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Abstract

This study evaluates the performance of two high-resolution Numerical Weather Pre-

diction (NWP) models, MEPS and AROME-Arctic, against Synthetic Aperture Radar

(SAR)-derived wind fields in Arctic regions from May to October 2024. The research

focuses on verifying simulated 10-m wind speed under various sea surface conditions,

coastal dynamics, and during convective weather events. Results highlight that while both

models predict moderate wind regimes reasonably accurate, systematic underestimations

occur in rough sea states and convective environments. SAR data, though valuable for

small-scale verification, show limitations due to ambiguities in ice-affected areas. Find-

ings underline the importance of refining NWP model parameterization and horizontal

resolution in order to increase the forecast accuracy in high-latitude. In addition, it would

be advantageous to modify the SAR wind retrieval algorithms further, in order to improve

high-quality wind-observation availability in this otherwise observation-sparse region.
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1 Introduction

Accurate and reliable weather predictions in the Arctic have become increasingly im-

portant due to the recent uptick in human activities like shipping, tourism, and resource

extraction in the region. Although numerical weather prediction (NWP) models have im-

proved considerably in recent decades, particularly in the Arctic (Jung and Leutbecher,

2007), the region still poses challenges for these models due to the sparse observational

network, small spatial scales of Arctic weather phenomena such as polar lows, and the fo-

cus of these models on mid- and lower-latitude weather (Køltzow et al. (2021), Jung and

Matsueda (2016)). Additionally, the sparse distribution of in-situ measurements impedes

the effective initialization and validation of NWP models, leading to increased uncer-

tainty in forecasts. The use of remote sensing observations, such as synthetic aperture

radar (SAR), has the potential to improve the validation and development of these models

in high-latitude regions, such as the Arctic (Tollinger and Graversen, 2024). Observa-

tions from SAR can provide additional knowledge of the spatial and temporal variability

of atmospheric conditions over the Arctic, due to the high spatial resolution, large-scale

coverage, and ability to provide measurements even in cloudy conditions or during polar

night. SAR-wind products are able to estimate ocean surface wind speeds on a much finer

scales than regional operational NWP models, which can help provide insights into small-

scale weather phenomena that are often not accurately resolved. It is, however, important

to note that SAR-derived wind fields are not ground truth, as they rely on empirical geo-

physical model functions (GMF) to retrieve wind speed from the radar backscatter signal.

The ambiguities involved in SAR wind retrieval algorithms, lack of in situ validation,

and potential inaccuracies in the NWP wind direction information used as input for the

retrieval, may all introduce uncertainties in the resulting wind-field estimations. Cur-

rently, wind speeds derived from SAR through GMFs are only valid up to about 20−25

m s−1 (Hersbach et al. (2007), Stoffelen et al. (2017)), which limits their usefulness for

more extreme wind conditions. Recent studies have developed techniques for estimating

wind fields from SAR imagery without relying on external wind direction inputs, poten-

tially enhancing numerical forecasting of weather systems featuring strong wind gradi-

ents, such as polar lows (Tollinger et al., 2021).

This study aims to verify the performance of two high-resolution, operational NWP mod-

els against SAR-derived wind fields from the beginning of May 2024 to the end of October
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2024, focusing on the simulated 10-m wind speed. Additionally, possible limitations and

uncertainties in both the NWP models and the SAR wind retrieval are discussed.

The two NWP models and the remote sensing observations used in this study are briefly

described in Section 2, along with the methodology used for collocation and wind re-

trieval. The results of the model verification are presented in Section 3 including three

separate cases focusing on the performance of the models during different wind regimes.

In Section 3.4, two cases describing separate convective events are investigated where

examples of discrepancies between the two NWP model predictions are observed. Lastly,

Section 4 provides a discussion of the limitations and uncertainties in the analysis, as well

as considerations for future work.
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2 Data and Methodology

2.1 NWP Models

The NWP models evaluated in this study include the Nordic convection-permitting MEPS

system (Bengtsson et al., 2017), operating with a 2.5-km grid resolution (HARMONIE-

AROME configuration; HIRLAM-ALADIN Research on Mesoscale Operational NWP

in Europe), and the operational European Arctic regional model AROME-Arctic (Müller

et al., 2017), with the same 2.5-km grid spacing. Both systems are designed with 65

vertical levels and are based on a shared core model configuration. However, they dif-

fer in domain coverage (Figure 1), lateral boundary forcing, and certain parametrization

schemes. Operational forecasts are generated eight times a day using six-hourly boundary

conditions derived from the ECMWF IFS-HRES global system.

Figure 1: Geographical extent of the Nordic MEPS (solid black line) and AROME-Arctic (dashed

line) model domains. The map illustrates the coverage areas of the convection-permitting NWP

systems, including key regions such as the Arctic Ocean, Barents Sea, Norwegian Sea, and Sval-

bard.
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2.2 Satellite Data

Sentinel-1A

SAR images are sourced from the Sentinel-1A satellite operating in the C-band frequency

range. The SAR data utilized are Level-1 Ground Range Detected (GRD) products, ac-

quired in dual-polarization mode, including vertical (VV+VH) and horizontal (HH+HV)

polarizations. The images are acquired in two specific modes: Interferometric Wide

Swath (IW), which offers a swath width of 250 km and is primarily used for coastal

regions, and Extra Wide Swath (EW) mode, with a 400 km swath, mainly used in polar

arctic areas.

Wind Speed Estimations

The wind-speed estimation follows the typical steps as described in Hersbach et al. (2007)

and Stoffelen et al. (2017). The CMOD5.N model function provides an empirical rela-

tionship relating the normalized radar cross-section measurement from the SAR sensor,

the radar incidence angle, and the (neutral) ocean wind speed and direction at 10-m height

(10-m neutral wind). Since the SAR wind direction is not available, the modelled wind

direction from the AROME-Arctic and the control member of MEPS NWP systems are

used as input for the CMOD5.N model to derive the SAR wind speed.

2.3 Sentinel-1A Data Collocation with NWP Models

The map-projected sea-surface wind fields estimated from Sentinel-1A SAR data and col-

located with the 10-m wind fields from the MEPS and AROME-Arctic NWP models can

be sourced from the Norwegian Meteorological Institute’s (MET Norway) THREDDS

Data Server. It is important to note that, the datasets obtained from the THREDDS Data

Server are the direct output from the model without any detailed post-processed model

output with bias correction.

Given that the acquisition times of the SAR scenes and the NWP model forecasts do

not always coincide, i.e. the NWP model output is every hour, a temporal matching

within a 30-minute time window is performed during the collocation process to account

for temporal discrepancies. In addition, the initial time of the model closest to the SAR

scene is applied, meaning that there are only short term forecasts of maximum 3 hours

applied in the study. The extent covered by the SAR swath is used as the common domain

and the model output is remapped to this grid using nearest-neighbour interpolation.
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2.4 Outlier Detection and Removal

During the initial data analysis, several SAR-derived wind speed estimates are found to

be significantly higher than both neighbouring data points and corresponding values from

NWP models. These anomalous readings can often result from factors such as radar

calibration errors, distortions due to sea ice, or contamination from nearby land surfaces or

vessels. In order to mitigate the influence of such outliers, an outlier detection and removal

process is implemented. This process involves categorizing wind speed values based on

their deviation from the median of surrounding grid points. A threshold is established to

identify and exclude outliers, ensuring that only data points within a specified range of the

median are retained. The Median Absolute Deviation (MAD) (Huber, 2004) is employed

as a measure of statistical dispersion, and the deviation of each data point from the median

is calculated using the following formula:

Mi =
0.6745(xi − x̃i)

MAD
,

where xi represents the individual data point, x̃i denotes the median of the dataset, and

MAD is the Median Absolute Deviation:

b MAD = b median{|xi − x̃i|},

where b = 1.4826, which is the scaling factor for Gaussian distributions, such that the

constant 0.6745 is used to scale the MAD to be consistent with the standard deviation for

a normal distribution (Rousseeuw and Croux, 1993).

2.5 Verification Metrics

The statistical performance of the models is evaluated against SAR using the following

key metrics:

1. Median Bias, which calculates the median of the difference between the predicted

(model) wind speed and the observed (SAR) wind speed, serving as an indicator

of systematic over- or underestimation by the models. Median bias is chosen for

robustness, as it is less sensitive to outliers than the mean.

2. Median absolute error or MAE, which quantifies the absolute deviations between

observed and modelled wind speeds, offering a direct measure of prediction ac-

curacy. Median absolute error instead of the more typical mean absolute error is
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here applied to ensure that extreme values do not disproportionally affect the error

estimation, particularly during variable wind conditions.

3. Spearman’s Rank Correlation Coefficient, which is a non-parametric correlation as-

sesses the strength and direction of monotonic relationships between observed and

modelled wind speeds, independent of linear assumptions. Spearman’s correlation

is transformed using Fisher’s Z-transformation for aggregation, as this approach

stabilizes the variance and allows for meaningful averaging across samples. Inverse

transformation is then applied to obtain the final correlation values for interpreta-

tion.
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3 Results

3.1 Distinguishing Sea-Ice Drift from SAR-Derived Wind Speeds

Impact of Sea-Ice on SAR Wind Retrieval

Sea ice evolves through various stages: from open water to new ice, young ice, first-year

ice, and eventually multiyear ice. Throughout these transitions, there are changes in sur-

face roughness and salinity, leading to variations in radar backscatter intensity (Onstott,

1992). SAR leverages these backscatter variations to distinguish between different ice

types based on their age and physical characteristics. However, the sensitivity of SAR

backscatter to these ice properties introduces ambiguities in wind retrieval processes. In

particular, sea ice-covered regions have been known to exhibit backscatter signatures sim-

ilar to those of open water under high wind conditions, causing SAR wind-retrieval to er-

roneously interpret these areas as experiencing high wind speeds (Horstmann et al., 2000).

In each SAR resolution cell, the backscatter values are influenced by multiple ice param-

eters, including the stage of ice development, unresolved ice forms within the imagery,

surface characteristics of ice and snow, and overall surface roughness. These factors con-

tribute to significant ambiguities in interpreting SAR backscatter data. For instance, a

strong backscatter signal may originate from various ice conditions such as hummocked

thick first-year ice, thin ice with frost flowers, or areas with packed ice cakes and small

floes. Moreover, the backscatter from open water surfaces varies significantly with wind

speed and direction, leading to increased backscatter at higher wind speeds. Figure 2

shows how the SAR backscatter (in dB) varies over the different stages of sea ice evolu-

tion, along with the backscatter variation over open water with increasing surface rough-

ness.

The inherent variability of sea-ice surfaces poses challenges for both SAR wind retrieval

and NWP model simulations. In regions with extensive sea-ice coverage, discrepancies

between SAR-derived and model wind fields are likely to increase due to the differing

methodologies by which each system interprets wind information. Specifically, SAR may

produce false positives in wind speed estimations where the backscatter from rough ice

mimics that of open water under high wind conditions.
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Figure 2: SAR backscatter (dB) as a function of sea ice thickness (cm) and time, highlighting

different stages of ice formation and transformation, including open water, new ice, frost flower

production, and the development of multiyear ice. (Adopted from Johannessen (2020))

The SAR-derived wind field in Figure 3, from 2 July 2024, exemplifies a typical case

where drift ice significantly influences SAR wind observations. Although the observed

wind speeds, ranging from 0.5 to 25 m s−1, fall within plausible wind speeds ranges, the

presence of sharp gradients and the formation of cyclonic eddies within the wind field

suggest that these features are predominantly influenced by the drift ice dynamics rather

than actual atmospheric wind patterns.

The purpose of the following section is to illustrate the potential inaccuracies in using

Sentinel-1A EW mode GRD SAR products with HH+HV polarization for operational

wind field derivation in polar Arctic regions, especially when integrating with NWP mod-

els. The observed ambiguities arising from sea-ice dynamics emphasizes the necessity

for cautious interpretation of SAR data. Without effectively distinguishing between ice-

induced and wind-induced signals, the integration of SAR products with NWP models

may result in erroneous wind-field representations. Thus, its use in operational wind-field

verification should be treated with caution and supplemented by other observational data

sources to validate NWP-model performance in these regions.

SAR and NWP Wind Speed Differences in the Arctic

In order to illustrate how sea-ice conditions can impact the agreement between SAR-

derived and NWP-simulated wind fields, a brief visual comparison is provided for wind

fields derived on 1 October 2024. Figure 4 shows how each data source estimates the
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Figure 3: SAR-derived wind field captured on 2 July 2024, at 07:46:36 UTC using EW swath

mode and HH+HV polarization. The image shows wind speed variations across the ice-covered

and open water regions, with wind speeds ranging from 0.5 to 25 m s−1.

wind conditions north of Svalbard on the provided date. The northern section of the im-

age corresponds to consolidated sea ice, which appears as high-brightness regions. These

regions are erroneously represented as high wind speeds (ranging from 20 to 38 m s−1)

by the SAR wind retrieval algorithm, despite the lack of actual high winds in this area.

In order to illustrate how sea-ice conditions may impact the agreement between SAR-

derived and NWP-simulated wind fields, a brief visual comparison is provided for wind

fields derived on 1 October 2024. Figure 4 shows how each data source estimates the wind

conditions north of Svalbard on the given date. The northern section of the image depicts

a clear high-brightness region, with wind speeds ranging from 20 m s−1 to 38 m s−1. The

open water regions in the southern portion of the image display more moderate backscatter

values which correspond to relatively lower wind speeds (< 15 m s−1). Inspecting the sea-

ice concentration outputs from AROME-Arctic (not shown) and sea-ice charts obtained

from the MET Norway Ice Service, it is evident that the high wind speed signals detected

by SAR in the northern region are mainly influenced by the presence of sea ice, rather

than actual high wind speeds. Additionally, the AROME-Arctic model wind speeds in

this region are significantly lower, ranging between 8 m s−1 and 14 m s−1.
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Figure 4: Comparison of SAR-derived wind speeds (left) and NWP model wind speeds (right)

over Nordaustlandet and the ocean area northeast of Svalbard. The SAR data demonstrate wind

speed gradients influenced by sea-ice dynamics, while the model data reflect atmospheric con-

ditions independent of ice-related backscatter. Wind speeds are measured in meters per second

(m s−1).

Figure 5: Ice chart from the Fram Strait region, valid on 1 October 2024 15:00 UTC. The chart

provides an overview of sea-ice conditions for the time period and location where the SAR-derived

wind field is acquired.
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Over the open waters to the east, the SAR-derived wind speeds appear in a high degree

to exceed those simulated by the numerical weather prediction model, and the realism of

the SAR-wind in the EW mode is difficult to asses. Thus, in further analyses, SAR con-

figurations using EW mode with HH+HV will be excluded, and only IW VV polarization

imagery will be considered in verification.

3.2 Wind Speed Prediction during Varied Sea Surface Conditions

With the challenges posed by sea-ice backscatter ambiguities addressed, the remaining

analysis will focus on the comparison of SAR-derived and NWP-modelled wind speeds

in open water regions of the European Arctic. Rapidly changing surface conditions and

varying wind regimes in high latitude regions is a well-known challenge for NWP mod-

els due to e.g. the complexity of air-sea interactions (Elvidge et al. (2016) and Wu et al.

(2019)). In the Arctic, additional complexities, such as sea ice edge dynamics, polar

lows, topographically induced flows due to high static stability, and increased sensitivity

of the atmospheric boundary layer to surface conditions, exacerbate the variability in wind

stress and surface fluxes. Existing bulk parametrizations for surface roughness often fail

to account for the impact of wave dynamics, which can distort estimates of surface wind

speed and fluxes, particularly during high-wind events or under rapidly evolving condi-

tions. Coupled ocean-atmosphere NWP models and advanced parametrization schemes

have been shown to improve model performance in these regions. However, limited ob-

servational data and computational constraints prevent further improvements, particularly

for kilometre-scale, operational weather prediction models.

This section assesses the performance of AROME-Arctic and MEPS simulations in re-

producing SAR-derived wind speeds during varied surface conditions, with a focus on

capturing episodic high-wind events and validating the ability of the models to represent

the dynamically complex near-surface wind field. Sea states are classified as calm (< 5

m s−1), moderate (5− 9 m s−1), rough (10− 14 m s−1), and very rough (≥ 15 m s−1).

The analysis provides insights into systematic biases, spatial and temporal variability,

and the accuracy of forecasts relative to SAR-derived wind fields. The results highlight

differences in model performance across sea surface conditions and reveal how forecast

accuracy varies with wind regime, surface roughness, and model framework.

Model Performance Across Sea States
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Table 1 presents the performance metrics of the MEPS and AROME-Arctic NWP mod-

els in simulating wind speeds across different sea state conditions, and highlights the

accuracy of the models and reliability in various wind regimes and surface roughness

conditions from the beginning of May 2024 to the end of October 2024. A total of 238

cases are analysed with MEPS, and 230 cases are analysed with AROME-Arctic.

Table 1: Performance comparison of MEPS and AROME-Arctic models in simulating wind

speeds across different sea state conditions. Metrics include Average Wind Speed (m/s), Aver-

age Bias (m/s), Average MAE (m/s), and Average Correlation Coefficient. Wind speeds leading

to the corresponding sea states are categorized as Calm (< 5 m/s), Moderate (5− 9 m/s), Rough

(10−14 m/s), and Very Rough (≥ 15 m/s).

Model Condition Wind Speed (m s−1) Average Bias (m s−1) Average MAE (m s−1) Average Corr

MEPS

Calm < 5 0.73 1.55 0.15

Moderate 5−9 -0.53 1.48 0.36

Rough 10−14 -2.17 2.63 0.18

Very Rough ≥ 15 -3.54 3.72 0.03

AROME-Arctic

Calm < 5 0.91 1.61 0.16

Moderate 5−9 -0.51 1.47 0.35

Rough 10−14 -2.18 2.61 0.20

Very Rough ≥ 15 -3.70 3.85 0.06

In calm conditions, both AROME-Arctic and MEPS tend to overestimate wind speeds,

with average biases of 0.91 m s−1 and 0.73 m s−1, respectively. The MAE is 1.61 m s−1 for

AROME-Arctic and 1.55 m s−1 for MEPS, and both models have low correlation coeffi-

cients (0.16 and 0.15). As surface roughness increases, the models increasingly underesti-

mate the wind speeds. Under moderate conditions, the average biases are −0.51 m s−1 for

AROME-Arctic and −0.53 m s−1 for MEPS, with MAEs around 1.47 m s−1 and 1.48

m s−1, respectively. The correlation coefficients peak under moderate conditions, reach-

ing 0.35 for AROME-Arctic and 0.36 for MEPS. In rough conditions, the negative bias

becomes more pronounced. AROME-Arctic shows an average bias of −2.18 m s−1, and

MAE of 2.61 m s−1, and a correlation coefficient of 0.20. MEPS exhibits similar perfor-

mance with an average bias of −2.17 m s−1, an MAE of 2.63 m s−1, and a correlation

coefficient of 0.18. Under very rough conditions, both models show the largest under-

estimations, with biases reaching −3.70 m s−1 for AROME-Arctic and −3.54 m s−1 for

MEPS. The MAEs increase to 3.85 m s−1 for AROME-Arctic and 3.72 m s−1 for MEPS,

while the correlation coefficients drop to 0.06 and 0.03, respectively. Without comparing
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the SAR wind product with observations it is difficult to asses whether these calculated

model biases are exaggerated. However, the pattern with a positive bias for calm con-

ditions and a negative bias for stronger wind conditions correspond to the findings from

wind verification from oil and gas platform installations in the North Sea from the NORA3

reanalysis data set which also uses the Harmonie-AROME model with an almost similar

horizontal grid spacing of 3 km (Solbrekke et al., 2021). In Solbrekke et al. (2021) the ver-

ification is performed at observation height instead of doing a correction of the observed

wind values at instrument height down to 10 m which can lead to erroneous conclusions

(Olsen et al., 2022). Similar verification is done in Køltzow et al. (2024) which also

shows an overall negative bias in MEPS when verified at sensor height. However, more

comparison between observed winds and SAR-wind products must be performed in order

to finally conclude whether the exact bias values calculated in this section are trustworthy.

Figure 6 illustrates the frequency distribution of wind speed differences between SAR-

derived observations and the NWP models, MEPS and AROME-Arctic, across various

wind regimes. The histograms represent the percentage frequency differences (%) of

wind speed occurrences within the valid range of 2−25 m s−1 for both models compared

to the SAR data, i.e. the frequency of a certain wind speed bin in percent from the SAR

data minus the frequency of the same wind speed bin in percent from the model data for

all cases in consideration. Note that with this definition the sign of the model bias will be

opposite in Figure 6 compared to Table 1.

Both MEPS and AROME-Arctic tend to overestimate the occurrence of lower wind speeds,

as indicated by negative frequency differences ranging from approximately −2% to −3%.

Specifically, AROME-Arctic exhibits a slightly more pronounced overestimation of the

lowest wind speeds compared to MEPS. This consistent bias suggests that both models

may struggle to accurately capture wind speeds over a calm sea surface, potentially due

to limitations in surface layer parametrization or the representation of stable atmospheric

conditions. For moderate wind speeds, both models show a reduction in frequency rel-

ative to the SAR-derived observations, with frequency differences exceeding 2%. This

indicates a slight underestimation of moderate wind speeds by both MEPS and AROME-

Arctic.

As the wind speed increases, corresponding to a rough and very rough sea state, the occur-
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rence of such conditions is inherently less frequent. Nevertheless, both models continue

to underestimate the frequency of these high wind speeds, as is evident by the positive fre-

quency differences (Figure 6), negative biases, and lower correlation coefficients (Table

1). The limited number of high wind speed instances likely contributes to the poor perfor-

mance of the models in these conditions, as the small sample size reduces the statistical

robustness of the performance metrics. Additionally, the complex non-linear interactions

between the wind and waves in these dynamic regimes may pose challenges for the sur-

face layer parametrization of the models.

Figure 6: Differences in wind speed occurrence between SAR and MEPS (left), and SAR and

AROME-Arctic (right). The frequency of wind speed differences (%) is along the y-axis, and the

binned valid wind speeds (2− 25 m s−1) are along the x-axis. Both models are within the ±3%

range.
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3.3 Wind Speed Variability Across Coastal and Open Ocean Regions

In order to further investigate the spatial variability in model performance, the study area

is divided into coastal and open ocean regions. Wind dynamics along coastal regions are

often more complex due to interactions among orography, thermal gradients, and land-

sea surface transitions. Even kilometre-scale models may struggle to accurately capture

effects like wind channelling through fjords, and the formation of lee waves.

In open ocean regions, wind patterns tend to be more uniform across large distances,

driven primarily by synoptic-scale systems such as high- and low-pressure systems. How-

ever, mesoscale disturbances (e.g. polar lows, cold fronts, and convective systems), in-

troduce short-term variability in wind speed and directions. The interaction between the

atmosphere and ocean surface in open ocean regions is also modulated by sea surface tem-

perature (SST) gradients and ocean currents, which influence surface winds by modifying

pressure gradients and atmospheric stability. These stability conditions may cause chal-

lenges for models to accurately represent the associated wind variability, which makes

SAR-derived wind fields particularly useful in such cases, as these can capture both the

laminar flow under stable conditions and the more turbulent wind structures during unsta-

ble conditions.

Geographical Classification of Coastal and Open Ocean Regions

In order to differentiate between ’Coastal’ and ’Open Ocean’ regions, each data point is

geographically classified based on its coordinates relative to a coastal boundary derived

from the the Global Self-consistent, Hierarchical, High-resolution Geography Database

(GSHHG) coastline shapefile (Wessel et al., 2013). Data points are classified by spatially

joining each point’s location to this coastal boundary, where points 50 km within these

coastal bounds are classified as ’Coastal’, while points beyond this distance are labelled as

’Open Ocean’. These boundaries are selected to encompass the Norwegian coastline and

surrounding areas in which coastal dynamics are expected to have a significant influence

on wind fields. For consistency across models, spatial coordinates are converted from

projected coordinates to geographic latitudes and longitudes using the model-specific grid

projection.

This classification is applied to the wind field data extracted from the collocated SAR and

model data. If a frame is intersected by the boundary between coastal and open ocean, it is
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subdivided based on the wind field points within each region, and the resulting subsets are

classified accordingly. Once classified, the verification metrics outlined in Section 2.5 are

calculated for each individual scene. The final step involves averaging these metrics over

the study period, using Fisher’s z-transform for averaging correlations across multiple

scenes. Classifying wind field points in this manner allows for the quantification of the

relative impact of wind dynamics in complex terrain on the NWP models’ performance

in representing surface winds.

Comparison of Numerical Models and SAR Wind Fields

In order to illustrate the differences in wind field representations between coastal and open

ocean regions, sample scenes from both environments are presented. Figure 7 shows wind

fields estimated from SAR, AROME-Arctic, and MEPS over the coastal area in the Finn-

mark region. It is apparent that the striking lee wave pattern in the SAR image is not

resolved in the 2.5 km models. It is interesting to see that the signature of the lee waves

developed in a stable layer at or above mountain top height is mixed all the way down to

sea level, and that the gap winds through the Porsangerfjord and Laksfjord, i.e. the two

largest fjords apparent in Figure 7, are superimposed by lee waves. Earlier studies have

illuminated that finer spatial resolution than 2.5 km between the grid points is needed

in order to resolved lee waves in this area (Samuelsen and Kvist (2024) and Samuelsen

(2007))

Figure 8 displays corresponding wind fields over an open ocean region in the Norwegian

Sea with relatively uniform sea-surface conditions. In this environment, the wind fields

from the models exhibit more uniform wind patterns and less spatial variability compared

to the coastal region.
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(a) MEPS (2024-08-21T15:35:32)

(b) AA (2024-08-21T15:35:32)

Figure 7: Wind fields compared to SAR over the Finnmark coastline on 21 August 2024, at

15:35:32 UTC, as modelled by (a) MEPS and (b) AROME-Arctic.
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(a)

(b)

Figure 8: Wind fields over open water close to the Finnmark coastline 21 August 2024, at 15:35:56

UTC, as modelled by (a) MEPS and (b) AROME-Arctic.
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Statistical Comparison Results

The statistical comparison between the numerical models and SAR-derived wind speeds

reveals distinct patterns in model performance across coastal and open ocean regions. Ta-

ble 2 summarizes the averaged verification metrics for both models from the beginning

of May 2024 to the end of October 2024, where a total of 238 cases were analysed with

MEPS, and 230 cases were analysed with AROME-Arctic.

In coastal regions, both AROME-Arctic and MEPS exhibit a negative bias, indicating a

systematic underestimation of wind speeds compared to the SAR observations. Specifi-

cally, AROME-Arctic has an average bias of −0.98 m s−1, while MEPS shows a slightly

larger bias of −1.21 m s−1. The MAE values for the coastal regions are 1.66 m s−1 for

AROME-Arctic, and 1.75 m s−1 for MEPS, which suggests that both models have com-

parable overall accuracy in predicting wind speeds near the coast. The small difference in

MAE suggests that despite AROME-Arctic’s smaller bias, both models face similar chal-

lenges in reducing absolute errors in the complex coastal environment, likely due to the

intricate topography and localized wind phenomena due to the low spatial resolution com-

pared to SAR. The correlation coefficients in coastal regions are relatively low for both

models, with AROME-Arctic at 0.28 and MEPS at 0.30. This weak linear relationship

between the models and the reference data indicates that the models struggle to capture

the full spatial variability of the wind field in these near-shore environments, as observed

by the SAR. The slightly higher correlation for MEPS indicates a marginal advantage in

representing the variability, but the difference is minimal.

In open ocean regions, both models demonstrate improved performance. The biases are

smaller, with AROME-Arctic at −0.47 m s−1 and MEPS at −0.49 m s−1, indicating a

closer agreement with SAR-derived wind speeds. The MAE values are approximately

identical for both models at 1.18 m s−1. The higher correlation values for both AROME-

Arctic (0.49) and MEPS (0.52) imply that the offshore wind conditions are less challeng-

ing for the models to predict, possibly due to less small-scale spatial variability.
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Table 2: Averaged verification metrics comparing model-predicted wind speeds from AROME-

Arctic and MEPS with SAR-derived wind speeds across coastal and open ocean regions, covering

the period from May to October 2024. The table shows the averaged values for bias, MAE, and

correlation coefficient, calculated between SAR wind speed and model wind speed for each region

and model.

Model Region Average Bias (m s−1) Average MAE (m s−1) Average Corr.

MEPS
Coastal -1.21 1.75 0.30

Open Ocean -0.49 1.18 0.52

AROME-Arctic
Coastal -0.98 1.66 0.28

Open Ocean -0.47 1.18 0.49

3.4 Wind Discrepancies in Convective Environments

Convective Event Case Study

Accurate simulation of convective processes is essential, given their crucial role in phe-

nomena such as the genesis and intensification of polar lows. Convection involves the ver-

tical transport of heat and moisture, leading to cloud formation and precipitation, which in

NWP simulations are represented through parametrization schemes or explicitly resolved

depending on the model resolution. For short-term forecasting of polar lows, AROME-

Arctic is operationally used due to its high-resolution capability and regional optimization

(Müller et al., 2017). Accuracy in representing convection and boundary layer dynamics

in the Arctic is therefore crucial, as it may significantly impact the verification of model

forecasts and reliability of predictions for hazardous weather conditions. Due to lim-

ited in-situ measurements in the region, the presence of sea ice, and shallow planetary

boundary layers, further complicates the representation of thermodynamic and dynamic

processes that drive polar-low development. The small spatial scales (typically 200-1000

km in diameter) and rapid evolution of polar lows may also challenge model accuracy.

One significant challenge in modeling convection is the grey-zone problem (Yu and Lee

(2010) and Arakawa and Wu (2013)), where horizontal grid spacings approach scales

that partially resolve convective processes, but may still require convection on smaller

scales than the effective model resolution. Traditional convection schemes are often not

scale-aware and may not perform optimally at these intermediate resolutions. Deciding

whether to employ convection parameterization or rely on explicit resolution of convec-
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tion can significantly impact the simulation of wind fields, which consequently affects the

accurate depiction of polar low structures.

In order to gain a better understanding of these issues, wind field discrepancies between

MEPS and AROME-Arctic during two separate convection events are analyzed and com-

pared against the collocated SAR wind observations for the dates 12 October 2024 and

13 October 2024. On 12 October the convection is captured by both MEPS and AROME-

Arctic; however, on 13 October, convection is represented by only the MEPS model from

the region and time captured by SAR. By examining the structure and intensity of convec-

tive cells as captured by the models and observed by SAR, insights may be gained into

the limitations of the convective representation of each model and increased awareness

around the application of these models as verification during events such as polar lows,

sea-spray icing, and hazardous conditions characterized by strong winds and large waves.

Atmospheric Convection in SAR Imagery and NWP Models

Convection involves the formation of updraughts and downdraughts, which creates alter-

nating regions of varying surface roughness on centimetre scales (Sikora et al. (1995) and

Ufermann and Romeiser (1999)). Downdraughts enhance near-surface horizontal wind

shear by introducing downward-moving, high-momentum airflow. This increased shear

amplifies momentum transfer to the sea surface through shear-driven turbulence, result-

ing in increased radar back-scatter. Conversely, updraughts reduce surface wind shear,

leading to decreased surface roughness and lower back-scatter. These interactions cause

convection to manifest in SAR imagery as mottled (Sikora et al., 1995), characterized by

alternating bright and dark regions corresponding to areas of enhanced and diminished

surface roughness. As is apparent in Figures 9 and 10, these variations are evident in

the SAR-derived wind speed images acquired on 12 October 2024 16:40:56 UTC and

on 13 October 2024 06:02:17 UTC. The SAR wind fields for both 12 October and 13

October show wind speeds ranging from around 1.5 m s−1 (blue or green regions) up to

25 m s−1 (yellow to red regions). The zones with higher wind speeds likely coincide

with the descent regions of convective cells, where downdraughts are more intense. In

contrast, areas exhibiting lower wind speeds may represent updraught regions within the

convective circulation. These convective cells typically occur during cold air outbreaks

over warmer sea surfaces, where the thermal contrast creates instability in the marine

boundary layer. The sharp transitions between these areas indicate significant wind shear
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within the boundary layer, which enhances turbulence and affects the organization and

persistence of convective structures.

Comparison of NWP Models with SAR Observations

The convective event captured by both MEPS and AROME-Arctic on 12 October shows

a well-developed pattern of alternating high and low wind regions. The models broadly

capture the extent and morphology of the convective cells, although the estimated wind

speeds are slightly lower compared to the SAR observations. Both models underestimate

the maximum wind speeds in the core of the convective downdraughts, as well as the

sharpness of the wind gradients between adjacent updraught and downdraught regions

compared to the SAR-derived wind fields. The maximum wind speed derived from the

SAR data on this date for this region and time of day reaches up to 25 m s−1, while MEPS

and AROME-Arctic estimate peak winds of around 20 m s−1 and 19 m s−1, respectively.

During the convective event on 13 October 2024, MEPS and AROME-Arctic exhibit dif-

ferent responses in their representation of the wind field structures. The MEPS predictions

seem to better capture the overall convective patterns that can be observed in the corre-

sponding SAR-derived wind field, with some alternating areas of higher and lower wind

speeds. It is important to note, however, the specific structure and magnitude of the con-

vective cells do not align well with the SAR observations. The wind speed gradients are

less pronounced in the MEPS model forecast, and the regions of peak wind speeds are

shown to be underestimated compared to the SAR data. The maximum wind speed simu-

lated by MEPS is around 17 m s−1, whereas SAR observations indicate values exceeding

23 m s−1 in localized areas.

When comparing the AROME-Arctic simulation for the same juncture, this model does

not appear to capture any significant convective structures for the region within the SAR

swath. A more uniform wind field is observed instead, with a lack of the alternating high

and low wind speed patterns characteristic of the observed convective cells. In addition

to the lack of resolved convection compared to the MEPS forecast, maximum wind speed

values in the AROME-Arctic simulation is still underestimated relative to the SAR wind

observations, reaching approximately the same 17 m s−1 maximum vale as the MEPS

forecast.
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(a)

(b)

Figure 9: Wind fields during the convective event on 12 October 2024, at 16:40:56 UTC, as

modelled by (a) MEPS and (b) AROME-Arctic.
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(a)

(b)

Figure 10: Wind fields during the convective event on 13 October 2024, at 06:02:17 UTC, as

modelled by (a) MEPS and (b) AROME-Arctic.
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The convective event is not only limited to the spatial region captured by the SAR swath

on 13 October. However, as simulations from both MEPS and AROME-Arctic indicate

organized convective activity persisting further out to the northeast and northwest of the

SAR frame (not shown). Observed differences in the model representation of these events

show the system moving in from the south of the SAR frame is already well-developed

in the broader domain of the MEPS forecast, but is largely absent in the AROME-Arctic

simulation for the same time period, closer to the lower boundary of the AROME-Arctic

model domain.
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4 Discussion

The evaluation of NWP models against SAR-derived wind fields highlights several chal-

lenges and limitations that impact the accuracy of operational wind field verification, par-

ticularly in high-latitude environments. SAR wind data, especially when employing the

EW swath mode and HH polarization, are susceptible to ambiguities introduced by sea-

ice dynamics in Arctic regions. Variations in backscatter caused by sea-ice drift and the

misclassification of ice-related roughness as high wind speeds lead to systematic overes-

timation in ice-covered areas. The discrepancies result in poor correlation between SAR-

derived winds and NWP model outputs, suggesting that integrating SAR wind products

with NWP models using these swaths should be approached with caution.

Advancements in SAR wind retrieval algorithms offer potential solutions to these limita-

tions. For instance, cross-polarization (HV or VH) has demonstrated improved capabili-

ties in distinguishing between sea ice and open water, potentially reducing misclassifica-

tion errors in wind speed retrievals (Zhao et al., 2024). Additionally, the use of dual co-

polarized SAR configurations, such as VV, HH, and VV/VH ratio, has been suggested to

enhance operational utility (Geldsetzer and Yackel, 2009). Advanced retrieval algorithms,

including neural network-based approaches and Support Vector Machine (SVM) methods,

have shown promise in enhancing the performance of SAR-based wind field derivation

in the presence of drift ice. For instance, an SVM-based sea ice discrimination method

applied to Sentinel-1 EW mode data achieved a matching rate of approximately 93.4%

when validated against manually classified ice maps (Hong and Yang, 2018), demonstrat-

ing potential for operational use.

The comparative analysis of MEPS and AROME-Arctic against SAR-derived wind fields

elucidates common performance deficiencies linked to sea-surface conditions. Both mod-

els exhibit a tendency to overestimate wind speeds under calm conditions, and underes-

timate them in rough and very rough sea states. This pattern suggests that the models

might struggle to accurately represent the complex interaction between the atmospheric

boundary layer, which is a known challenge in high-latitude regions where stable condi-

tions suppress turbulence and vertical mixing (Mahrt, 2011). Limitations in turbulence

and parametrization schemes may lead to overestimation of wind speeds in calm condi-

tions. On the other hand, underestimation in rough conditions may result from inadequate
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adjustment of surface drag coefficient. Donelan et al. (2004) point to the fact that in rough

conditions the sea surface is characterized by large waves, whitecaps, and increased foam

coverage, which enhance surface roughness and, consequently, the momentum transfer

between the atmosphere and ocean. If the models do not adequately adjust the surface

drag coefficient to account for these changes, the models may underestimate the frictional

forces, leading to higher simulated wind speeds near the surface. However, in this situ-

ation the models are in fact underestimating the strong winds, meaning that there must

be other explanations involved. As already mentioned the challenge in resolving features

like showers and lee waves in the models may be an explanation for the systematic under-

estimation of strong winds in this area.

Correlation coefficients between model forecasts and SAR-derived wind speeds provide

further insights into model performance. Both the MEPS and AROME-Arctic models

achieve higher correlations under moderate sea surface conditions (Table 1), indicating

better skill in capturing spatial variability when conditions are neither too calm nor too

extreme. However, in high wind conditions, models not only underestimate wind speeds

but also struggle to capture the temporal and spatial variability inherent in such events

which may also be explained by the challenge in resolving convective cells and lee waves

in an accurate manner. The consistent patterns observed across different models imply

that these deficiencies may be inherent to the Arome 2.5 km models applied in the current

study.

In coastal regions, both MEPS and AROME-Arctic display a tendency to underestimate

wind speeds, even more so along the coastal regions compared to open ocean areas. In

regions of complex terrain, MEPS underestimates wind speeds more significantly than

AROME-Arctic on average, as seen in Table 2. The ability to capture spatial variability

is comparable between the two models, with both exhibiting relatively weak correlations

in areas affected by complex topography. Due to the enhanced small-scale fluxes in these

zones, the grid-based approach of NWP models often struggles to fully resolve the fine-

scale wind features (Draxl et al., 2014).

Both models show improved performance in open ocean areas farther from the coast-

line, where wind patterns are less affected by terrain-induced wind flows. Despite the

increased accuracy over open ocean compared to coastal complex terrain, the correlation
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coefficients of the models suggest that there is still room for enhancement in capturing

the temporal and spatial variability of open ocean winds, which may be due to the mod-

els’ limitations in resolving transient weather systems and small-scale phenomena that

can significantly impact wind speeds and direction. Furthermore, the representation of

marine boundary layer processes can differ significantly from land-based dynamics, and

if the models’ parametrizations are not fully optimized for oceanic conditions, this could

contribute to the observed discrepancies. For operational forecasting, this level of cor-

relation may be acceptable in scenarios where general trends are more important than

accurate precision.

In addition to these challenges, the interpretation of SAR-derived winds is complicated

by an under-determination problem (Portabella et al., 2002). A single Normalized Radar

Cross Section (NRCS) measurement is sensitive to both wind speed and direction, and

multiple combinations of these variables can produce the same NRCS response. This

means that without precise wind direction information, it is difficult to accurately distin-

guish wind speed from direction based on NRCS data alone. Therefore, any inaccuracies

in the wind direction input from the model may lead to ambiguities in the retrieved wind

speed, as the under-determination problem makes is impossible to fully isolate the effects

of wind speed and direction.
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5 Conclusions

This study assesses the performance of two high-resolution Numerical Weather Prediction

(NWP) models, MEPS and AROME-Arctic, by comparing their 10-m wind predictions

with Synthetic Aperture Radar (SAR)-derived wind fields across the European Arctic

from the beginning of May 2024 to the end of October 2024. The research is driven by

the need for improved atmospheric modelling in the Arctic, a region where sparse ob-

servational networks and unique meteorological phenomena such as polar lows challenge

forecasting accuracy. SAR data offer high-resolution insights into surface wind fields,

providing fine-scale spatial and temporal variability that operational NWP models lack.

Key findings indicate that both MEPS and AROME-Arctic models show systematic bi-

ases. In calm sea conditions, both models tend to overestimate wind speeds, likely due to

limitations in surface layer parametrizations under stable atmospheric conditions. Con-

versely, under rough and very rough sea states, both models consistently underestimate

wind speeds, highlighting challenges in resolving high-wind scenarios influenced by non-

linear wind-wave interactions. The analysis further reveals that model performance im-

proves in open ocean regions, where wind dynamics are more uniform and less influenced

by coastal orographic effects. However, both models struggle to accurately capture wind

variability and gradients in complex coastal terrains.

A case study of a convective system is briefly investigated, where the models exhibit sig-

nificant discrepancies in predicting the structure and intensity of convective cells. Case

studies on 12 and 13 October 2024, reveal underestimations of peak wind speeds and

subdued representation of convective patterns compared to SAR-derived observations.

AROME-Arctic, in particular, shows challenges in representing organized convective ac-

tivity, underscoring the need for improved resolution and convection schemes in NWP

models for Arctic weather systems.

The study also highlights the inherent limitations of SAR data, such as ambiguities in-

troduced by sea ice dynamics. Misclassification of ice-related roughness as high wind

speeds reduces the reliability of SAR-derived data in ice-covered areas, emphasizing the

need for advanced retrieval algorithms.

33



Nevertheless, as long as one is aware of the aforementioned limitations of the SAR data,

the potential value of using SAR-data for model verification over observation sparse ocean

areas is clearly highlighted. The advantage of the SAR data is particularly apparent in

conjunction with weather phenomena with large spatial variations in wind field with a

signature over the ocean like convective situations and lee waves. This also shows the

potential benefit of using SAR data as input to nowcasting wind products instead of mod-

elled wind speed for moderate or strong wind events like ship-icing events (Samuelsen,

2018). In order to follow this up further, models with higher resolution than the opera-

tional models should be compared with SAR data for various cases.
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