it is 
particularly well suited for detection of snow. At 1.6 µm snow has very low reflectance 
while clouds still reflect well (Warren, 1982). This helps discrimination between clouds 
and snow. Figure 3 gives an overview of the AVHRR-carrying satellites contributing to 
CLARA-2.  

Figure 3 shows that for the first ~10 years of the dataseries there is only one satellite 
with AVHRR/2 in orbit at the time. The next ~10 years have two flying simultaneously 
(although there is a small but important gap in January 1996 with only one satellite in 
operation, see the discussion on false snow in Asia on page 24). From then on there are 
three or more instruments in orbit simultaneously. Multiple satellites available gives 
more swath data, meaning that the gridded, optical product is more likely to be cloud-
free, and also that erroneous pixels from one swath product might be "corrected" by 
another swath product covering the same area.  

2.3 Improving the optical snow cover component

In spite of an overall very good accuracy, the optical product has some known
weaknesses. These include reduced performance at low solar elevations (due to shifts in 
the signatures) as well as in mountain areas during spring/summer (due to inaccuracies 
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Figure 3: The AVHRR instruments used in CLARA-2. The figure is borrowed 
from www.cmsaf.eu. AVHRR/1 instruments are not included in CLARA-A2.

http://www.cmsaf.eu/


in the model surface temperature for steep terrain).  Earlier attempts have been made to 
replace the static coefficients with dynamic coefficients to achieve better performance at
low solar elevations. This has so far not been a success due to insufficient amounts of 
training data available at the time. In the first version of the global snow cover product 
produced in Cryoclim optical satellite swath pixels with solar zenith angle up to 85 
degrees were processed. This limit has now been reduced to 80 degrees in order to 
reduce errors at low solar elevation. In addition to the issue with inaccurate model 
surface temperature causing reduced classification in mountains, some time series issues
were identified during Phase 1 of the project (conference Chapter 2.2 in Solberg et al., 
2017). These will also have focus in the Phase 2 work to improve the optical snow 
cover component.

Inaccuracies in model surface temperature

Among the signatures/features used in the algorithm is “dT” - the difference between 
the model surface temperature and the 10.8 μm (AVHRR Channel 4) brightness 
temperature. The main role of this feature is to prevent pixels dominated by cold (icy) 
clouds from being wrongly classified as snow. The idea is that for cloud-free conditions 
the temperature difference between the brightness temperature observed at 10.8 μm and 
a model surface temperature should be  small – given that the model surface 
temperature is accurate and representative of the pixel area. For cloudy pixel, the 
temperature difference is usually positive and often 10 degrees or larger. The statistical 
coefficients for this signature are chosen so that if the temperature difference is 
significant, the signature "dT" will influence the classification of the pixel towards the 
class cloud. 

If the surface temperature from a numerical model deviates from the true surface 
temperature it can have consequences for our classification. The model surface 
temperature from  ERA-Interim is on ~80 km resolution, far larger than the ~4 km 
resolution of the AVHRR GAC swath data. This makes it particularly difficult to 
achieve a representative model temperature where there are steep changes in the terrain. 
An artificially large difference between the surface model temperature and the 10.8 μm 
brightness temperature can force the class cloud to become the most probable class, and 
can thus make it difficult to identify snow-covered, cloud-free pixels. We have seen this 
effect earlier, in particular for springtime snow cover in mountain areas (the Alps, the 
Pyrenees etc.). A switch was therefore implemented in the code. The switch turns off the
signature "dT" when the surface model temperatures is above 273 K. This does indeed 
allow more snow to be identified in mountains, but it also allows cold clouds to be 
classified as snow, as can be seen in Figure 4. The example shows a section of a 
NOAA-19 swath from March 15 2009, 08:50 UTC, with false colour composites, 
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probability plots and classified results. Central in the image is a large, cold cloud.  The 
yellow circles have been added to lead focus to the large, cloud-covered area that has 
been wrongly classified as snow. Notice the square pattern in the transition from 
correctly classified cloud to the area of clouds wrongly classified as snow. Notice also 
that the warmer clouds (lower left corner and lower right side and corner) are indeed 
correctly classified as cloud. Warm clouds are separated from snow with the aid of the 
other participating signatures.  The circled area shows pixels for which the signature 
"dT" has been switched off, ending in erroneous classification.
 

Figure 5 shows the same plots as Figure 4, except that now the signature "dT" is 
allowed to contribute regardless of model surface temperature (i.e., the switch has been 
switched off). The large clouded area encircled in Figure 4 is now correctly classified as
cloud (grey area in upper, right panel of Figure 5). 
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Figure 4: A section of a NOAA-19 swath from March 15 2009, 08:50 UTC. The 
top row shows RGB colour composites of AVHRR channels 1, 2 and 4 (left) and
2, 3B and 4 (middle), and the classified result (right). Here, grey refers to 
clouded pixels, snow-free land is shown in green, and white shows pixels 
classified as snow. The bottom row shows the probabilities for the classes snow
(left), land (centre) and cloud (right). For the probability plots, red refers to high 
probability, while blue corresponds to low probability. In this image north is 
down and south is up. The white areas (water) in the lower, right corner show 
the Baltic Sea, Lake Ladoga and Lake Onega.



Due to misclassification of pixels of the type seen in Figure 4 we decide to remove the 
switch. The signature "dT" is included for all temperatures. Instead we must seek other 
ways of solving the problem for which the switch was originally included. The 
following sub-chapters describe the efforts made to reduce the difference in temperature
between the model surface temperature and the actual surface temperature. Ideally this 
will improve the identification of snow in steep terrain.

Interpolation of model surface temperature

ERA-Interim global reanalysis is the source of the model surface temperature. Global 
fields on ~80 km resolution is downloaded for the entire time series. In previous 
versions of the snow product (Cryoclim and Sentinel4CryoClim Phase 1) the model 
temperature is interpolated to each satellite swath pixel using fimex3 with the default 
interpolation method. The default method is nearest neighbour, and this is the reason for
the square pattern seen in Figure 4. The interpolation method can be replaced with a 
more advanced scheme. Figure 6 shows an example of interpolation of model surface 
temperature into a satellite swath. The left panel shows the model surface temperature 

3 Fimex is a File Interpolation, Manipulation and EXtraction library for gridded geospatial data, 
developed at the Norwegian Meteorological Institute. 
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Figure 5: The figure shows a part of a NOAA-19 swath from March 15 2009, 
08:50 UTC, and is organized identically as Figure 4. The difference between 
Figures 4 and 5 is that for Figure 5 the signature "dT" is fully included for all 
pixels. 



when nearest neighbour was used. The right panel shows the model surface temperature 
when using bilinear interpolation. 

Should we decide to reintroduce the switch for the signature "dT", in combination with 
bilinear interpolation, the square pattern seen in Figure 4 would be replaced with a 
smoother transition. As long as information on pixel elevation is not included in the 
interpolation, the bilinear interpolation will not necessarily compensate adequately for 
temperature changes due to steep terrain.

Height correction of model surface temperature

In the new version CLARA-A2 data record swath files containing auxiliary data such as
interpolated model surface temperature were collected. The notation "T_pps" will be 
used to specify when the model surface temperature is collected from this set of swath 
files. ERA-Interim model surface temperature is the original source for the T_pps files 
as well, and no height correction has been applied. The files were downloaded and 
tested. Figure 7 shows an example of result when T_pps is used as source for model 
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Figure 6: Examples of interpolated model surface temperature. In the left panel 
nearest neighbour has been used. The right panel shows the result using 
bilinear interpolation.  



surface temperature. The upper row shows RGB colour composites from a part of a 
NOAA-9 swath from April 14 1988, 13:49 UTC. The image is upside down, and the 
lower left corner shows the Alps, while the Pyrenees are seen in the upper part of the 
image. The RGB composites show that the Alps are snow-covered, with a cloud cover 
over the western parts of the mountains. The Pyrenees are also snow-covered with 
clouds covering the western parts. In addition there are thin clouds covering central 
parts of the Pyrenees. The yellow circles have been added to highlight snow-covered 
mountain areas that are mostly cloud-free but not correctly identified. The 
misclassification is mostly due to a non-negligible difference between the model surface
temperature and the true surface temperature.

Height correction of the model surface temperature was attempted to reduce differences 
between the model surface temperature and the true surface temperature in areas of 
steep terrain. For this purpose the swath pixel elevation is needed. This is available from
the physiography swath files that are a part of the CLARA-A2 level 1c dataset. The 
elevation for which the surface model temperature is valid is also needed. The surface 
geopotential field is collected from ERA-Interim and interpolated to the satellite swath. 
Note that the interpolation method used for T_pps is unknown to us. We use bilinear 
interpolation for the geopotential field. Once a value for the difference in height is 
found, we can assume an adiabatic lapse rate and correct the model surface temperature.
For dry adiabatic processes the temperature is reduced with 1 K per 100 meters increase
in height. If the moisture in the air cools to saturation condensation occurs, which leads 
to a decreased cooling rate compared to the dry adiabatic case. An average value of 0.7 
K reduction in temperature per 100 meters increase in elevation is used. The lower row 
of Figure 7 shows the result when height correction is applied. The left panel shows the 
probability for the class snow, and the right panel shows the classified product. For this 
example a larger fraction of the snow-covered pixels in the Alps is classified as snow 
when height correction of the model surface temperature is used. Parts of the Pyrenees 
are also identified as snow-covered.
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Figure 7: The figure shows a part of a NOAA-9 swath from April 14 1988, 13:49 
UTC. The upper row shows RGB colour composites using AVHRR channels 1, 2 
and 4 (left) and 2, 3B and 4 (right). The middle row shows the probability for snow 
(left panel, red colour indicates high probability and blue colour indicates low 
probability) and the classified product (right panel, snow is shown in white, snow-
free land in green, and clouds in grey). T_pps is the source for model surface 
temperature. The lower row shows the same as the middle row, except that T_pps
has been height corrected. The yellow circles have been added to highlight areas 
showing improvement. 



Since the interpolation method used for T_pps is unknown to us, artefacts easily appear. 
An example can be seen in Figure 8 which shows a part of a NOAA-12 swath from 
January 16 1995, 01:04 UTC. The upper row shows RGB colour composites of the 
Himalayas. The solar zenith angle is very high. The lower row shows the original model
surface temperature T_pps (left) and the height corrected T_pps (right). It is obvious 
from the lower, right panel that the geopotential height and the model surface 
temperature must be interpolated using the same method to avoid artefacts that can 
otherwise propagate into the classified product. Unfortunately there was no more time 
to work on this task as it was necessary to start the time consuming task of data 
processing. To avoid artefacts, height correction of T_pps had to be abandoned for now, 
even though examples showed increased identification of springtime snow cover in 
mountains.
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Figure 8: The figure shows a part of a NOAA-12 swath from January 16 1995, 
01:04 UTC. The upper row shows colour composites using AVHRR channels 1, 
2 and 4 (left) and 2, 3B and 4 (right). The bottom row shows the T_pps model 
surface temperature (left) and the height corrected T_pps model surface 
temperature (right).



Some swaths where processed using first T_pps as source for model surface temperature
and then model surface temperature from ERA-Interim (bilinear interpolation). The 
swath products were compared. Figure 9, showing a part of a NOAA-11 swath from 
January 2 1990 at UTC 10:49, gives an example of result. The figure covers the Alps 
(upside down) which are cloud-free and snow-covered. The middle row shows the 
swath product when using model surface temperature from ERA-Interim (bilinear 
interpolation), and the bottom row shows the swath product when using model surface 
temperature from CLARA-A2. The yellow circles have been added to highlight an area 
of relatively large difference. More snowy pixels are correctly identified when model 
surface temperature from ERA-Interim (bilinear interpolation) is used, which is why 
T_pps was abandoned as well, and we returned to ERA-Interim with bilinear 
interpolation as the source for model surface temperature needed by the troublesome 
signature "dT". 

It is clear that this area needs more work. For future work we will attempt to interpolate 
ERA-Interim data in 3 dimensions, or replace the signature "dT" altogether with 
something that does not rely on model temperature data. 
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Figure 9: The figure shows a section of a NOAA-11 swath from January 2 1990,
UTC 10:49. The top row shows RGB colour composites of AVHRR channels 1, 
2 and 4 (left) and 2, 3B and 4 (right). The snow-covered area in the middle of 
the image is the Alps. The middle row shows the swath product result when 
using model surface temperature from ERA-Interim with bilinear interpolation 
(T_nwp). The lower row shows the swath product result when using the model 
surface temperature included in the CLARA-A2 level 1c dataset (T_pps).  



Coastline inaccuracies

The Bayesian snow cover algorithm can be used over land and over water. When using 
the algorithm over water, the statistical coefficients for the classes cloud, water and sea 
ice are used, and the probabilities for these classes are estimated. Over land the 
probabilities for cloud, land and snow are estimated using the corresponding 
coefficients. It is essential to know whether the pixel in question is dominated by land or
by water. In this project we are interested in climate series for terrestrial snow, and thus 
do not process ocean pixels. Pixels along the coast line can be a challenge. If an open 
water pixel is attempted processed with coefficients for the classes land, snow and 
cloud, it is likely to be classified as snow/ice. This happens because the true class (here 
water) is not available, and the algorithm therefore points towards the class that matches
the most of the ones available (here snow).  In Phase 1 of Sentinel4CryoClim the pixel 
land/water information was read from the CLARA-A2 level 1c cloud mask files. The 
information was in the form of binary values for land, coast, and ocean, and coast pixels
were considered land. Figure 10 (left panel) shows a typical result. A narrow belt along 
the coast has been wrongfully classified as snow. During Phase 2 we downloaded 
auxiliary swath files containing fraction of land. When these physiography files are 
available the coast line can be more precisely located, and fewer pixels along the coast 
are misclassified (see right panel of Figure 10). The fraction of land is given as data 
type short with values from 0 to 255. Pixels with values above 100 are considered land 
and processed. Pixels with values equal or below are not processed.

22



23

Figure 10: The figure shows a part of a swath product for NOAA-15 on March 
15 2000, UTC 07:50. The left panel shows the classified product when 
land/ocean information is collected from cloud mask files (Phase 1 result). The 
right panel shows the classified product when fraction of land is used to decide 
whether the pixel is over land or ocean. The red circles have been added to 
draw attention to areas of typical improvement. Pixels assigned to the class 
snow are shown in white, land-covered pixels are shown in green, and clouded 
areas are shown in grey. 



False snow in Asia
The first version of the optical snow cover products based on the CLARA-A2 dataset - 
produced during Phase 1 of Sentinel4CryoClim - revealed some issues, in particular for 
the earlier years of the time series (see Chapter 2.2.5 of the Phase 1 report: Solberg et 
al., 2017). Among the issues reported are cases of false snow cover in Sahara, 
particularly found during the first ~10 years of the data series, and there are also cases 
of false snow cover in South Asia. 

The cases of false snow in South Asia are most frequent during the period for which 
NOAA-12 was the only satellite operating. NOAA-12 covers the period September 16 
1991 to December 14 1998. From September 14 1994 to January 19 1995 NOAA-12 is 
the only satellite operating, which means that errors introduced by NOAA-12 swath 
products cannot be "corrected" by data from the AVHRR instrument on other platforms. 
NOAA-14 data enters from January 20 1995. Figure 11 shows a part of the optical daily 
product from January 20 1995. On this day NOAA-12 and NOAA-14 data exist. The 
left panel shows a part of the original, gridded product. The yellow circle is added to 
draw attention to snow-free areas misclassified as snow-covered in India and 
Bangladesh. 

The middle panel shows the result when gridding NOAA-12 only. The yellow circle 
highlights an area with cloud cover as well as (false) snow. When NOAA-14 only is 
gridded we get the result shown in the right panel. The (false) snow in India and 
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Figure 11: A part of the optical, daily product from January 20 1995. The left 
panel is the original gridded product, and is based on swath products from 
NOAA-12 and NOAA-14. The middle panel shows a gridded product based on 
NOAA-12 swath products only, and the right panels shows a gridded product 
based on NOAA-14 swath products only. For all panels snow is shown in white, 
snow-free land in green, and clouds in grey. The dark blue stripes in the middle 
panel show areas of no satellite cover. 



Bangladesh has disappeared. The middle and right panels show a large difference in 
satellite coverage. Figure 12, borrowed from the CLARA-A2 ATBD for cloud products 
(Karlson et al., 2016), shows the satellite equator passing times as function of time. 
During the period where NOAA-12 operates "alone" it has an equatorial passing time 
that is relatively early in the morning.  This coincides with Northern hemisphere winter, 
meaning that the solar elevation is at it's lowest . For low solar elevations, the static 
coefficients can lead to reduced algorithm performance, and misclassifications of the 
type seen in the left and middle panel of Figure 11 typically appear. 

To remove the false snow in Asia frequently occurring for NOAA-12 due to low solar 
elevation, we implement a test that masks all swath pixels that are classified as snow 
and have a solar zenith angle above 70 degrees. This will inevitably also mask some 
correctly classified snow pixels, but this is still considered the best solution for now 
since the ultimate goal is to improve the multi-sensor product. Figure 13 compares the 
previous (left panel) and new (right version) of the daily, optical product. Both gridded 
products are based on swath products from NOAA-12 and NOAA-14. The right panel 
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Figure 12: The figure is borrowed from Karlson et al., 2016 and shows equator 
passing times for the platforms contributing to the CLARA-A2 dataset.



shows the result when the limitations on NOAA-12 have been implemented. All the 
false snow in south Asia (India, Bangladesh) has been removed. 

False snow in Sahara 

Results from Sentinel4CryoClim Phase 1 showed multiple cases of false snow cover in 
Sahara during the early part of the optical time series. The reason seems to be a 
combination of several factors: The instruments are not identical from platform to 
platform (the response functions differ). The AVHRR instrument onboard NOAA-7 to 
NOAA-14 is of type AVHRR/2 and has no Channel 3A. The set of statistical 
coefficients is based on NOAA-17 and NOAA-18 data mainly (AVHRR/3), but is used 
for all platforms. Figure 14 shows a typical example of false snow in Sahara (left panel).
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Figure 13:  This figure shows a part of the optical, daily product from January 
20 1995 before (left panel) and after (right panel) masking of snow pixels from 
NOAA-12 at low solar elevation has been implemented. Snow is shown in 
white, land in green, and clouds in grey. 



It is not straightforward to develop and implement a proper solution to this problem. We
chose to implement a temperature filter that masks all pixels classified as snow 
occurring at surface model temperatures above 295K. The limit must be carefully 
selected. If the threshold is set too high, erroneous snow is not removed. Should it be set
too low, true snow is in the risk of being masked.  The right panel of Figure 14 shows an
example of result when applying this filter.
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Figure 14: Example of result before (left panel) and after (right panel) a 
temperature filter was added to prevent false snow from appearing in Sahara. 
The example is taken from the daily optical product from March 22 1985. Snow 
cover is shown in white, snow-free land in green and clouds in grey. Areas of no
data are shown in blue.



3 Work package 3: Development of product 
uncertainty estimates

In Phase 1 of Sentinel4CryoClim a first version uncertainty model was developed for 
the optical component of the snow cover product. We followed an approach used in 
EUMETSAT OSI SAF for sea surface temperature (SST): an extensive match-up 
dataset with collocated satellite swath snow products and ground truth snow 
measurements was collected. The data was analysed, and verification measures4 (hit 
rate, false alarm ratio etc.) were computed as function of various variables (time of year,
solar elevation, class probability, snow depth and more). The verification measures 
showed variation with more or less all of the variables tested. Even though there is an 
obvious variation with time of day (solar elevation), the variation in hit rate with time of
year is the most dominating. It was therefore reasonable to introduce a first version 
uncertainty model that was a function of time of year. Variation with solar elevation and 
other variables will be revisited in future work. 

The first version uncertainty model is based on the monthly values for hit rate for each 
class (snow and land). For each pixel of the swath product, accuracy values for the most
probable class are collected from a table with monthly values, and interpolating linearly 
between the two closest months.  This is then added to the swath product files. More 
details can be found in the Phase 1 project report (Solberg et al., 2017). The work in 
Phase 1 was performed in the context of the regional snow cover chain at MET. In 
Phase 2 the uncertainty model has been implemented in the global snow cover 
processing chain. Figure 15 shows an example of the result. The left panel shows a 
section of the March 15 2005 daily optical product, and the right panel shows the 
corresponding uncertainty estimate. Snow-covered pixels get one value, while snow-
free pixels are assigned another value. Pixels with no surface information (clouded, 
ocean, no data) have no uncertainty value. 

4 Conference Chapter 5.2 for more on verification measures
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Uncertainty estimates are now available on the daily optical snow cover products for the
full time series 1982 - 2015, and the uncertainty estimates from all daily products for 
the year 2005 have been validated.  The validation is performed as follows: snow depth 
observation data from the GHCN-D dataset is used as ground truth (see Chapter 5.1 for 
a description of GHCN-D). For each ground observation the corresponding product 
pixel cell is located. The product class (snow, land, ocean, cloud, nodata) as well as the 
probability for correct classification are collected. For 2005 there are ~870 000 
Northern hemisphere observations of snow depth in the GHCN-D dataset. When 
observations that are located in satellite product grid cells with no value are removed 
(either cloudy, mostly water, immersed in wintertime darkness or for other reasons), 
~430 000 samples remain. These are binned in 20 bins from 0 till 1.0 according to their 
uncertainty estimate value. The total hit rate5 is calculated for each bin and plotted in 
Figure 16 (black line).  For 97% of the data the probability for correct classification (hit 
rate) has a value of 0.8 or higher. The bars plotted in Figure 16 show the number of 
samples in each bin.  The black line is dashed for the range where there is very little 
data (below 0.55 probability for correct classification) and therefore is questionable 

5 The total hit rate is the ratio between the number of correct classifications and the total 
number of comparisons for that bin.
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Figure 15: Example of uncertainty estimate result. The left panel shows the 
classified product for March 15 2005 (snow is shown in white, clouds are shown
in grey, land pixels in green, and water is black), while the right panel illustrates 
the corresponding uncertainty estimate. Light blue illustrates the uncertainty 
value for the class snow (here 90.11%), and dark blue illustrates the uncertainty
value for the class land (here 95.79%). White areas are areas with no 
uncertainty value (cloud or ocean).



whether hit rate values should be calculated. The red line shows an ideal result. Pixels 
with low probability for correct classification should seldom be correctly classified (y-
axis), while pixels with high probability for correct classification should often be 
correctly classified. The result seen in figure 16 does indeed show an increase in 
calculated probability for correct classification with increasing probability for correct 
classification as collected from the product. The figure also shows that for pixels with 
uncertainty in the range ~0.6 - 0.9 the uncertainty estimate overestimates the observed 
mismatch.
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Figure 16: Comparison of product uncertainty estimate with actual (calculated) 
uncertainty. The black line shows the validation result. The red dashed line 
shows the theoretical result. The blue bars show the number of comparisons 
made for each bin. This is based on validation of all daily products for the year 
2005.



4 Work package 4: Integration of Sentinel-3 data

The AVHRR instrument is a fundamental data source for the CryoClim snow cover time
series. AVHRR has been active since the early 80-ies and is currently flying on NOAA-
15, NOAA-18, NOAA-19, MetOp-A and MetOp-B. However, no more AVHRRs are 
planned for launch. To be able to continue the global snow cover monitoring and 
prolong the climate data set, an alternative source for optical data is needed. 

The Visible Infrared Imaging Radiometer Suite (VIIRS) instruments has been flying 
since 2011 onboard Suomi NPP. A second VIIRS was recently launched on NOAA-20. 
NOAA-20 is the first of 4 planned polar-orbiting satellites of the Joint Polar Satellite 
System (JPSS-1, -2, -3, and -4), the US new generation polar-orbiting operational 
environmental satellite system. VIIRS has 22 spectral bands. 16 of these have a spatial 
resolution of 750 m at nadir, 5 have a spatial resolution of 375 m at nadir, and the final 
is the day/night band with a spatial resolution of 750 m. All AVHRR/3 bands are 
continued on VIIRS, and the regional optical snow cover chain at MET has earlier been 
adapted to VIIRS. Local AVHRR and VIIRS swaths are processed hourly.

The Sentinel-3  satellites are a part of the European Commision’s Copernicus 
programme for Earth observation. Sentinel-3A was launched on February 16 2016 and 
Sentinel-3B on April 25 2018. The design life is 7.5 years, with additional fuel for 
another 5 years. Two more Sentinel-3s are planned, and the total programme lifetime is 
~15 years. The satellites are polar orbiting at a height of 814.5 km with a local 
equatorial crossing time of 10:00 am. With two satellites in orbit, the revisit time is 
daily. Among the instruments on board Sentinel-3, is the optical Sea Land Surface 
Temperature Radiometer (SLSTR) instrument. SLSTR has two instrument views: nadir 
and oblique (rear). The nadir swath scanner footprint is 1400 km wide, while the 
oblique is 740 km. In the visible and shortwave infra-red range there are six channels 
recording at 500 m resolution.  In addition to these solar reflectance bands there are five
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channels with 1000 m resolution in the thermal range. The radiometric bands are listed 
in Table 1 below. 

Band
Central

Wavelength
(µm)

Resolution
(m)

Central Wavelength for similar
channel on AVHRR/3 (µm)

S1 0.554  500  

S2 0.659  500    0.630 (Channel 1)

S3 0.868  500    0.862 (Channel 2)

S4 1.375  500  

S5 1.613  500    1.61 (Channel 3A)

S6 2.256  500  

S7 3.742  1000    3.74 (Channel 3B)

S8 10.854  1000    10.8 (Channel 4)

S9 12.023  1000    12.00 (Channel 5)

F1 3.742  1000  

F2 10.854  1000  

Table 1: the SLSTR radiometric bands and AVHRR/3 channels.

Table 1 contains a column for the AVHRR channels as well. All AVHRR/3 bands are 
continued on SLSTR, meaning that the Sentinels are relevant for CryoClim as a way to 
continue the global snow cover product beyond the lifetime of the remaining AVHRR 
platforms. 

4.1 Porting the optical chain to Sentinel-3

The SLSTR data is organized fundamentally different from the AVHRR GAC data 
provided by CM SAF. Extensive rewrite of code was therefore necessary to adapt to the 
SLSTR input data. The AVHRR GAC data is organized according to swaths - with a 
handful of HDF5 files per swath, one containing the radiometric data, latitude and 
longitude and the rest for auxiliary data. The SLSTR data is organized as sectors, with  

32



one directory for each sector, and the directory contains more than 100 files (see Table
2).

cartesian_an.nc flags_in.nc S1_quality_ao.nc S5_quality_an.nc  S6_radiance_co.nc

cartesian_ao.nc flags_io.nc S1_radiance_an.nc S5_quality_ao.nc S7_BT_in.nc

cartesian_bn.nc geodetic_an.nc S1_radiance_ao.nc S5_quality_bn.nc S7_BT_io.nc

cartesian_bo.nc geodetic_ao.nc S2_quality_an.nc S5_quality_bo.nc S7_quality_in.nc

cartesian_cn.nc geodetic_bn.nc S2_quality_ao.nc S5_quality_cn.nc S7_quality_io.nc

cartesian_co.nc geodetic_bo.nc S2_radiance_an.nc S5_quality_co.nc S8_BT_in.nc

cartesian_in.nc geodetic_cn.nc S2_radiance_ao.nc S5_radiance_an.nc S8_BT_io.nc

cartesian_io.nc geodetic_co.nc S3_quality_an.nc S5_radiance_ao.nc S8_quality_in.nc

cartesian_tx.nc geodetic_in.nc S3_quality_ao.nc S5_radiance_bn.nc S8_quality_io.nc

F1_BT_in.nc geodetic_io.nc S3_radiance_an.nc S5_radiance_bo.nc S9_BT_in.nc

F1_BT_io.nc geodetic_tx.nc S3_radiance_ao.nc S5_radiance_cn.nc S9_BT_io.nc

F1_quality_in.nc geometry_tn.nc S4_quality_an.nc S5_radiance_co.nc  S9_quality_in.nc

F1_quality_io.nc geometry_to.nc S4_quality_ao.nc S6_quality_an.nc S9_quality_io.nc

F2_BT_in.nc  indices_an.nc S4_quality_bn.nc S6_quality_ao.nc time_an.nc

F2_BT_io.nc indices_ao.nc S4_quality_bo.nc S6_quality_bn.nc time_bn.nc

F2_quality_in.nc indices_bn.nc S4_quality_cn.nc S6_quality_bo.nc time_cn.nc

F2_quality_io.nc indices_bo.nc S4_quality_co.nc S6_quality_cn.nc time_in.nc

flags_an.nc indices_cn.nc S4_radiance_an.nc S6_quality_co.nc viscal.nc

flags_ao.nc indices_co.nc S4_radiance_ao.nc S6_radiance_an.nc xfdumanifest.xml

flags_bn.nc indices_in.nc S4_radiance_bn.nc S6_radiance_ao.nc             

flags_bo.nc indices_io.nc S4_radiance_bo.nc S6_radiance_bn.nc            

flags_cn.nc met_tx.nc S4_radiance_cn.nc S6_radiance_bo.nc                 

flags_co.nc S1_quality_an.nc S4_radiance_co.nc S6_radiance_cn.nc          

Table 2: the list of files containing data for one SLSTR sector.
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Data from the two instrument views are on separate files indicated by "_xn.nc" for nadir
and "_xo.nc" for oblique. For now we focus on the nadir view. Furthermore, SLSTR has
500 m resolution for some of the channels, including S2, S3 and S5 which are needed in
the snow cover algorithm. We do a reduction to 1000 m resolution for these channels. 
The snow cover algorithm uses reflectances from the AVHRR visible channels 1, 2 and 
3A. SLSTR visible channel data is stored as radiances. We collect the top of atmosphere
(TOA) solar irradiance from the corresponding "_quality_xn.nc" files and convert from 
radiance to reflectance values. AVHRR can only transmit one of Channel 3A and 3B at 
the time. SLSTR transmits both (i.e., S5 and S7). It could be useful to combine the 
information from both of these simultaneously. However, for now we implement only 
the use of S5. The number of files needed for each sector reduces to 12 (see Table
3). 
 

Filename content needed

S2_radiance_an.nc S2 radiance

S2_quality_an.nc TOA solar irradiance for S2

S3_radiance_an.nc S3 radiance

S3_quality_an.nc TOA solar irradiance for S3

S5_radiance_an.nc S5 radiance

S5_quality_an.nc TOA solar irradiance for S5

S7_BT_in.nc S7 brightness temperature

S8_BT_in.nc S8 brightness temperature

geodetic_an.nc latitude, longitude, elevation

geometry_tn.nc solar zenith angle

met_tx.nc NWP data, skin temperature

flags_an.nc land information

Table 3: the SLSTR sector files needed when using the 
optical snow cover algorithm on SLSTR data. 

With all necessary input data in place, the statistical coefficients derived for AVHRR are
read, and the snow cover algorithm estimates probabilities for snow, land and cloud. 
Figure 17 shows an example of snow cover classification from April 9 2017.  The data 
archive was searched for daylight scenes containing snow and for which we had 
AVHRR or VIIRS swaths in near time for comparison. Not many scenes have been 
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processed at this point, but the results seen so far are very promising keeping in mind 
the simplifications that were made. 
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Figure 17: Example of result for SLSTR processing. The top row shows a part 
of an SLSTR sector crossing Northern Norway on April 9 2017, 09:10 UTC (left)
and the corresponding classed product (snowy pixels in pink, right). The bottom
panels show RGB colour composites of a nearby AVHRR swath (NOAA-19, 
April 9 2017, 09:55 UTC, left and middle), and the corresponding probability for 
snow (right panel, red indicates high probaility for snow, blue corresponds to 
low probaility for snow).



4.2 Implementing SLSTR in the processing chain 

The optical and PMW snow service processing in CryoClim / Sentinel4CryoClim is 
heritage from EUMETSAT OSI SAF. It is a flexible system that allows data from 
several sensors to be processed individually, with one sub-module for each, and then 
combined into a multi-sensor product. Adding new sensors in this system is straight 
forward. The SLSTR version of the processing chain has been implemented as an 
independent modul in the optical snow cover processing chain. It has been tested and 
run in the same environment that is used for the processing of the AVHRR GAC, PMW 
and HMM components. 
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5 Work package 5: Validation of optical component

In the CryoClim project the global, optical daily snow cover product was validated
against in situ snow depth observations from about 30 stations daily through 2005. Data 
from WMO stations from the Global Historical Climatology Network Daily (GHCN-D) 
database served as "ground truth", and was compared with the geographically and 
temporal corresponding satellite product pixel. The ground stations were carefully 
selected to only use stations that represent the surrounding terrain well. Stations with 
suspicious snow depth observations were removed, and all snow depths lower than 5 cm
were avoided. All this was done to reduce the representation error. Figure 18 shows the 
variation in accuracy through the year found in CryoClim. A total of 8547 points were 
compared, and the total accuracy (hit rate) for the gridded optical product was 97%. 

When developing the first version uncertainty estimate in Phase 1 of this project, an 
extensive validation of AVHRR Local Area Coverage (LAC) swath scenes covering 
Scandinavia was performed. The resolution of these regional swath products is 1 km, 
compared to 4 km for the global swath product. Furthermore, the terrain types 
encountered in the regional area are fewer, and closer to the terrain types for which the 
algorithm was originally developed. No selection of stations was done to avoid 
"difficult" terrain. All swaths from the 2015/2016 season were compared with ground 
snow observation. A total of 188 620 samples were collected. The overall hit rate was 
94%. The total hit rates for classes snow and land were both also 94%. Seasonal 
variations very similar to that found in CryoClim were found here as well. Conference 
the report from Phase 1 (Solberg et al., 2017) for more details. 
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In Phase 2 we increase the validation efforts substantially. Four different validation 
datasets are used, and we validate the entire 34 year long time series of daily optical 
products.  This chapter provides a short description of each validation dataset, a section 
on the validation methods used, and then the validation results organized per dataset. 
Knowing that a particular ground snow observation can be listed in more than one of the
validation datasets, we do not present results that are the sum for all four validation 
datasets. 

In this phase there has been no screening of ground stations based on their location, 
which opens for representation error. It is not optimal to use a ground-based snow depth
measurement as “truth” for the snow cover condition in an entire satellite product grid 
cell. There might be geographical or topographical factors that make the ground 
observation a poor representative for the entire satellite product pixel, such as large 
variation in altitude or land use within the pixel. Particular during melting and first 
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Figure 18: Validation results from CryoClim. The figure shows the monthly total 
hit rate for the CryoClim daily optical component for 2005.



snowfall, the in situ snow observation might not represent the full satellite product pixel
very well. This is something we must keep in mind when choosing to validate a satellite
based product against ground point observations. 

The validation chapter in this report focuses on the optical component only. NR is 
responsible for validation of the multi-sensor product (conf. Solberg et al., 2018). While
the multi-sensor product has no gaps due to cloud cover or polar night, the optical daily 
product has gaps for both reasons. The number of compared samples will therefore be 
lower for the optical product than for the multi-sensor product.

5.1 Validation datasets

As part of the work package on validation in Phase 1 of Sentinel4CryoClim, NR looked 
into various available historical data records for ground snow observations. A total of 
four datasets were selected, including GHCN-D used in CryoClim. These are briefly 
described below. A thorough description can be found in Chapter 4 of the project report 
from Phase 1 of this project (Solberg et al., 2017).

The distribution of validation data per year is shown in Figure 19. Each source is 
indicated by a colour. GHCN-D is the dominating source throughout the satellite data 
period 1982 - 2015. The FSU data is limited in amount and not easy to spot, and is 
therefore encircled by a pink ellipse in Figure 19. The figure shows the number of actual
comparisons, after the removal of cloudy, water-filled and night time pixels.

GHCN-D 
Global Historical Climatology Network Daily is an integrated database of daily climate 
observations from land surface stations across the globe. The data records have 
undergone a common set of quality assurance reviews. GHCN-D contains records from 
over 90 000 stations in 180 countries and territories, and the variables include maximum
and minimum temperature, total daily precipitation, snowfall and snow depth. About 
two thirds of the stations provide precipitation measurements only.

While data from GHCN-D version 3.01 was used in CryoClim, version 3.22 is used 
now. The overall quality is assumed to be higher with this version of the dataset. 
GHCN-D does not contain direct information on snow cover, so snow depth 
observations are used instead. A point measurement of snow depth does not necessarily 
correspond well to the full snow cover of the 5x5 km grid cell, which opens for 
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representation error. In CryoClim stations were hand-picked to reduce representation 
error, and suspicious data was removed. For the validation work in Sentinel4CryoClim 
there has been no screening of stations based on terrain, and no manual removal of 
suspicious data. We do, however, repeat the screening of data based on snow depth. 
Snow depths between 0 and 5 cm are not used.

The GHCN-D dataset contains data for the entire period 1982 - 2015. Snow depth 
observations from a total of 7829 unique stations are used for validation of the optical 
component. After removing samples for which the satellite product is clouded, 
dominated by water or for some other reason contains no data (most often due to winter-
time darkness), a total of ~11 Million samples remain. GHCN-D is by far the 
dominating source of validation data, as shown in Figure 19.

SCCONE
Snow Cover Characteristics Over Northern Eurasia (SCCONE) is created from daily 
snow observations at some 600 meteorological stations, and maintained by the All-
Russia Research Institute of Hydrometeorological Information - World Data Centre  
(RIHMI-WDC). The snow observations include snow depth measurements and visual 
determination of the amount of snow covering the area around a meteorological station. 

The SCCONE snow extent observations are used for validation. Observed snow cover 
below 50% is considered snow-free while 50% and above is considered snow-covered. 
Data flagged as missing, doubtful or with undocumented flag value has been removed. 
SCCONE is the second largest of the four validation datasets. In total 528 unique 
stations contribute to the 1 875 039 samples used when validating the optical daily 
product for the period 1982 - 2015 (see Figure 19).

HSDSD
HSDSD is a dataset collected in the former Soviet Union and processed by the State
Hydrometeorological Service (Obninsk, Russia). The dataset includes snow depth and 
snow cover measurements from some 280 stations. The data is quality controlled, and 
snow depth is recorded year-round, also when snow is absent. This makes it possible to 
accurately identify the onset and end of the periods with snow cover, in contrast to the 
regular WMO synoptic observations, which often omit snow depth observations when 
snow is absent. 

The HSDSD dataset starts in 1881 and ends in 1995. We use data from 1982 to 1995. 
The report from Phase 1 of Sentinel4CryoClim contains further descriptions of pre-
screening of the HSDSD data performed by NR, but it is worth mentioning that 
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geographical coordinates for the stations are taken from the GHCN-D dataset, meaning 
that stations that are not also described in GHCN-D are removed from the HSDSD 
validation dataset. 247 stations are used for validation of the optical component, and 
there are 336 862 samples in total. 

FSU
The FSUHSS dataset is generated by the Institute of Geography, Russian Academy of 
Sciences. The dataset includes measurements of snow cover, snow density, snow depth 
and snow water equivalent. The observations are done along transects.  The dataset 
contains data from a total of 1345 stations. There are no snow-free observations. 

Available data for the period 1 August 1992 – 31 December 1996 is collected from FSU.
Snow cover measurements below 50% snow cover are considered to be snow-free in
order to compare with the binary satellite product. Data flagged as suspicious is 
removed. Like for the HSDSD data, the station coordinates are taken from the GHCN-D
dataset, and stations not also available in GHCN-D are removed from the validation. 
For validation of the optical product a total of 231 unique stations contribute, and 7442 
comparisons are made.
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5.2 Validation methods

We follow the strategy used in CryoClim and Phase 1 of Sentinel4CryoClim. The 
ground observation is translated from snow depth if necessary - to a binary snow/no 
snow value. Samples with snow depths above 0 cm and below 5 cm are removed. The 
ground snow observation (snow, no snow) is compared with the class value (snow, 
snow-free) of the nearest pixel from the satellite product of the same day, and 
verification measures such as total accuracy, total hit rate for each class (snow, land), 
false alarm ratio etc. are computed. As discussed earlier such a comparison can 
introduce representation error. 

Table 4 shows the 2x2 contingency table for matches and mismatches between the snow
cover product derived from satellite and the ground observation of snow. 
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Figure 19: The amount of validation data from each datasets shown as 
function of year. 



Ground observation: 
snow

Ground observation: 
no snow

Satellite product: snow A (hit)   B (false positive)

Satellite product: no snow C (miss) D (true negative)

Table 4: 2 x 2 contingency table (confusion matrix) for verification of satellite 
snow product.

A perfect match between the satellite product and the ground observations would 
produce only hits and true negatives, and no cases of alternatives B and C. Statistical 
scores (verification measures) can be computed from the contingency table values and 
used to describe the products’ performance. Among these scores are hit rates, false 
alarm ratio, probability of false detection and bias:

• Total hit rate (accuracy): (A+D)/(A+B+C+D)
• The hit rate (accuracy) for snow: A/(A+C)
• The hit rate (accuracy) for snow-free: D/(B+D)
• The false alarm ratio: B/(A+B)
• The probability of false detection: B/(B+D)
• Bias: (A+B)/(A+C)

Below we present confusion matrices, tables and various plots of the validation results. 
The results are presented for each validation dataset source. 

5.3 Validation results: GHCN-D 1982 - 2015

Table 5 shows a confusion matrix of the comparison between daily optical products and 
snow observations from the GHCN-D dataset. Some 11 million data points are 
compared, and the overall accuracy is 96%. Hit rate for each surface class (snow and 
snow-free) is 94% and 97% respectively. 7829 unique stations contribute.
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GHCN-D: snow

(SD > 5 cm)

GHCN-D: no snow

(SD = 0 cm)

Total

Satellite product: snow 1 970 411 289 236 2 259 647

Satellite product: no snow 136 763 8 651 587 8 788 350

Total 2 107 174 8 940 823 11 047 997

Hit rates Hit rate snow: 94% Hit rate land: 97% Total hit rate: 96%

Table 5: Summary of validation results against GHCN-D.

 
Table 6 shows a summary of the verification measures for each month of the year. The 
majority of data samples belong to the summer season. The northern areas are dark 
during winter, and many ground observation stations have insufficient daylight for a 
satellite product to be generated. We see that the overall accuracy is 92% or higher for 
each month, which means that the algorithm generally does a good job at correctly 
classifying the pixels. Looking, however, at accuracy (hit rate) for the classes snow and 
land independently, we see that the hit rate for snow is very poor during summer, 
indicating that snow observed at the ground stations during summer time is often not 
found by the algorithm. There are several factors that can contribute to this. The extent 
of the summertime snow-covered areas might be too small to dominate the 5x5 km grid 
cell (representation error), the surface appearance of the snow might be too different 
from the winter/spring snow6, and therefore not recognized by the current set of static 
statistical coefficient, or there might be other shortcomings in the algorithm that cause 
this. Chapter 5.8 contains a further discussion on poor hit rate for the class snow during 
summer. We return also to the topic later in this sub-chapter.

The hit rate for land is 87% at the lowest (below 90% for the winter months December 
through February), and above 95% for most of the remaining year (May through 
October). We suspect that onset of snow cover and snow melt has an influence on the 
reduced performance during the winter season, and representation error can be a factor. 

6 The majority of the training data on which the statistical coefficients are based are collected 
from swaths during spring (February to May).
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Month Accuracy Hit rate
snow

Hit rate
land

False
alarm
ratio

Prob. of
false

detection

Bias Number of
samples

January 0.93 0.96 0.87 0.052 0.13 1.0 559 280

February 0.93 0.96 0.87 0.046 0.13 1.0 730 475

March 0.93 0.94 0.91 0.056 0.085 1.0 886 898

April 0.93 0.89 0.94 0.17 0.059 1.1 919 075

May 0.96 0.84 0.96 0.49 0.036 1.7 1 142 222

June 0.98 0.69 0.98 0.81 0.017 3.5 1 294 466

July 0.99 0.14 0.99 0.99 0.012 10 1 420 403

August 0.99 0.13 0.99 0.99 0.01 14 1 368 531

September 0.99 0.49 0.99 0.91 0.014 5.7 1 095 938

October 0.96 0.84 0.97 0.52 0.031 1.7 791 757

November 0.93 0.91 0.93 0.20 0.066 1.1 440 682

December 0.92 0.95 0.88 0.089 0.12 1.0 398 270

Total 0.96 0.94 0.97 0.13 0.032 1.1 11 047 997

Table 6: Monthly verification measures for validation of daily optical snow cover 
product against GHCN-D for 1982 - 2015.

The false alarm ratio describes how many of the satellite snow classifications that are 
snow-free according to the ground observation. The table shows that the false alarm 
ratio is very high during summertime. The false alarm ratio is considered a measure of 
reliability. We select a random summer date: July 1 2005. For this date there are 28 
cases of false positives (ref. Table 4 for definition of "false positive"). 9 of these are 
located in Norway, and listed in Table 7. Each is looked up and found to be located near 
a road in a valley or along the coast, in proximity to mountain areas (see also Figure 20 
where the locations of the 9 stations are indicated by red circles). Based on this we 
conclude that representation error is very likely the main reason for the high false alarm 
ratio during summer time seen in Table 6. Due to the definition of bias (see Chapter 5.2)
we are for the same reason not alarmed by the high bias values seen for the same 
months.
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Date Station ID latitude longitude sample type

20050701 NO000110851 61.33 6.93 SNOW_NOSNOW

20050701 NO000133554 60.90 6.72 SNOW_NOSNOW

20050701 NO000110977 62.34 8.05 SNOW_NOSNOW

20050701 NO000110833 61.71 6.62 SNOW_NOSNOW

20050701 NO000110770 61.69 6.81 SNOW_NOSNOW

20050701 NO000133578 62.33 7.51 SNOW_NOSNOW

20050701 NO000110788 61.42 6.38 SNOW_NOSNOW

20050701 NO000110743 60.90 7.20 SNOW_NOSNOW

20050701 NO000134694 62.67 9.20 SNOW_NOSNOW

Table 7: Cases of false positives for July 1 2005 in Norway when 
validating against GHCN-D. The station locations are also plotted 
in Figure 20 which shows a section of the daily optical snow cover
product from this date.
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The probability of false detection gives an indication of the fraction of snow-free 
observations that are classified as snow in the satellite product. This ratio is above 10% 
during winter (DJF), but otherwise very low. Here, again, representation error is 
expected to have at least some influence. 

So far we have discussed the monthly verification measures. Figure 21 shows the total 
accuracy as function of time of year with one line for each year of the period 1982-
2015. All data within one month contributes to the monthly value. 
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Figure 20: The Figure shows a section of the daily, 
optical product from July 1 2005. Snow cover is seen in 
white, land is shown in green, and areas that are clouded
for all available satellite swaths of this day are shown in 
grey. The red circles show the location of the 9 cases of 
false positives in Norway on this date (ref. Table 7).



The figure shows that during summer time the total accuracy has improved with time. 
This is also the case for the fall season, while the results are not so clear for the first 4 
months of the year. For two reasons we expect the validation to improve from the start 
towards the end of the dataset period: the algorithm is trained using data from AVHRR/3
(first carried on NOAA-15 launched in May 1998), and there is much more data 
available for the latter half of the dataset period (see Figure 3). 
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Figure 21: Monthly total hit rate when validating against GHCN-D. Each
year is plotted as a separate line.



Figure 21 is a plot of monthly averaged values for total hit rate. We show a similar plot 
in Figure 22, but now the daily hit rate values are shown. This is to illustrate the level of
variations from day to day. To avoid a very cluttered figure we show only the years 
1982 and 2015. There is less variation from day to day in 2015 than in 1982.  

49

Figure 22: Daily total hit rate when validating against GHCN-D.



Figure 23 shows a map plot of the total accuracy (hit rate) for the year 2005 when 
validating against GHCN-D, and Figure 24 shows the corresponding plot for hit rate for 
the class snow (similar plots can be made for other statistical scores as well). Figure 25 
shows the number of samples from each station. Each dot in Figures 23 and 24 
represents a ground station, and the colour of the dot shows the hit rate value for that 
particular ground station. Blue colour corresponds to high accuracy, while red shows 
low accuracy. Note that these plots are designed as an instrument to investigate cases of 
poor statistical scores.  The stations with the poorest scores are plotted on top so that 
they do not "drown" underneath all the blue dots from all the well performing stations. 
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Figure 23: Total hit rate per ground station when validating against GHCN-D for 
the year 2005. Each dot represents a ground station. The colour of the dot 
gives the hit rate for the ground station.



This must be kept in mind so that the plots are not misleading the reader. The "carpet" 
of blue dots seen in Figures 23 and 24 illustrates again the overall high accuracy 
achieved. We must also keep in mind that hit rates have been calculated for all stations, 
even for those with just a few samples in total, meaning that the results from the stations
with few ground observations might not be representative. 
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Figure 24: Hit rate for the class snow when validating against GHCN-D for the 
year 2005. Each dot represents a ground station. The colour of the dot gives 
the hit rate. Note that stations with no observation of snow during 2005 is not 
plotted. This figure therefore shows 2602 unique stations, while Figure 23 
shows 3472 unique stations. 



We notice that the red, orange and yellow dots in Figure 24 - indicators of low hit rate 
for snow - to some extent are gathered in certain areas: the western part of North 
America, the eastern part of North America and the central part of Europe. This might 
be due to geographical (terrain) reasons, or it might be due to differences in data quality 
from one region (country) to another. 7 stations are selected for a closer look. They are 
selected either based on their colour (i.e., hit rate for snow) in Figure 24 or from 
scanning through the validation output files looking for stations showing frequent cases 
of missed snow observations. To fully understand the mechanisms causing reduced 
performance we would have to repeat the swath processing using a version of the code 
that stores extra data (such as each signature value for each swath pixel) for these 
stations. Due to time constraints this is not doable. We will, however, look at the 

52

Figure 25: Number of samples from each ground station for the year 2005. This
plot shows all stations, also those with only snow-free ground observations.



validation results for the year 2005 as function of time of year, compare ground snow 
depth (if easily available) with the validation results, and assess the location of the 
station in terms of surrounding terrain and topography. Hopefully this will improve the 
understanding of the algorithm weaknesses and be of help in future work. 

1) CA001078209: Topley Landing, British Columbia, Canada
This station is found near Babine Lake at an elevation of 722 m, on a plateau between 
the Canadian Coast mountains and the Rocky Mountains. The terrain surrounding the 
station looks relatively uniform, and consists of forest. 199 comparisons are made 
between observed snow depth and the nearest satellite product grid cell during 2005. 
The overall accuracy is 92%. From April through October the majority of the samples 
are of type "true negative" (ref: Table 4). There are 151 true negatives in total. On 4 
occasions during the late spring and summer, the satellite grid cell is classified as snow 
while no snow is recorded at the station. These are believed to origin from erroneous 
classifications in the satellite product. 32 of the 44 in situ observations of snow coincide
with snow in the satellite product. This gives a hit rate for snow of 73%. The majority of
the 12 missed snow observations occurs during the month of most intense melting at the
ground station. This suggests that both algorithm shortcomings (see Chapter 5.3) and 
representation error are likely candidates causing the missed snow observations. 

2) CA001105658: Grouse Mountain, British Columbia, Canada 
The station is located just north of Vancouver near a mountain resort at Grouse 
mountain at an elevation of 1128 m. There are in situ observations of snow from the 
start of year until late-April, and then from mid-November through December. Only 2 
out of 47 ground observations of snow are seen in the satellite product, giving a very 
poor hit rate for snow (4%). The total accuracy for this station is 68%. The station is 
located approximately 2 km from North Vancouver and no more than 2 product grid 
cells away from the sea front. This makes it very difficult to get "good" validation 
results for this station. Although the mountain terrain continues north of Grouse 
Mountain the station location is not typical for the surrounding terrain. 
 
3) US000014755: Mount Washington, New Hampshire, USA
This station is located at Mount Washington in New Hampshire, at an elevation of 1910 
m. Mount Washington is the highest peak in the north-eastern United States (1916 m) 
and according to Wikipedia also the most topographically prominent mountain east of 
the Mississippi River. Based on this description we expect the validation results to be 
heavily influenced by representation error, and the ground station is probably not well 
suited for validation of a satellite product of 5 km resolution. The overall accuracy is 
65%, and the accuracy for the class snow is 31% for 2005.  The station is snow-free 
from early May to late October. Of the 96 in situ observations of snow, the nearest pixel 
of the daily satellite product show snow on 30 occasions. When the dates for these 
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occurrences are compared with the observed snow depth at the station it seems to 
coincide with recent snow fall. Representation error is very likely to cause the poor 
accuracy for snow for this station. 

4) RO000015280: Varfu Omul, Romania
This station is located at Omu Mountain, the highest mountain top of the Romanian 
mountain range Bugeci. The station elevation is 2504 m. The validation data record 
contains observed snow only, and there are 85 samples for 2005. 43 of these have the 
class snow in the satellite product pixel containing the station coordinates, giving a total 
hit rate, as well as hit rate for snow, of 51%. The in situ data shows a snow cover that 
lasts until late June and reappears in late November. Comparisons of the observed snow 
depths and the satellite product grid cell class show similarities to that seen for the 
station at Mount Washington. Fresh snow falls can make the snow extent sufficiently 
large to be detected by the satellite product, but only a more limited area have the 
conditions needed to maintain the snow cover.  

5) SP000008215: Navacerrada, Spain
The station is located near the municipality Navacerrada, ~50 km north-west of Madrid,
at an elevation of 1894 m. The area is dominated by the Sierra de Guadarrama (the 
Guadarrama Mountains). For the year 2005 52 comparisons are made between the 
ground observation of snow depth from this station and the daily optical product. There 
are no snow-free in situ observations. The satellite product pixel is assigned to the class 
snow for 20 of the samples and to the class land for 32. This gives a hit rate for snow of 
38%.  The nearby terrain is not very uniform. Comparisons of the measured snow depth 
value with the validation results indicate that the success rate is larger for larger snow 
depth values. Representation error and perhaps also algorithm shortcomings seem 
relevant here.

6) FR000007560: Mount-Aigoual, France
This station near the French Riviera is very noticeable in Figures 23 and 24 due to its 
dark red colour (i. e., very low hit rate value for snow). The station is the highest 
manned weather station in France and is located at 1567 m on Mount-Aigoual, 70 km 
from the Mediterranean. The in situ snow depth measurements contain no snow-free 
observations. Of the ~40 samples from 2005, there are only 2 cases for which the 
satellite product grid cell is classified as snow-covered. This gives a hit rate (accuracy) 
for snow of 5%. Again representation error seems to be the main reason for the poor 
result from this station. The mountain top location of the ground station is not 
representative for the 5x5 km satellite product pixel in which the station is located.

7) AM000037682: Amasia, Armenia
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This station is located in Northwest Armenia near the border to Turkey at an elevation 
of 1866 m. The country Armenia is a part of the Armenian Highland, the highest plateau
in the Northern Middle East. The terrain is mostly mountainous and flat, and the 
highland continental climate allows for hot summers and cold winters. The station 
reports snow for the first ~4 months of 2005. No snow-free observations are recorded. 
In total 41 comparison are made between the in situ snow depth value and the satellite 
product grid cell. For 25 of these the product grid cell is classified as snow-covered. The
remaining 16 is snow-free in the satellite product. The hit rate for snow is 61%.  The 
observed snow cover lasts until mid-April, and reappears in December. From ~mid-
March an onward, however, the satellite product fails to identify this grid cell as snow. 
Scattered snow or algorithm shortcomings may be among the reasons why the melting 
season is not recorded. The terrain is considered "undramatic" and the station validation 
data is considered good. 

The locations for the seven ground stations are shown in Figure 26. Among these seven 
we have seen examples of stations that due to their location probably should not have 
been used for validation of a 5 km resolution satellite product. We have also seen 
example of stations that in terms of topography seem well suited for validation 
purposes, but for which the algorithm still fails to record the melting season, leading to 
reduced validation results during spring/early summer. This might be due to scattered 
snow, or an indication that the static set of statistical coefficients used in the Bayesian 
method does not describe the fading snow cover well. The algorithm shows signs of 
underestimating snow cover at the end of the melting season. 
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The plots shown in Figures 23-25 are repeated for the years 1985, 1995 and 2015, and 
included in Appendix A. The results for 1985, 1995 and 2015 generally support what is 
seen for 2005. 
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Figure 26: The figure is a copy of figure 24 on which the 7 selected ground 
stations are identified. Validation results from these stations are discussed at 
the end of Chapter 5.3.



5.4 Validation results: SCCONE 1982 - 2015

An overall number of 1 875 039 validations against snow extent data from SCCONE 
are done for the period 1982 - 2015. The validation results are distributed as shown in 
the confusion matrix below (Table 8). The total accuracy is 97%, and 528 unique 
stations contribute. The overall hit rate for the class snow is 95%, and for the class land 
98%.

SCCONE: snow SCCONE: no snow Total

Satellite product: snow 787 364 23 740 811 104

Satellite product: no snow 39 015 1 024 920 1 063 935

Total 826 379 1 048 660 1 875 039

Hit rates Hit rate snow: 95% Hit rate land: 98% Total hit rate: 97%

Table 8: Summary of validation results against snow extent data from the 
SCCONE dataset.

Month Accuracy Hit rate
snow

Hit rate
land

False
alarm
ratio

Prob. of
false

detection

Bias Number of
samples

January 0.97 0.98 0.75 0.0076 0.25 0.99 113 942

February 0.97 0.98 0.70 0.0081 0.30 0.99 188 621

March 0.96 0.97 0.84 0.012 0.16 0.98 232 031

April 0.94 0.94 0.96 0.027 0.044 0.96 188 007

May 0 96 0.90 0.98 0.096 0.023 1.0 185 504

June 0.99 0.74 0.99 0.61 0.012 1.9 190 161

July 0.99 0.21 0.99 1.0 0.011 9.0 194 155

August 0.99 0.25 0.99 0.99 0.011 2.0 180 771

September 0.98 0.55 0.99 0.52 0.013 1.2 143 944

October 0.92 0.79 0.97 0.077 0.029 0.86 113 176

November 0.92 0.91 0.94 0.022 0.065 0.93 75 888

December 0.96 0.97 0.87 0.011 0.13 0.98 68 839

Total 0.97 0.95 0.98 0.029 0.023 0.98 1 875 039

Table 9: Monthly verification measures for validation against SSCONE.
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Table 9 shows the monthly verification measures. The overall monthly accuracy is 92% 
or higher for each month. During summer time the hit rate for the class snow drops to 
21% (July), which resembles the behaviour found for GHCN-D. The other verification 
measures also seem to match the seasonal variations of the GHCN-D results well (conf.
Table 6). Low hit rate for snow during summer is discussed in Chapter 5.8.

The SCCONE ground observation stations used to validate the optical daily snow cover 
component are shown in Figure 27. The colour of the station symbol indicates the total 
number of observations used from this station. Figure 28 shows the total accuracy for 
each station, and Figure 29 shows the hit rate for the class snow. Both figures show a 
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Figure 27: Ground stations from SCCONE used for validation. Each dot 
represents a station. The colour indicates the number of samples from each 
station over the period 1982-2015.



very large amount of dark blue dots, i.e. stations with high accuracy, both total accuracy 
and accuracy for the class snow. 
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Figure 28: Total hit rate per station from the SCCONE dataset used for 
validation.



Comparing the figures for SCCONE (28, 29) with the corresponding figures for GHCN-
D ( 23 and 24, respectively) it is easily seen that there are many more stations from the 
GHCN-D dataset showing low hit rate (total or for snow) values than what is the case 
for SCCONE. SCCONE contains snow extent, while from GHCN-D snow depth values 
was used.
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Figure 29: Hit rate (accuracy) for the class snow when validating against snow 
extent data from the SCCONE dataset.



5.5 Validation results: HSDSD 1982 - 1995

The HSDSD dataset contributes validation data for the period 1982 - 1995. An overall 
number of 336 862 cloud free validations are available for the period. The results are 
distributed as shown in Table 10 below. The total accuracy is 97%, which is also the 
accuracy for classes snow and land. 247 unique stations contribute. 

HSDSD: snow HSDSD: no snow Total

Satellite product: snow 83 679 6 740 90 419

Satellite product: no snow 2 699 243 744 246 443

Total 86 378 250 484 336 862

Hit rates Hit rate snow: 97% Hit rate land: 97% Total hit rate: 97%

Table 10: Summary of validation results against HSDSD data.

Month Accuracy Hit rate
snow

Hit rate
land

False
alarm
ratio

Prob. of
false

detection

Bias Number of
samples

January 0.97 0.99 0.86 0.022 0.14 1.0 12 933

February 0.98 0.99 0.92 0.0077 0.077 1.0 24 510

March 0.98 0.98 0.94 0.012 0.055 0.99 30 567

April 0.96 0.96 0.97 0.046 0.033 1.0 27 219

May 0.96 0.89 0.96 0.36 0.037 1.4 36 303

June 0.98 0.91 0.98 0.92 0.02 11 44 601

July 0 .98 nan 0.98 1.0 0.016 inf 44 617

August 0.98 nan 0.98 1.0 0.016 inf 42 630

September 0.98 0.65 0.98 0.83 0.017 3.9 32 759

October 0.95 0.83 0.96 0.21 0.036 1.1 23 273

November 0.93 0.94 0.92 0.081 0.081 1.0 10 305

December 0.95 0.98 0.86 0.051 0.14 1.0 7 145

Total 0.97 0.97 0.97 0.075 0.027 1.0 336 862

Table 11: Monthly summaries of validation results against HSDSD data.
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The monthly values for the statistical scores are listed in Table 11. The results support 
what is seen for GHCN-D and for SCCONE. Figure 30 shows the geographical position
of the ground stations that are used from the HSDSD data. The colour of the station 
symbol indicates the total number of samples from this station. Figures 31 and 32 show 
the total accuracy for each station and the hit rate for the class snow, respectively. 

62



63

Figure 30: Ground stations from the HSDSD dataset used for validation. The 
colour of the station symbol indicates the number of samples this station 
contributes with for the period 1982-1995.
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Figure 31: Total hit rate for each ground station used from the HSDSD dataset.



5.6 Validation results: FSU 1991 - 1996

The FSU dataset contains snow observations only. There are no snow-free observations. 
An overall number of 7442 validations are performed for the period 1991 to 1996. The 
results are distributed as shown in the confusion matrix below (Table 12). The total 
accuracy is 94% which is necessary the same as the hit rate for the class snow given that
there are no snow-free ground observations. 231 unique ground stations contribute. 
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Figure 32: Hit rate for snow for each ground station used from the HSDSD 
validation dataset.



FSU: snow FSU: no snow Total

Satellite product: snow 6 967  0 6 967

Satellite product: no snow  475  0 475

Total 7 442  0 7 442

Hit rates Hit rate snow: 94% Hit rate land: nan Total hit rate: 94%

Table 12: Summary of validation results for FSU.

The following table shows the monthly values for the verification measures. When 
reading the table one should keep in mind that there is limited amount of data in this 
dataset. It follows from the expressions for hit rate land and for probability of false 
detection that these values are all undefined. Given that the validation dataset does not 
include observation of snow-free samples, all hit rates for the class land is also 
undefined. The false alarm ratio is bound to be 0. Furthermore, the expression for bias 
reduces to become equal to the expression for hit rate snow, which the monthly values 
in the table confirm.

Month Accuracy Hit rate
snow

Hit rate
land

False
alarm
ratio

Prob. of
false

detection

Bias Number of
samples

January 0.99 0.99 - 0 - 0.99 448

February 0.99 0.99 - 0 - 0.99 1 633

March 0.98 0.98 - 0 - 0.98 2 611

April 0.87 0.87 - 0 - 0.87 1 887

May 0.74 0.74 - 0 - 0.74 472

June - - - - - - 2

July - - - - - - 0

August - - - - - - 0

September 0.92 0.92 - 0 - 0.92 13

October 0.82 0.82 - 0 - 0.82 153

November 0.99 0.99 - 0 - 0.99 147

December 1.0 1.0 - 0 - 1.0 76

Total 0.94 0.94 - 0 - 0.94 7 442

Table 13: Monthly summaries of verification measures when validating against 
the FSU dataset.
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Figure 33 shows a map plot of the ground stations used from the FSU dataset. Figure 34
shows the total hit rate for each station. In the absence of snow-free ground 
observations, the hit rate for the class snow equals the total hit rate for this dataset. A 
separate figure showing the hit rate for snow is therefore not included.
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Figure 33: Ground stations used for validation against the FSU dataset. The 
colour of the station marker indicates the number of samples this station 
contributes with.



Figure 34 shows that the satellite product overall shows a very good match with the 
FSU snow extent data. 
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Figure 34: The total hit rate computed for each ground station separately. This 
would be the same as the hit rate for snow for this dataset.



5.7 Comparison of validation dataset results

Figure 35 shows the distribution of validation data per year and category (each element 
of the contingency table: hit, miss, false negative, and true positive, conf. Table 4). 
There is one panel for each of the four validation datasets.  GHCN-D (upper left panel) 
is by far the largest of the validation datasets. It contributes to 11 million samples and is 
one of two which covers the entire satellite product period 1982 - 2015. The other is 
SCCONE (upper right panel) which provides 1.9 million samples.  SCCONE has a 
larger relative amount of snow ground observations compared to GHCN-D (green + red 
bars in Figure 35, upper right). Data from GHCN-D is used for the entire Northern 
hemisphere, while SCCONE has data for the former USSR only (ref.: Figures 25 and
27).

69

Figure 35: the figure shows the distribution of validation data per year and 
category for each of the four validation datasets used. GHCN-D is shown in the 
upper left panel, SCCONE in the upper right, HSDSD in the lower left, and FSU
in the lower right.



Figure 36 shows the monthly values for total hit rate for GHCN-D (left) and SCCONE 
(right). For both cases there is one line for each year of the period 1982 - 2015. The 
figure shows that validation against SCCONE gives better results during wintertime 
(December - March) than validation against GHCN-D. From April through September 
the results are more or less the same. 

5.8 Low hit rate for snow during summer

This chapter focuses on the extraordinary low success rate of identifying snow cover 
during summer seen for GHCN-D and SCCONE (ref.: Tables 6 and 9). We select the 
year 2005, the month July and the validation source GHCN-D, and investigate the 
details of the comparisons. Table 14 shows the confusion matrix for this data. 54 000 
data points are compared, and the overall accuracy is 99%. 38 of the 40 samples of 
observed snow depth above 5 cm are not seen in the satellite product. Output from the 
validation code shows that 3 individual ground stations are the source for all 38 cases of
missed snow observations in July. These stations are listed in Table 15. Appendix B 
contains a table with the full list of missed snow observations during July 2005. 
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Figure 36: A comparison of monthly total hit rate when validating against 
GHCN-D (left) and SCCONE (right). There is one line for each year of the 
dataset period 1982 - 2015.



GHCN-D: snow

(SD > 5 cm)

7 GHCN-D: no snow

(SD = 0 cm)

Total

Satellite product: snow 2 447 449

Satellite product: no snow 38 53 548 53 586

Total 40 53 995 54 035

Hit rates Hit rate snow: 5% Hit rate land: 99% Total hit rate: 99%

Table 14: Confusion matrix for July 2005 when validating the daily satellite 
product against snow depth values from GHCN-D. 

Date Station ID latitude longitude elevation name

200507X AU000015410 47.05 12.95 3106 m Sonnblick

200507X GM000004155 47.42 10.99 2964 m Zugspitze

200507X SZ000002220 47.25  9.35 2502 m Sàntis

Table 15: These 3 ground stations are the source of all cases of missed snow 
observations during July 2005.

All 3 stations are located well above 2000 m, in or nearby the Alps (Austria, Germany 
and Switzerland). Figure 37 shows a part of a NOAA-17 satellite swath from July 3 
2005, 09:18 UTC. The panels in the upper row show RGB colour composites. The three
stations are indicated by yellow circles. Snow cover can be seen in a strong pink color 
in the upper, right panel. The western parts of the Alps are cloud-free in this scene, and 
the pixels range from fully to partially snow-covered to snow-free. The Swiss station 
(Sàntis, the westernmost of the three) might suffer from algorithm shortcomings in 
identifying late spring snow cover. For all three stations, representation error is most 
probably the cause. The extent of the snow cover at the station location is not 
sufficiently large to dominate the 5 km satellite product grid cell. 
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Summary of the validation results
In this chapter we have described and discussed the validation work for the optical 
component. The full time series 1982 - 2015 of Northern hemisphere daily products has 
been validated. Four different validation datasets have been used. Two of these cover 
the entire time series, one of which contains full hemispheric snow depth data. The three
other datasets contain snow cover observations from the former USSR. The validation 
results have been assessed in time and space. The overall results are very good. Total 
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Figure 37: The figure shows a part of a NOAA-17 satellite swath from July 3 
2005, 09:18 UTC. The upper row shows RGB colour composites of AVHRR 
channels 1, 2 and 4 (left) and 2, 3A (6) and 4 (right). The ground stations 
providing 100% of the missed snow observations for July 2005 are indicated by 
yellow circles. The lower left panel shows the probability for snow (dark blue 
refers to low probability, red indicates high probability). The lower right panel 
shows the classified swath product. Here, white shows snow, green shows 
snow-free land, black shows ocean/water, and grey indicates clouds. 



accuracy range from 94% (FSU) to 97% (SCCONE, HSDSD). For hit rate snow, the 
results are in the range 94% (GHCN-D, FSU) to 97% (SCCONE, HSDSD). Total hit 
rate for land is 97% (GHCN-D, HSDSD) or 98% (SCCONE). 

Looking at variation in total accuracy as function of time since the start of the time 
series one can see some improvements (conf. Figures 21 and 36). These improvements 
are likely due to the algorithm being trained using data from AVHRR/3 (first carried on 
NOAA-15 launched in May 1998), and the fact that there is much more satellite data 
available for the latter half of the dataset period (see Figure 3). Variation with season is 
prominent for some of the verification measures, in particular for hit rate for snow and 
for false alarm ratio. Some of these variations are likely due to difficulties at onset of 
the snow season and melting season, both algorithm challenges in terms of identifying 
thin snow or old, melting snow and difficulties because of scattered snow. The high 
false alarm ratio during summer, seen in particular for GHCN-D and SCCONE, is likely
a direct result of representation error. This conclusion is based on results seen in Figure
20 and Table 7 which point to multiple examples of ground stations that are placed in a 
valley surrounded by mountains which can keep their snow cover well into summer. A 
parallel argument can be used to explain - at least partially - the very low hit rate for 
snow seen during summer for datasets GHCN-D and SCCONE, where ground stations 
at high mountains are not representative of the surrounding lower altitude areas. 

The validation method is not optimal. We have not done any screening of stations based 
on their location. During the validation work we have seen repeated examples of 
disagreement between the in situ snow observation and the satellite product which very 
likely is a result of the location of the ground station. 
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6 Work package 6: Processing environment

Work package 6 includes updating processing chains, updating algorithms, 
implementation of new or improved algorithms, processing, and time series production. 
All algorithms and processing chains are now installed at MET. The work has been a 
joint effort between NR and MET.   

6.1 Optical component

In Phase 2 we have downloaded the new input dataset and made the necessary adaptions
needed in the swath processing code to handle the new format of the input files. As 
described in Chapter 2 various changes to the optical algorithm were implemented and 
tested. Furthermore we have replaced the former C code for aggregation of swath 
products into daily products with a new python code. The new code uses the python 
package pyresample and Gaussian resampling. Figure 11 shows a comparison of an 
optical daily product using the previous gridding routine and the new gridding routine.  
The main differences are 1) that the many undefined pixels near water (yellow dots seen
in the left panel) found when using the C gridding disappears, and 2) that the edges of 
clouds (grey colour in right panel) are more smoothed.
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6.2 PMW component

In CryoClim and Sentinel4CryoClim phase 1, the source for PMW data was a SMMR 
and SSM/I data record delivered by Remote Sensing System (RSS). The data covers 
1978 – 2009. Since then, EUMETSAT CM SAF has released a FCDR for PMW data 
from SMMR, SSM/I and SSMIS covering 1978 to 2015 (Fenning et al., 2017) In 
cooperation with NR, the PMW code was rewritten to handle the new input data files 
collected from EUMETSAT CM SAF, and implemented at MET. 
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Figure 38: The figure shows a part of the optical, daily, gridded product from 
March 15 2005. The left panel shows the product when gridding with the C 
code used in CryoClim and in Phase 1 of Sentinel4CryoClim. The right panel 
shows the result using the new python code for gridding. Snow-free land is 
shown in green, snow-covered areas in white, clouds are grey, ocean/water is 
black, and areas of no data (due to insufficient sunlight or other reason) are 
shown in yellow.



The new PMW data was first processed using the statistical coefficients derived in 
CryoClim for the PMW data from RSS. The results showed a reduction in performance 
compared to the CryoClim results, making it necessary to collect new training data and 
derive new coefficients. Using the new set of coefficients, the PMW swath data was 
processed again. Due to various issues with several of the SSM/I instruments, a range of
considerations had to be made for the time series processing. Details can be found in the
project report delivered by NR (Solberg et al., 2018).

6.3 HMM component

NR is responsible for the HMM algorithm development, and has implemented the 
HMM chain at MET.  Following updates/improvements of the algorithm, NR 
implemented the new version at MET. The algorithm takes daily PMW envi files and 
daily AVHRR netCDF files as input and can be run when a full season of input data 
(August - July) is ready. MET has produced the full multi-sensor time series.
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6.4 Southern Hemisphere

At the very end of the project the first version of daily, gridded products for the 
Southern Hemisphere was generated. Little time has been available to assess the results,
and no proper validation has been performed. Figure 39 shows a Southern Hemisphere 
daily optical snow cover product. 
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Figure 39: Example of Southern Hemisphere optical daily snow 
cover product. Snow is shown in white, snow-free land in green and
clouds in grey. Areas of no data is seen in dark blue (here indicating
sea ice shelves outside of Antarctica).



7 Discussion and summary

In this project MET has focused on improvements of the optical component (algorithm 
improvements and adding an uncertainty estimate), extensive validation of the optical 
product, and time series processing. In addition the optical chain has been adapted to 
and tested for SLSTR data. The results seen so far for SLSTR are promising even 
though some simplifications were made on the way.  

The work on optical algorithm improvements is described in Chapter 2 . The main issue 
we attempted to fix was the discrepancy between model surface temperature and true 
surface temperature which appears due to the coarse resolution of the global model 
surface temperature data. Should there be a gap between model and true temperature for
a snow-covered pixel the algorithm tends to believe that the pixel is cloud-covered even 
when it is in fact cloud-free. Several approaches were tested to reduce the gap, but in the
end we achieved only limited improvements. This is not a closed topic, but definitely in 
need of future work. Height correction should be revisited using proper interpolation, 
but even so it is not obvious that this would give the necessary accuracy in the model 
surface temperature for each swath pixel. The satellite swath pixel size is large, and 
steep terrain is very difficult.

The validation work performed in Work Package 5 has been a very valuable exercise. 
The full time series has been validated, and the validation work has been repeated using 
four different validation dataset.  Although the overall validation results are very good 
(above 95% for total accuracy), we have seen that during summertime snow-covered 
ground stations are often not identified as snow-covered in the satellite product  (low hit
rate for snow). We have also seen a high false alarm ratio for the summer months. A 
common factor is steep terrain, and it is likely that (a part of) the reason is 
representation error. 
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The geographical plotting of verification measures has been particularly helpful, 
providing easy focus on areas of reduced performance. There has been no prior 
screening of the ground stations due to station location and surrounding terrain, even 
though in many cases the local topography will not be representative for a 5 km satellite
product grid cell. Disagreements between the satellite product and the in situ 
observation are bound to happen. Validation results also confirm our previous belief that
the spring time snow cover is somewhat underestimated. 

At the very end of the project products for the Southern hemisphere was produced. The 
Southern hemisphere daily gridded optical products have not been validated. A few 
products have been assessed. 
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Appendix A

This appendix contains map plots of validation results (see Chapter 5.3) for the years 
1985, 1995 and 2015. The validation source is GHCN-D (see Chapter 5.1).
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Figure 40: Total hit rate per ground station when validating against GHCN-
D for the year 1985. Each dot represents a ground station. The colour of 
the dot gives the hit rate for the ground station.
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Figure 41: Hit rate for the class snow when validating against GHCN-D for the 
year 1985. Each dot represents a ground station. The colour of the dot gives 
the hit rate. Note that stations with no observation of snow during 1985 is not 
plotted. This figure therefore shows 3044 unique stations, while Figure 40 
shows 4384 unique stations. 
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Figure 42: Number of samples from each ground station for the year 1985. 
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Figure 43: Total hit rate per ground station when validating against GHCN-D for 
the year 1995. Each dot represents a ground station. The colour of the dot 
gives the hit rate for the ground station.



85

Figure 44: Hit rate for the class snow when validating against GHCN-D for the 
year 1995. Each dot represents a ground station. The colour of the dot gives 
the hit rate. Note that stations with no observation of snow during 1985 is not 
plotted. This figure therefore shows 2830 unique stations, while Figure 36 
shows 4384 unique stations. 
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Figure 45: Number of samples from each ground station for the year 1995.
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Figure 46: Total hit rate per ground station when validating against GHCN-D for 
the year 2015. Each dot represents a ground station. The colour of the dot 
gives the hit rate for the ground station.
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Figure 47: Hit rate for the class snow when validating against GHCN-D for the 
year 1985. Each dot represents a ground station. The colour of the dot gives 
the hit rate. Note that stations with no observation of snow during 1985 is not 
plotted. This figure therefore shows 3044 unique stations, while Figure 36 
shows 4384 unique stations. 
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Figure 48: Number of samples from each ground station for the year 2015.



Appendix B

The following table lists the validation samples for July 2005 and validation source 
GHCN-D. As described in Chapter 5, the hit rate for snow during summer is very low, 
in particular when validating against GHCN-D and SCCONE. A closer look at July 
2005 revealed that all cases of missed snow observations could be attributed to one of 
three ground stations. These are described in 5.8. The full list of samples for July 2005 
is included in the table below.

Date Station ID latitude longitude sample type

20050703 AU000015410 47.05 12.95 NOSNOW_SNOW

20050704 AU000015410 47.05 12.95 NOSNOW_SNOW

20050713 AU000015410 47.05 12.95 NOSNOW_SNOW

20050714 AU000015410 47.05 12.95 NOSNOW_SNOW

20050715 AU000015410 47.05 12.95 NOSNOW_SNOW

20050717 AU000015410 47.05 12.95 NOSNOW_SNOW

20050718 AU000015410 47.05 12.95 NOSNOW_SNOW

20050720 AU000015410 47.05 12.95 NOSNOW_SNOW

20050721 AU000015410 47.05 12.95 NOSNOW_SNOW

20050727 AU000015410 47.05 12.95 NOSNOW_SNOW

20050728 AU000015410 47.05 12.95 NOSNOW_SNOW

20050729 AU000015410 47.05 12.95 NOSNOW_SNOW

20050730 AU000015410 47.05 12.95 NOSNOW_SNOW
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20050703 GM000004155 47.42 10.99 NOSNOW_SNOW

20050704 GM000004155 47.42 10.99 NOSNOW_SNOW

20050706 GM000004155 47.42 10.99 NOSNOW_SNOW

20050713 GM000004155 47.42 10.99 NOSNOW_SNOW

20050714 GM000004155 47.42 10.99 NOSNOW_SNOW

20050715 GM000004155 47.42 10.99 NOSNOW_SNOW

20050717 GM000004155 47.42 10.99 NOSNOW_SNOW

20050719 GM000004155 47.42 10.99 NOSNOW_SNOW

20050720 GM000004155 47.42 10.99 NOSNOW_SNOW

20050727 GM000004155 47.42 10.99 NOSNOW_SNOW

20050728 GM000004155 47.42 10.99 NOSNOW_SNOW

20050729 GM000004155 47.42 10.99 NOSNOW_SNOW

20050703 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050704 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050706 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050708 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050711 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050712 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050713 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050714 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050715 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050717 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050718 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050720 SZ000002220 47.25 9.35 NOSNOW_SNOW

20050724 SZ000002220 47.25 9.35 NOSNOW_SNOW

Table 16: The table shows all samples of category "nosnow_snow" for July 
2005 when validating against GHCN-D data. 
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Glossary

ATBD Algorithm Theoretical Basis Document
AVHRR Advanced Very High Resolution Radiometer 
CM SAF Climate Monitoring Satellite Application Facility 
EUMETSAT The European Organisation for the Exploitation of Meteorological 

Satellites
FCDR Fundamental Climate Data Record
GAC Global Area Coverage
GHCN-D Global Historical Climatology Network - Daily
HMM Hidden Markov Model
LAC Local Area Coverage
NOAA National Oceanic and Atmospheric Administration
OLCI Ocean and Land Colour Imager 
PMW Passive MicroWave
SCCONE Snow Cover Characteristics Over Northern Eurasia
SLSTR Sea Land Surface Temperature Radiometer
TOA Top Of Atmosphere
WMO World Meteorological Organization
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