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1 Introduction

Predictability in the atmosphere can be broken down into two distinct categories - intrinsic predictability

and practical predictability. Intrinsic predictability is the predictability that could be achieved by a perfect

model with perfect initial conditions (Lorenz 1969), and is essentially governed by the chaotic nature of the

atmosphere. Practical predictability on the other hand is the predictability that is achievable by a numerical

weather prediction (NWP) model that is limited by uncertainties in its initial conditions and modelling

methodologies (Surcel et al. 2015). Ensemble prediction systems (EPS) have been developed to account

for limitations to both intrinsic and practical predictability by producing many forecasts, in which initial

conditions and model processes are perturbed, such that the uncertainty of a forecast can be estimated.

These perturbations are often designed to represent the uncertainties in, for example, the observing systems

from which the initial conditions are derived and the empirical relationships that govern the computation of

physical processes. In this sense, the perturbations are used to take account of the practical predictability.

However, the perturbations also model the intrinsic predictability of the atmosphere in that they will have a

larger impact on the forecast in less predictable situations (Lorenz 1963).

Predictability has both spatial and temporal dimensions. For example, in a study of the spatial and temporal

scales of predictability for MEPS, the operational implementation of the HarmonEPS model (Frogner et

al. 2019a) for a domain over the Nordic countries, it was shown that the minimum predictable spatial scale

for hourly accumulated precipitation grew from approximately 15 km in the first hours of the forecast, to

75 km by hour 12 and 100 km by hour 36 (Frogner et al. 2019b). Furthermore, it was found that MEPS

was better able to account for uncertainties than the global model, IFSENS, from the European Centre for

Medium-range Weather Forecasts (ECMWF) for a range of weather parameters.

In a previous study for the ALERTNESS project (Singleton and Grote 2020), it was found that the AROME-

Arctic ensemble (AAEPS) better modelled uncertainties for a range of weather parameters than IFSENS,

which is the current state of the art ensemble available for the Arctic region. This suggested that AAEPS is a

promising solution for weather forecasting for the Arctic region around northern Norway, the Barents Sea

and Svalbard. However, uncertainties in the initial conditions were modelled using the fairly unsophisticated

SLAF method (Toth and Kalnay 1993) and no attempt was made to account for uncertainties in the modelling

system itself. In this report, we document the impact of using the stochastically perturbed parameters (SPP)

method (Ollinaho et al. 2017) to model uncertainties in the modelling system and ensemble data assimilation

(EDA) (Bouttier et al. 2016) to better model uncertainties in the initial conditions.

SPP is a method that attempts to take account of uncertainties in physics parameterizations that are typically

based on empirical relationships. The scheme adds spatially and temporally correlated stochastic noise to

selected parameters in various parameterization schemes (Frogner et al. 2022). In this way uncertainties

are accounted throughout the integration time of the model forecast. EDA on the other hand only takes

account uncertainties in the initial conditions. Each ensemble member has its own analysis that is derived by

perturbing both conventional (synop, ship, buoy, aircraft and radiosonde) observations, and radiances from

satellites (Isaksen et al. 2010; Frogner et al. 2019a). Over the Arctic, the relative paucity of conventional

observations means that satellite radiances are especially important for EDA.
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2 Methods

In this section the methods used in this study are briefly described. In general, the same methods are used here

as described in Singleton and Grote (2020) and where they differ is noted below. More detailed information

is available in the cited works.

2.1 AROME-Arctic EPS (AAEPS)

As in Singleton and Grote (2020), the model used is based on the operational AROME-Arctic model (Müller

et al. 2017) in an ensemble implementation (Frogner et al. 2019a) with 2.5 km horizontal resolution. It

was found that 6 perturbed members achieved very similar results to the 10 perturbed members in Singleton

and Grote (2020), so only 6 perturbed members are used in this study to save computational resources.

Additionally, Singleton and Grote (2020) showed that the ensemble introduced biases in near surface

temperature and humidity. This was due to small unbalances in the surface perturbations that grew with every

data assimilation cycle. Switching off data assimilation for the perturbed members was found to alleviate this

problem. Therefore surface data assimilation cycling is switched off for the perturbed ensemble members

here - i.e. surface perturbations are added to the control analysis for each ensemble member. Forecasts from

this basic setup are referred to as REF in this report.

The HarmonEPS model is updated in cycles and for this study cycle 40 of the model is used for the SPP runs,

and cycle 43 is used for the EDA runs. Reference runs are done for both model cycles. For all experiments

one long ensemble forecast (36 - 48h) is run per day initialized at 00 UTC with 3-hour cycling of the data

assimilation system.

2.2 SPP

The SPP scheme in HarmonEPS (Frogner et al. 2022) follows that developed by ECMWF (Ollinaho et al.

2017). Perturbations to selected parameters in physics schemes related to cloud microphysics, radiation,

convection and turbulence are initially drawn from a lognormal distribution with a prescribed mean and

standard deviation for each parameter. The spatial and temporal correlations are controlled using the

stochastic pattern generator (SPG: Tsyrulnikov and Gayfulin 2017). Following Frogner et al. (2022), the

spatial correlation length scale is set to 200 km and the temporal correlation length scale is set to 12 hours.

The same pattern is used for each model level in the vertical.

The parameters that are perturbed are summarized in Table 1. Note that the percentiles of the distributions are

given as the ratio of the perturbed value to the unperturbed value. The results of REF and SPP are compared

for periods during YOPP (Year of Polar Prediction) special observing periods (SOP) 1 (8 - 31 March 2018)

and 2 (10 July - 1 August 2018).
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Table 1: Summary of SPP perturbations. Type is the type of parameterization scheme that is impacted where CONV is convection,

IM is ice microphysics, LM is liquid microphysics, RAD is radiation and TURB is turbulence; Parameter is the variable name in the

HarmonEPS code; Control is the value for the control member; Std Dev, 5th %ile and 95th %ile are the standard deviation, 5th and

95th percentiles of the distribution from which the perturbations are sampled, expressed relative to the control value.

Type Parameter Description Cntrl

Std

Dev

5th

%ile

95th

%ile

CONV CLDDPTHDP Threshold for cloud thickness used in

shallow or deep convection decision

4000 0.1 0.07 3.50

IM ICE_CLD_WGT Cloud ice content impact on cloud thickness 1.00 0.4 0.07 3.50

IM ICENU Ice nuclei concentration 1.00 0.7 0.03 31.60

LM VSIGQSAT Saturation limit sensitivity for condensation 0.03 0.4 0.07 3.50

LM KGN_ACON Kogan autoconversion speed 10.00 0.5 0.03 3.81

LM KGN_SBGR Kogan subgrid-scale (cloud fraction)

sensitivity

0.50 0.2 0.31 2.24

RAD RADGR Graupel impact on radiation 0.50 0.3 0.15 2.93

RAD RADSN Snow impact on radiation 0.50 0.3 0.15 2.93

TURB RFAC_TWO_COEF Top entrainment efficiency 2.00 0.4 0.07 3.50

TURB RZC_H Stable conditions length scale 0.15 0.4 0.07 3.50

TURB RZI_INF Asymptotic free atmosphere length scale 100 0.6 0.01 3.84

2.3 EDA

EDA results in an ensemble of analyses from which to initialize each ensemble member of the forecast. The

method used was initially designed to estimate error covariance matrices that are a part of variational data

assimilation systems and is based on Isaksen et al. (2007). The data assimilation is done using 3DVAR

(3-dimensional variational data assimilation) separately for the upper air and surface observations, with the

perturbations added for each ensemble member such that each member gets its own analysis to start each

model run from.

At the time of running the experiments, EDA was only functioning reliably for cycle 43 of the HarmonEPS

model so it was decided to use this cycle. Furthermore, many more satellite observations became available

after the YOPP SOPs used in Singleton and Grote (2020) and the SPP runs meaning that a later period was

chosen to analyse the EDA performance (25 October - 7 November 2019). This period was chosen since it

included a polar low event.

2.4 Verification metrics

The aim of this report is analyse the performance of SPP and EDA relative to a reference where these methods

are not used. The goal of both methods is to introduce more spread to the forecast without increasing errors,

or unbalancing the ensemble. For this reason, we concentrate on spread - skill comparisons whereby the

spread of the ensemble (the square root of the mean variance) is compared with the the route mean square
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error (RMSE) of the ensemble mean. For a well calibrated ensemble, the ensemble spread should be equal to

the RMSE. In order to check the balance of the perturbations, biases of the individual ensemble members are

inspected. Where there are imbalances the verification is stratified into ranges of the observed parameter to

ascertain whether the imbalances are across the board or only at the extremes.

Verification is done for a range of near surface parameters (2m temperature, 2m specific humidity, 10m

wind speed, mean sea level pressure, 6-hour accumulated precipitation and total cloud cover) at available

land based weather stations; and for vertical profiles of temperature, specific humidity, wind speed and

geopotential height for all available radiosonde launches. The location of the stations is shown in Fig. 1.

Figure 1: Location of observation stations used in the verification. Red dots denote surface stations and black circles are radiosonde

launch locations.
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3 Results

3.1 SPP

In this section, the results for the SPP experiments are reported for both SOP 1 (winter) and SOP 2 (summer)

individually, and combined.

3.1.1 2m Temperature

Spread-skill plots for 2m temperature are shown in Fig. 2. For the two SOPs combined, the spread can be

seen growing with lead time for both REF and SPP, with SPP having larger spread throughout the forecast.

The RMSE for REF and SPP appears to be close to equal. For the individual SOPs a clear diurnal cycle in

the spread is apparent, with SPP generating more spread during the night, which is particularly noticeable

for SOP 1 when the nights are much longer.

While these results look promising for SPP, the bias of the individual members tells a slightly different

story (Fig. 3). It is clear that SPP introduces a cooler bias into the perturbed members when compared with

REF. While some of the problems with REF reported in Singleton and Grote (2020) (warmer bias in winter,

cooler bias in summer) persist, switching off surface data assimilation cycling for the perturbed members has

improved this situation. The cooling impact of SPP on the perturbed members appears to be stronger in the

winter (SOP 1) than the summer (SOP 2).

Stratifying the biases for the perturbed members relative to the control member by observed 2m temperature

suggests that the cooling due to SPP occurs for all observed 2m temperatures, but is weakest for temperatures

between 2.5◦C and 10◦C. The strongest cooling occurs between observed 2m temperatures of −12.5◦C−0◦C

and 17.5◦C−25◦C.
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Figure 2: RMSE (solid line) and ensemble spread (dashed line) for 2m temperature for REF (blue) and SPP (gold) for (from left to

right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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Figure 3: Bias for control (purple) and perturbed (grey) members for 2m temperature for SPP (top row) and REF (bottom row) for

(from left to right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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Figure 4: Bias for each ensemble member relative to the control member for 2m temperature for REF (blue) and SPP (gold) for both

special observing periods combined at 24-hours lead time.
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3.1.2 2m Specific Humidity

For 2m specific humidity, SPP introduces slightly more spread than REF, but for summer (SOP 2) and the

the two SOPs combined, there is an increase in RMSE when the spread is at its peak values (Fig. 5). There

appears to be little diurnal cycle in the spread during the winter, so the verification for the SOPs combined is

dominated by the summer values.

The biases for the individual members (Fig. 6) suggest that SPP introduces a drier bias during SOP 1 and a

generally moister bias during SOP 2. The biases for the individual members for REF are better balanced

than those reported in Singleton and Grote (2020).
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Figure 5: RMSE (solid line) and ensemble spread (dashed line) for 2m specific humidity for REF (blue) and SPP (gold) for (from left to

right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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Figure 6: Bias for control (purple) and perturbed (grey) members for 2m specific humidity for SPP (top row) and REF (bottom row) for

(from left to right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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3.1.3 10m Wind Speed

The verification for 10m wind speed shows that the spread increases throughout the forecast at a slightly

faster rate than the RMSE for both REF and SPP in both SOP 1 and SOP 2 (Fig. 7). During SOP 1, the

RMSE for SPP is slightly smaller than that for REF throughout the whole forecast period, whilst during SOP

2 there is a slight diurnal cycle in both the spread and the RMSE.

Taking the biases of the individual members into account (Fig. 8), it is clear that REF introduces a more

positive bias to the 10m wind speed, whereas for SPP a more negative bias is introduced, which is much

stronger during SOP 1. During SOP 1, this more negative bias brings the biases closer to zero since the

starting point is a positve bias, but during SOP 2 the starting point is already a negative bias so the biases get

further away from zero. This could explain the reduction in RMSE that SPP resulted in for SOP 1.

Stratifying the biases by values of observed 10m wind speed suggests that the more negative biases are

strongest for wind speeds below 15ms−1. For higher wind speeds there are some cases where the perturbed

members have a more positive bias than the control member for SPP, but the small number of observations

of such high wind speeds means that these results might not be entirely meaningful.
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Figure 7: RMSE (solid line) and ensemble spread (dashed line) for 10m wind speed for REF (blue) and SPP (gold) for (from left to

right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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Figure 8: Bias for control (purple) and perturbed (grey) members for 10m wind speed for SPP (top row) and REF (bottom row) for

(from left to right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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Figure 9: Bias for each ensemble member relative to the control member for 10m wind speed for REF (blue) and SPP (gold) for both

special observing periods combined at 24-hours lead time.
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3.1.4 Mean Sea Level Pressure

Mean sea level pressure can be thought of as summarising the the state of the atmosphere throughout the

atmospheric column. Fig. 10 shows that for both SOP 1 and SOP 2 the spread for both REF and SPP

increases continuously throughout the forecast. SPP generates more spread than REF in both the winter and

summer, though the increase is slightly larger in the winter. However, this increase in spread is accompanied

by an increase in the RMSE that is, like the spread, larger in the winter than in the summer. The balance of

the biases for the individual members appears to be largely unaffected by SPP for mean sea level pressure

(Fig. 11).
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Figure 10: RMSE (solid line) and ensemble spread (dashed line) for mean sea level pressure for REF (blue) and SPP (gold) for (from

left to right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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Figure 11: Bias for control (purple) and perturbed (grey) members for mean sea level pressure for SPP (top row) and REF (bottom row)

for (from left to right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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3.1.5 6-hour Accumulated Precipitation

The verification for 6-hour accumulated precipitation suggests that, in general, SPP results in lower spread

than REF, but also lower RMSE (Fig. 12). The lower spread for SPP is mostly confined to the first 24 hours

of the forecast, and is more apparent in SOP 2 than in SOP 1. In terms of RMSE, SPP is either lower than or

equal to REF throughout the forecast. There is also considerable overspread for both REF and SPP during

SOP 2. The biases for the individual members are generally unaffected by SPP, though it could be argued

that SPP results in better balanced perturbations than REF (Fig. 13).
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Figure 12: RMSE (solid line) and ensemble spread (dashed line) for 6-hour accumulated precipitation for REF (blue) and SPP (gold)

for (from left to right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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Figure 13: Bias for control (purple) and perturbed (grey) members for 6-hour accumulated precipitation for SPP (top row) and REF

(bottom row) for (from left to right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August

2018).
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3.1.6 Total Cloud Cover

SPP has a significant positive impact on both spread and RMSE compared to REF (Fig. 14). The spread for

both SPP and REF grows throughout the forecast whilst the RMSE remains relatively static. The difference

between the spread for SPP and REF is largest early in the forecast and gets slightly smaller as the spread for

REF grows at a slightly faster rate. The difference in spread is larger in SOP 1 than SOP 2. The RMSE for

SPP is smaller than that for REF throughout the forecast, but the difference is slightly larger for SOP 2.

In terms of the biases for the individual members, REF has more positive biases for the perturbed members

than the control member. With SPP on the other hand, the biases of the perturbed members are more evenly

spread about the control the member, particularly for SOP 2 (Fig. 15).
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Figure 14: RMSE (solid line) and ensemble spread (dashed line) for total cloud cover for REF (blue) and SPP (gold) for (from left to

right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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Figure 15: Bias for control (purple) and perturbed (grey) members for total cloud cover for SPP (top row) and REF (bottom row) for

(from left to right) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018).
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3.1.7 Upper Air Temperature

Upper air verification is limited to 8 radiosonde launch sites (Fig. 1), so the statistical robustness of the

results is slightly limited, although some insights can be gained. For brevity, verification is only done at 12

hour intervals from 12- to 48-hour lead times. For upper air temperature SPP introduces more spread in the

lower levels of the atmosphere for all lead times (Fig. 16). The impact is greatest below ~700hPa, and is

slightly stronger at 24 hours lead time (and 36 hours durin SOP 2). SPP does result in a small increase in

RMSE ar some pressure levels in the lower atmosphere between 700hPa and 900hPa during SOP 1 and at

1000hPa during SOP 2.

The cooler bias introduced by SPP for 2m temperature (Fig. 2) is limited to the atmosphere close to the

surface (Fig. 17), with the perturbed members for SPP showing similar biases to those for REF for the

atmospheric levels higher (in altitude) than 1000hPa. This applies to both SOP 1 and SOP 2.

23



Lead Time = 12h Lead Time = 24h Lead Time = 36h Lead Time = 48h

 S
O

P
1; S

O
P

2
S

O
P

1
S

O
P

2

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

250

500

750

1000

250

500

750

1000

250

500

750

1000

Spread ; Skill [°C]

P
re

ss
ur

e 
[h

P
a]

RMSE Spread REF SPP

SPP results in larger spread for temperature in the lower atmosphere

Verification for upper air temperature using 8 stations.

Figure 16: RMSE (solid line) and ensemble spread (dashed line) for temperature for REF (blue) and SPP (gold) for (from top to bottom)

both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018) for selected lead times (left

to right).
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Figure 17: Bias for atmospheric temperature in the lowest 500 hPa of the atmosphere. Each pair of rows are for (from top to bottom)

both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018), with the first row of each

pair for SPP (gold) and the second row of each pair for REF (blue). The control member (purple) is the same for both REF and SPP.

The columns are for lead times from 12- to 48-hours every 12-hours.
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3.1.8 Upper Air Specific Humidity

The impact of SPP on specific humidity throughout the upper atmosphere appears to be quite small and

concentrated around the 850hPa level (Fig. 18). In general there is a small increase in spread that is strongest

at 36 hours lead time in the summer (SOP 2). In the winter (SOP 1) an increase in spread is seen at 24 and

48 lead times (i.e. during the night). There is generally no discernible impact on the the RMSE.

The biases for individual members suggest that there is some impact on the balance of perturbations (Fig.

19), especially during the winter (SOP 1). The biases during SOP 1 suggest that the perturbed members are

slightly drier for SPP than REF, though there isn’t such a clear signal for SOP 2.
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Figure 18: RMSE (solid line) and ensemble spread (dashed line) for specific humidity for REF (blue) and SPP (gold) for (from top to

bottom) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018) for selected lead

times (left to right).
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Figure 19: Bias for atmospheric specific humidity in the lowest 500 hPa of the atmosphere. Each pair of rows are for (from top to

bottom) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018), with the first row of

each pair for SPP (gold) and the second row of each pair for REF (blue). The control member (purple) is the same for both REF and

SPP. The columns are for lead times from 12- to 48-hours every 12-hours.
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3.1.9 Upper Air Wind Speed

SPP has a considerable impact on the spread of wind speed in both winter and summer that is strongest at the

lower levels of the atmosphere (Fig. 20). During SOP 1, there is an increase in the RMSE for SPP compared

with REF at the lowest couple of atmospheric levels that is more apparent at 14- and 48-hours lead times

(i.e. during the night). The biases of the individual members suggest that there is slight move towards more

positive biases for SPP compared with REF (Fig. 21).
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Figure 20: RMSE (solid line) and ensemble spread (dashed line) for wind speed for REF (blue) and SPP (gold) for (from top to bottom)

both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018) for selected lead times (left

to right).
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Figure 21: Bias for wind speed in the lowest 500 hPa of the atmosphere. Each pair of rows are for (from top to bottom) both special

observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018), with the first row of each pair for SPP

(gold) and the second row of each pair for REF (blue). The control member (purple) is the same for both REF and SPP. The columns

are for lead times from 12- to 48-hours every 12-hours.
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3.1.10 Geopotential Height

The geopotential height can be used a proxy for the overall impact of SPP on the large scale atmospheric

flow. Fig. 22 and Fig. 23 suggest that the impact of SPP comapred with REF on the geopotential height at

the available observation stations is negligible.
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Figure 22: RMSE (solid line) and ensemble spread (dashed line) for geopotential height for REF (blue) and SPP (gold) for (from top to

bottom) both special observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018) for selected lead

times (left to right).
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Figure 23: Bias for geopotential in the lowest 500 hPa of the atmosphere. Each pair of rows are for (from top to bottom) both special

observing periods combined, SOP 1 (8 - 31 March 2018) and SOP 2 (10 July - 1 August 2018), with the first row of each pair for SPP

(gold) and the second row of each pair for REF (blue). The control member (purple) is the same for both REF and SPP. The columns

are for lead times from 12- to 48-hours every 12-hours.
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3.2 EDA

3.2.1 Initial condition perturbations

EDA provides a method for perturbing observations in order to generate an ensemble of analyses from which

to initialize each member of an ensemble forecast. The reference (REF) against which EDA is evaluated

generates an ensemble of analyses using the SLAF method (see Singleton and Grote (2020); Toth and Kalnay

(1993)). In order to compare the impact on the initial conditions, the mean of the standard deviation of the

ensemble members at each pixel was calculated for a range of upper air parameters for each ensemble of

analyses during the test period (25 October - 7 November 2019). This diagnostic is used as an indicator of

total ensemble spread throughout the model domain. It is clear that EDA generates more spread in the initial

conditions for all of the considered parameters at both the 850− and 500−hPa pressure levels (Fig. 24). For

many of the parameters, the difference is much smaller for the first ensemble of analyses in the test period.

This is because only the control member was spun up before the test period meaning that the first guess was

the same for all EDA ensemble members. For all analyses forward of this point, each ensemble member was

cycled individually with the first guess coming from each of the ensemble members.

For temperature, EDA adds approximately 1◦C on average to the spread compared with REF at both 850−
and 500− hPa pressure levels. EDA adds approximately 0.05 g.kg−1 at the 850 hPa pressure level and

approximately 0.02 g.kg−1 at the 500 hPa pressure level where the air is typically less humid anyway.

For wind speed, EDA adds just under 0.5 m.s−1 to the spread at the 850 hPa pressure level and just over

0.5 m.s−1 at the 500 hPa pressure level. Similarly for geopotential height, approximately 0.5 m is added to

the spread by EDA at the 850 hPa pressure level and approximately 1 m is added at the 500 hPa pressure

level. In terms of mean sea level pressure, EDA increases the spread by approximately 0.1 hPa. For 500 hPa

temperature, 500 hPa wind speed, 850− and 500−hPa geopotential height, and mean sea level pressure,

there is a peak in the spread for both EDA and REF on 29 October 2019. This coincides with the beginning

of a polar event and may be reflective of the increased uncertainty resulting from that weather system.
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Figure 24: Mean of the standard deviation of the initial conditions for a range of parameters for REF (blue) and EDA (red) for each

forecast in the period 25 Oct - 7 Nov 2019.
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3.2.2 2m Temperature

For 2m temperature, EDA provides additional spread throughout the forecast (Fig. 25). The amount of

additional spread is largest at the start of the forecast (approximately 0.25◦C) and becomes slightly smaller

as the forecast progresses. The trend in spread is the same for both REF and EDA. Additionally, there is a

very small reduction in RMSE resulting from EDA between hours 3 and 9 of the forecast. Similar to the

SOP 1 and SOP 2 periods investigated for the SPP comparisons, the perturbed members of REF are warmer

than the control member at the beginning of the forecast, but in this period a better balance is achieved as

the forecast continues (Fig. 26) and there is no clear diurnal cycle in the biases. For EDA, the perturbed

members are also warmer than the control at the beginning of the forecast, but a better balance of biases is

achieved earlier in the forecast than REF with a wider spread of biases around the control member.

There is no obvious temperature range for which the warmer perturbed members at initialization time for

EDA occur, although for temperatures between 0◦C and 5◦C, some of the perturbed members are cooler than

the control for EDA, whereas for REF there appears to be a switch from perturbed members warmer than

control below 0◦C and perturbed members cooler than the control for temperatures above 0◦C (Fig. 27).
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Figure 25: RMSE (solid line) and ensemble spread (dashed line) for 2m temperature for REF (blue) and EDA (red) for the period 25

Oct - 11 Nov 2019.
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Figure 26: Bias for control (purple) and perturbed (grey) members for 2m temperature for EDA (top row) and REF (bottom row) for the

period 25 Oct - 11 Nov 2019.
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Figure 27: Bias for each ensemble member relative to the control member for 2m temperature for REF (blue) and EDA (red) for the

period 25 Oct - 11 Nov 2019 at forecast initialization time.
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3.2.3 2m Specific Humidity

Similar to 2m temperature, EDA adds spread for 2m specific humidity that is largest at the beginning of the

forecast and becomes closer to the spread for REF as the forecast progresses (Fig. 28). However, in the case

of 2m specific humidity, there is also a reduction in the RMSE resulting from EDA for the first 12 hours

of the forecast. While REF has perturbed members that are all moister than the control at the beginning

of the forecast the biases of the perturbed members are much better balanced for EDA (Fig. 29), and this

improved balance with a wider spread of biases remains throughout the forecast, with REF only becoming

well balanced from approximately 18 hours lead time.
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Figure 28: RMSE (solid line) and ensemble spread (dashed line) for 2m specific humidity for REF (blue) and EDA (red) for the period

25 Oct - 11 Nov 2019.
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Figure 29: Bias for control (purple) and perturbed (grey) members for 2m specific humidity for EDA (top row) and REF (bottom row)

for the period 25 Oct - 11 Nov 2019.
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3.2.4 10m Wind Speed

Similar to both 2m temperature and 2m specific humidity, the 10m wind speed for EDA has more spread

towards the beginning of the forecast than REF, with the difference most pronounced at initialization time

(Fig. 30). The larger difference at initialization time is more because the spread takes a few hours to grow

for REF at the beginning of the forecast, whereas for EDA the spread grows fairly consistently throughout

the forecast. The RMSE for EDA is either roughly equal to, or slightly smaller than the RMSE for REF for

the whole forecast.

In terms of the biases of the perturbed members, both REF and EDA follow roughly the same trend, but the

biases tend to be slightly more positive for EDA than for REF (Fig. 31). The distribution of the biases at

initialization time stratified by observed 10m wind speed suggest that EDA tends to produce more positive

biases then REF for lower wind speeds, whereas for observed wind speeds greater than 10 m.s−1 the biases

for EDA tend to be in the same direction as those for REF but stronger (Fig. 32).
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Figure 30: RMSE (solid line) and ensemble spread (dashed line) for 10m wind speed for REF (blue) and EDA (red) for the period 25

Oct - 11 Nov 2019.
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Figure 31: Bias for control (purple) and perturbed (grey) members for 10m wind speed for EDA (top row) and REF (bottom row) for the

period 25 Oct - 11 Nov 2019.

43



S10m Range: (10,12.5]

70 cases

S10m Range: (12.5,15]

29 cases

S10m Range: All

2280 cases

S10m Range: [0,2.5]

1160 cases

S10m Range: (2.5,5]

534 cases

S10m Range: (5,7.5]

283 cases

S10m Range: (7.5,10]

191 cases

−0.25 0.00 0.25 0.50−0.25 0.00 0.25 0.50−0.25 0.00 0.25 0.50

−0.25 0.00 0.25 0.50

mbr006

mbr005

mbr004

mbr003

mbr002

mbr001

mbr006

mbr005

mbr004

mbr003

mbr002

mbr001

Bias [m.s−1]

REF

EDA

EDA introduces a more positive bias for lower wind speeds

Verification of 10m wind speed at initialization time using 181 stations.

Figure 32: Bias for each ensemble member relative to the control member for 10m wind speed for REF (blue) and EDA (red) for the

period 25 Oct - 11 Nov 2019 at forecast initialization time.
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3.2.5 Mean Sea Level Pressure

The impact of EDA on mean sea level pressure is relatively small (Fig. 33). There is a small increase in

spread at initialization time, but then it varies as to whether EDA or REF has more spread. In general, the

RMSE for EDA is slightly smaller than or roughly equal to that for REF. When it comes to the biases of the

perturbed members, there appears to be a more even spread between the members for EDA than for REF

at initialization time as the fact that REF uses pairs of perturbations that are the reverse of each other are

reflected in the biases (Fig. 34).
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Figure 33: RMSE (solid line) and ensemble spread (dashed line) for mean sea level pressure for REF (blue) and EDA (red) for the

period 25 Oct - 11 Nov 2019.
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Figure 34: Bias for control (purple) and perturbed (grey) members for mean sea level pressure for EDA (top row) and REF (bottom

row) for the period 25 Oct - 11 Nov 2019.
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3.2.6 6-hour accumulated precipitation

Unlike the other near surface parameters discussed so far, EDA has little impact on the spread of the forecast

for 6-hour accumulated precipitation (Fig. 35). It should be noted that very few observations of 6-hour

precipitation were available at 6am UTC so these were not included in the verification, meaning that the first

verification time is at 12 hours lead time. However, EDA appears to have a larger impact on the RMSE,

having a smaller RMSE than REF through the first day of the forecast, but slightly larger at 36 hours lead

time. The balance of the biases of the perturbed members is slightly narrower for EDA than for REF early in

forecast, but becomes wider at 24 hours lead time (Fig. 36).
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Figure 35: RMSE (solid line) and ensemble spread (dashed line) for 6-hour accumulated precipitation for REF (blue) and EDA (red)

for the period 25 Oct - 11 Nov 2019.
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Figure 36: Bias for control (purple) and perturbed (grey) members for 6-hour accumulated precipitation for EDA (top row) and REF

(bottom row) for the period 25 Oct - 11 Nov 2019.
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3.2.7 Total cloud cover

EDA has an impact on both the spread and RMSE of the forecast for total cloud cover (Fig. 37). The spread

for EDA is almost 1 okta wider for EDA than for REF at the forecast initialization time, while the RMSE is

slightly lower. A large proportion of the difference in spread at initialization time would appear to be due to

REF taking until 3 hours into the forecast for the spread in total cloud cover to properly spin up. From about

12 hours lead time, the spread for both EDA and REF grows at about the same rate and the RMSEs for each

set up become approximately equal.

The biases of the perturbed members suggest that there actually may not be much spread at the forecast

initialization time in EDA when compared with REF. For EDA, the biases of the perturbed members cluster

together and are less negative (closer to zero) than the control member, whereas the biases of the perturbed

members for REF are more evenly spread out (Fig. 38).
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Figure 37: RMSE (solid line) and ensemble spread (dashed line) for total cloud cover for REF (blue) and EDA (red) for the period 25

Oct - 11 Nov 2019.
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Figure 38: Bias for control (purple) and perturbed (grey) members for total cloud cover for EDA (top row) and REF (bottom row) for

the period 25 Oct - 11 Nov 2019.
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3.2.8 Upper Air Temperature

EDA has a clear impact on the spread of upper air temperature at the forecast initialization time, with EDA

having larger spread than REF throughout the whole atmosphere (Fig. 39). Between 900- and 400-hPa, the

spread for EDA is approximately equal to the RMSE. The spread difference between EDA and REF gets

smaller as the forecast continues, reducing to close to zero by 24 hours lead time. The RMSE for EDA and

REF is generally the same except for at the 1000 hPa level where EDA tends to have smaller RMSE than

REF. The biases of the perturbed members confirms that the perturbations are well balanced around the

control for both EDA and REF (Fig. 40).
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Figure 39: RMSE (solid line) and ensemble spread (dashed line) for upper air temperature for REF (blue) and EDA (red) for the period

25 Oct - 11 Nov 2019.
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Figure 40: Bias for atmospheric temperature throughout the atmosphere for the period 25 Oct - 7 Nov 2019 for EDA (top row, with

pertubed members red) and REF (bottom row, with perturbed members blue). The control member (purple) is the same for both REF

and EDA. The columns are for lead times from 0- to 48-hours every 12-hours.
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3.2.9 Upper Air Specific Humidity

EDA results in both larger spread and smaller RMSE than REF at initialization time below approximately

600 hPa in the atmosphere (Fig. 41). In fact, the spread is slightly larger than the RMSE for EDA between

the 850− and 700−hPa levels. For longer lead times, the larger spread and smaller RMSE for EDA persists

below the 850 hPa level. The biases of the perturbed members suggest that the spread resulting from EDA

penetrates higher into the atmosphere than for REF and that the perturbations are generally well balanced in

both cases (Fig. 42).
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Figure 41: RMSE (solid line) and ensemble spread (dashed line) for upper air specific humidity for REF (blue) and EDA (red) for the

period 25 Oct - 11 Nov 2019.
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Figure 42: Bias for specific humidity throughout the atmosphere for the period 25 Oct - 7 Nov 2019 for EDA (top row, with pertubed

members red) and REF (bottom row, with perturbed members blue). The control member (purple) is the same for both REF and EDA.

The columns are for lead times from 0- to 48-hours every 12-hours.
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3.2.10 Upper Air Wind Speed

EDA results in an increase in the spread of wind speed compared with REF at initialization time, although

between the 700− and 500−hPa levels the impact is close to zero (Fig. 43). As the lead time increase, some

extra spread develops in EDA between these lower / mid levels of the atmosphere, but diminishes high up in

the atmosphere in particular. By 36 hours lead time, there is almost no impact on spread due to EDA except

at the very lowest levels of the atmosphere. The impact of EDA on RMSE is more mixed, with a reduction in

RMSE due to EDA low in the atmosphere at initialization time and a small increase at 12 hours lead time.

The biases of the perturbed members suggest that the balance of the perturbations is similar for both EDA

and REF (Fig. 44).
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Figure 43: RMSE (solid line) and ensemble spread (dashed line) for upper air wind speed for REF (blue) and EDA (red) for the period

25 Oct - 11 Nov 2019.
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Figure 44: Bias for wind speed throughout the atmosphere for the period 25 Oct - 7 Nov 2019 for EDA (top row, with pertubed members

red) and REF (bottom row, with perturbed members blue). The control member (purple) is the same for both REF and EDA. The

columns are for lead times from 0- to 48-hours every 12-hours.
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3.2.11 Geopotential Height

EDA results in a clear and consistent increase in spread over REF throughout the atmosphere at initialization

time together with a very small increase in RMSE that gets smaller with height (Fig. 45). At 12 and 24

hours lead time, EDA has almost identical spread and RMSE as REF, and at 36 hours lead time EDA has

slightly more spread than REF. The biases of the perturbed members suggest that EDA introduces a small

more positive bias to the geopotential height at initialization that dissipates by 12 hours lead time (Fig. 46).
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Figure 45: RMSE (solid line) and ensemble spread (dashed line) for geopotential height for REF (blue) and EDA (red) for the period 25

Oct - 11 Nov 2019.
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Figure 46: Bias for geopotential height for the period 25 Oct - 7 Nov 2019 for EDA (top row, with pertubed members red) and REF

(bottom row, with perturbed members blue). The control member (purple) is the same for both REF and EDA. The columns are for lead

times from 0- to 48-hours every 12-hours.
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4 Discussion

The purpose of this work is to explore some methods for modelling uncertainty in weather forecasts for the

Norwegian Arctic area. The broad sources of uncertainty addressed are in the physics parameterizations

used by the model and in the initial conditions from which each forecast is initialized. The methods assessed

are the use of stochastically perturbed parameters (SPP) in selected physics parameterization schemes for

the model uncertainty; and ensembles of data assimilations (EDA), whereby observations are perturbed

in a way such that their uncertainties are taken into account in the model initial conditions. The efficacy

of these methods is estimated using a comparison of the spread and skill of the ensemble forecasts using

these methods with a reference ensemble forecast. Due to the availability of observational data and different

development priorities it was unfortunately not possible to test both SPP and EDA for the same time periods

using the same cycle of the NWP model.

SPP is designed to address model uncertainty throughout the forecast and is thus related to the predictability

characteristic of the model itself. Selected parameters for a range of parameterization schemes are drawn

from log-normal distributions of those parameters. The pattern that is used to draw the parameters is both

spatially and temporally correlated such that there are not big jumps in the parameter values between grid

points and time steps. Given that SPP affects the parameterization schemes throughout the forecast, it is

expected that the verification scores will be impacted for all lead times. An initial impression from the spread

and skill analysis is that SPP generally results in improved ensemble forecasts with larger spread and either

similar or smaller RMSE than the reference forecast for a wide range of weather parameters. However, for

2m temperature, for example, SPP introduces a cool bias that occurs in both the tested winter and summer

seasons and for the whole range of observed temperatures. On the other hand, the perturbed members of

the reference forecast have a warm bias during the winter and a cool bias during the summer. The cool bias

due to SPP meant that during the day time, the cool bias that was present in the control member forecast

was exacerbated by the members with SPP, but the warm bias that was present in the control member during

the night time was reduced by the cooler SPP members. A similar situation is seen for both 2m specific

humidity and 10m wind speed, whereby SPP appears to add more spread, but this is due to the introduction

of biases in the perturbed members of the ensemble. A similar behaviour was noted by Frogner et al. (2022),

who suggest that the parameter perturbations being sampled from a log-normal distribution is the cause. By

sampling from a log-normal distribution, the perturbations are not equally distributed. In many cases this

may be representative of the error distributions of the parameters being perturbed, but the result is that the

ensemble members with those perturbations tend to be skewed in one direction. Work is ongoing within the

ACCORD consortium to test the use of normal distributions as PDFs from which to sample the perturbed

parameters.

Using mean sea level pressure as a proxy for the general circulation of the atmosphere in the model domain

suggests that SPP has an impact throughout the atmosphere. However, it seems as though any impact of

SPP on the spread of the ensemble is matched by an increase in the errors. This is not the desired behaviour

of a well calibrated ensemble. It is not clear whether this is due to changes in the biases of the perturbed

members of the ensemble, but some of the near surface biases in temperature, humidity and wind speed
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may be contributing. Furthermore, SPP does appear to add a small positive bias to the wind speed for the

perturbed ensemble members at the lower levels of the atmosphere, though for other upper air parameters the

impact on biases is more balanced and increases in spread are achieved without increasing the RMSE as

well.

For both cloud cover and precipitation, the physics schemes, particularly the cloud microphysics parame-

terizations, acted on by SPP would be expected to have an impact on the forecast. Indeed, large increases

in spread together with a reduction in the RMSE were achieved for total cloud cover when SPP was used.

Furthermore, a slightly better balanced spread of biases was also achieved. However, for precipitation the

results were more mixed with SPP resulting in slightly more spread in the winter and at times slightly less

spread in the summer. It should be noted that the majority of cases in both SOP 1 and SOP 2 are dry. Of

10353 observations of 6 hour accumulation during SOP 1, only 3435 (33%) included any precipitation, and

of 9645 cases in SOP 2, only 1756 (18%) included any precipitation (Fig. 47). This means that the sample

size is relatively small, especially for SOP 2, and thus the results may not be that robust.
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Figure 47: Number of wet and dry cases during SOP 1 and SOP 2. A wet case is defined as observed precipitation during the 6 hour

observation period.

While SPP attempts to estimate the impacts of uncertainties arising from the model itself, EDA attempts to

address the atmospheric predictability when the forecast is initialized. In less predictable situations small

changes in the initial conditions will have a sizeable impact on the forecast, whereas for more predictable

situations the impact of small changes will be smaller. A number of methods have been developed to

perturb the initial conditions, the simplest of which for limited area models is to use an ensemble of initial

conditions from the (global) model which provides it the boundary conditions. For the reference forecast

used in this study (REF), this ensemble of initial conditions was derived from time lagged forecasts from the

deterministic global model (IFSHIRES) using a process known as SLAF (Scaled Lagged Average Forecasts;

Toth and Kalnay (1993)). SLAF only provides perturbations to the initial conditions at the spatial scale

of IFSHIRES (~9km) and does not properly address where the uncertainties in the initial conditions arise

since it relies on the uncertainties in forecasts between consecutive model runs. EDA on the other hand

perturbs the observations used to derive the forecast initial conditions such that these uncertainties drive the

uncertainties in the initial conditions. EDA was shown to result in more variability between the ensemble

members than REF for the initial conditions for a range prognostic variables. Furthermore, for an event that

might be considered less predictable (a polar low) both REF and EDA had more variability for wind speed

than for other dates, with EDA resulting in more variability than REF.

Since EDA acts on the initial conditions of the forecast, it would be expected to have the largest impact early

in the forecast before perturbations from the lateral boundaries begin to dominate. This is indeed the case for

all of the parameters tested, with forecasts showing increases in spread due to EDA over REF becoming
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smaller as the forecast progresses. In most cases, except for mean sea level pressure and 6-hour accumulated

precipitation, the spread for EDA is larger than that for REF until the end of the forecast period (36 hours

in the case of EDA). For upper air parameters, the impact is generally confined to the first 12 hours of the

forecast. If there is any impact of EDA on the RMSE, it is to decrease it over the first few hours of the

forecast. In only very few cases is the RMSE for EDA larger than that for REF.

Although the fact the EDA results in larger spread than REF without having a detrimental impact on the

RMSE is promising a deeper inspection revealed some potential issues. While the perturbed members for

REF have a positive bias for 2m temperature, 10m wind speed and total cloud cover, those members in EDA

have an even more positive bias. Conversely, for 2m specific humidity the positive bias of the perturbed

members in REF become more evenly spread around the control member when EDA is used. In general

these biases are not seen in the upper air, except for geopotential height where the well balanced perturbed

members for REF become positively biased when EDA is used. Stratifying the results suggested that the

biases were present across the range of observed values for all of the parameters, suggesting that further

tuning of the observation perturbations used in EDA might result in a better balance.
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Figure 48: Number of observations (grey) and control member forecasts (red) for each level of cloud cover in oktas at forecast

initialization time from 25 October to 7 November 2019.

Taking total cloud cover separately, since the values are bound between zero and full cloud cover, it may be

reasonable to assume that the data set was dominated by clear days since the perturbations are predominantly

positive for both REF and EDA. From Fig. 48, which shows the observed total cloud cover and the total

cloud cover forecasted by the control member for all cases used in the verification, it is clear that it is not

the case that the dataset is dominated by clear days. Indeed there are more cases with full cloud cover than

completely clear. A closer look at the biases of the perturbed members for each observed amount of cloud

cover reveals that EDA has more positive biases than REF for observations with less than half cloud cover

(Fig, 49). For cloudier cases, EDA has a less positive bias than REF when 5 oktas are observed, a less

negative bias than REF when 6 oktas are observed, and a more negative bias than REF when 7 or 8 oktas are

observed. This suggests that in general, EDA has the same sort of impact on cloud cover as REF, but acts

more strongly.
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Figure 49: Biases for the perturbed members for REF(blue) and EDA (red). Each panel is for a different level of observed total cloud

cover in oktas at forecast initialization time from 25 October to 7 November 2019.
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5 Conclusions and Recommendations

Predictability is the main driver of uncertainty in weather forecasts. Weather forecasts should be accompanied

with an estimate of this uncertainty in order for users to make the best informed decisions that they can.

From the perspective of a weather forecast predictability is governed by the inherent predictability of the

atmosphere on a given day - the intrinsic predictability, and the predictability that a numerical model of the

atmosphere can aim to achieve - the practical predictability. This study assesses methods that attempt to

estimate uncertainties resulting from both of these drivers of predictability in the European Arctic - namely

EDA for intrinsic predictability and SPP for practical predictability. These methods were compared with a

reference a forecast and the spread-skill verification metric was used to quantify the results.

In general both EDA and and SPP led to better quantification of the uncertainty in the forecasts according to

the spread-skill metric. However, for some parameters extra biases were also introduced which is undesirable.

In particular SPP introduced a cooler bias with weaker winds, while EDA introduced a slightly warm bias,

with wind speeds that were slightly too strong and too much cloud cover. With regard to SPP, it is suspected

that the biases come from using a lognormal distribution to sample the perturbations and work is ongoing

in the ACCORD consortium to test the use of normal distributions instead. It is also suspected that further

tuning of the perturbations to the observations in EDA would improve the balance of the perturbations in the

initial conditions. It should also be noted that the vast majority of the observations used in the verification

were over land and the AROME-Arctic domain is mostly ocean, so the results reported here are only valid

over land and the impact of both SPP and EDA over the ocean in terms of verification scores remains an

open question.

Following the work done here, the following are recommendations to be taken into account when preparing

the AROME-Arctic EPS for production.

• SPP should not be taken into use while it adds biases to certain parameters.

• Developments with using a normal distribution for sampling perturbations for SPP within the ACCORD

consortium should be followed closely.

• Once SPP results in balanced perturbations, more work should be done to tune the magnitude of the

perturbations to give the best results for the Arctic region.

• EDA can be taken into use as it currently stands.

• More work should be done to tune the perturbations for EDA to be better balanced and to give the best

estimates of initial conditions uncertainty for the AROME-Arctic EPS.

6 Acknowledgements

This study was supported by the Norwegian Research Council Project 280573 ‘Advanced models and

weather prediction in the Arctic: enhanced capacity from observations and polar process representations

(ALERTNESS).’ This work is a contribution to the Year of Polar Prediction (YOPP), a flagship activity of

the Polar Prediction Project (PPP), initiated by the World Weather Research Programme (WWRP) of the

63



World Meteorological Organization (WMO).

In addition, thanks are due to the following people: Roger Radriamampiannina (MET) implemented the code

for running EDA in the AROME-Arctic ensemble. Yurii Batakk ran the EDA experiments. Rafael Gröte

(MET) set up the modelling system for AROME-Arctic EPS. Inger-Lise Frogner (MET) and Ulf Andrae

(SMHI) provided code and assistance for running the SPP experiments.

64



7 References

Bouttier, F., L. Raynaud, O. Nuissier, and B. Ménétrier, 2016: Sensitivity of the AROME ensemble to initial

and surface perturbations during HyMeX. Quarterly Journal of the Royal Meteorological Society, 142,

390–403, https://doi.org/10.1002/qj.2622.

Frogner, I.-L., and Coauthors, 2019a: HarmonEPS—the HARMONIE ensemble prediction system. Weather

and Forecasting, 34, 1909–1937, https://doi.org/10.1175/WAF-D-19-0030.1.

——, A. T. Singleton, M. O. Koltzow, and U. Andrae, 2019b: Convection-permitting ensembles : Challenges

related to their design and use. Quarterly Journal of the Royal Meteorological Society, 145, 90–106,

https://doi.org/10.1002/qj.3525.

——, ——, P. Ollinaho, A. Hally, K. Hämäläinen, J. Kauhanen, K.-I. Ivarsson, and D. Yazgi, 2022: Model

uncertainty representation in a convection-permitting ensemble—SPP and SPPT in HarmonEPS. Monthly

Weather Review, 150, 775–795, https://doi.org/10.1175/MWR-D-21-0099.1.

Isaksen, L., M. Fisher, and J.Berner, 2007: Use of analysis ensembles in estimating flow-dependent

background error variance. Proc. ECMWF workshop on flow-dependent aspects of data assimilation,

Reading, United Kingdom, ECMWF, 65–86 https://www.ecmwf.int/sites/default/files/elibrary/2007/101

27-use-analysis-ensembles-estimating-flow-dependent-background-error-variance.pdf.

——, M. Bonavita, R. Buizza, M. Fisher, J. Haseler, M. Leutbecher, and L. Raynaud, 2010: Ensemble of data

assimilations at ECMWF. Research Department Tech. Memo, 636, 45 pp, https://doi.org/10.21957/obke4

k60.

Lorenz, E. N., 1963: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130–141,

https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2.

——, 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307,

https://doi.org/10.3402/tellusa.v21i3.10086.

Müller, M., Y. Batrak, J. Kristiansen, M. A. Ø. Køltzow, G. Noer, and A. Korosov, 2017: Characteristics of

a convective-scale weather forecasting system for the european arctic. Monthly Weather Review, 145,

4771–4787, https://doi.org/10.1175/MWR-D-17-0194.1.

Ollinaho, P., and Coauthors, 2017: Towards process-level representation of model uncertainties: Stochasti-

cally perturbed parametrizations in the ECMWF ensemble. Quarterly Journal of the Royal Meteorologi-

cal Society, 143, 408–422, https://doi.org/10.1002/qj.2931.

Singleton, A. T., and R. Grote, 2020: Verification of EPS forecasts using AROME-arctic. Norwegian

Meteorological Institute MET Report 06-2020, https://www.met.no/publikasjoner/met-report/met-report-

2020/_/attachment/download/76218c4b-c061-41b7-aa6c-b3c4feaf5af2:bb7271f45a96a5210e957e6c

4e41e41cbfa32ba7/MET-report-06-2020.pdf.

Surcel, M., I. Zawadzki, and M. K. Yau, 2015: A study on the scale dependence of the predictability of

precipitation patterns. Journal of the Atmospheric Sciences, 72, 216–235, https://doi.org/10.1175/JAS-D-

14-0071.1.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bulletin of

the American Meteorological Society, 74, 2317–2330, https://doi.org/10.1175/1520-0477(1993)074%3

C2317:EFANTG%3E2.0.CO;2.

65

https://doi.org/10.1002/qj.2622
https://doi.org/10.1175/WAF-D-19-0030.1
https://doi.org/10.1002/qj.3525
https://doi.org/10.1175/MWR-D-21-0099.1
https://www.ecmwf.int/sites/default/files/elibrary/2007/10127-use-analysis-ensembles-estimating-flow-dependent-background-error-variance.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2007/10127-use-analysis-ensembles-estimating-flow-dependent-background-error-variance.pdf
https://doi.org/10.21957/obke4k60
https://doi.org/10.21957/obke4k60
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.3402/tellusa.v21i3.10086
https://doi.org/10.1175/MWR-D-17-0194.1
https://doi.org/10.1002/qj.2931
https://www.met.no/publikasjoner/met-report/met-report-2020/_/attachment/download/76218c4b-c061-41b7-aa6c-b3c4feaf5af2:bb7271f45a96a5210e957e6c4e41e41cbfa32ba7/MET-report-06-2020.pdf
https://www.met.no/publikasjoner/met-report/met-report-2020/_/attachment/download/76218c4b-c061-41b7-aa6c-b3c4feaf5af2:bb7271f45a96a5210e957e6c4e41e41cbfa32ba7/MET-report-06-2020.pdf
https://www.met.no/publikasjoner/met-report/met-report-2020/_/attachment/download/76218c4b-c061-41b7-aa6c-b3c4feaf5af2:bb7271f45a96a5210e957e6c4e41e41cbfa32ba7/MET-report-06-2020.pdf
https://doi.org/10.1175/JAS-D-14-0071.1
https://doi.org/10.1175/JAS-D-14-0071.1
https://doi.org/10.1175/1520-0477(1993)074%3C2317:EFANTG%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074%3C2317:EFANTG%3E2.0.CO;2


Tsyrulnikov, M., and D. Gayfulin, 2017: A limited-area spatio-temporal stochastic pattern generator for

simulation of uncertainties in ensemble applications. Meteor. Z., 26, 549–566.

66


	Introduction
	Methods
	AROME-Arctic EPS (AAEPS)
	SPP
	EDA
	Verification metrics

	Results
	SPP
	2m Temperature
	2m Specific Humidity
	10m Wind Speed
	Mean Sea Level Pressure
	6-hour Accumulated Precipitation
	Total Cloud Cover
	Upper Air Temperature
	Upper Air Specific Humidity
	Upper Air Wind Speed
	Geopotential Height

	EDA
	Initial condition perturbations
	2m Temperature
	2m Specific Humidity
	10m Wind Speed
	Mean Sea Level Pressure
	6-hour accumulated precipitation
	Total cloud cover
	Upper Air Temperature
	Upper Air Specific Humidity
	Upper Air Wind Speed
	Geopotential Height


	Discussion
	Conclusions and Recommendations
	Acknowledgements
	References

