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GLOSSARY AND ABREVIATIONS 

Baseline prediction Prediction system used as a source of verification comparison  

DET Detection Error Trade-off (plot) 

DNV Det Norske Veritas 

Hs Significant wave height 

MAE Mean Absolute Error 

MCS Marine Core Service 

MDir Mean wave direction 

Parameter space metrics Verification measures that describe characteristics of prediction 
uncertainty in units of the parameter predicted 

pdf Probability distribution function 

Probability space metrics Verification measures that describe characteristics of prediction 
performance in terms of probability of a successful or 
unsuccessful prediction of an event 

Q-Q Quantile-quantile (plot) 

Reference data Data used to verify a prediction  

RMS Root Mean Squared (value of parameter) 

(R)MSE (Root) Mean Squared Error 

ROC Relative Operating Characteristic (plot) 

SAR Synthetic Aperture Radar 

SI Scatter Index 

SNRMSE Symmetrically Normalised Root Mean Squared Error 

T (Generic) Wave period 

Tp Peak period of waves 

Tz Mean zero-upcrossing period of waves 
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I INTRODUCTION 

 

Tasks in MyWave WP4 will define operational verification methods that can be robustly 

applied within a wave element of a Marine Core Service (MCS).  The purpose of this 

document is to propose metrics that provide ‘user focused’ verification data for deterministic 

forecasts, i.e. information that describes model performance or uncertainty associated with 

forecasts in an accessible manner.  The document also describes a process of user 

consultation that will be used to ratify the metrics and presents initial findings from this 

process. 

Metrics are identified in two ways.  The purpose of the metric, i.e. the information that will be 

portrayed to the user, will be defined in each case and the metrics will also be discussed 

relative to the reference data required.  Due to limitations in available observations a truly 

reliable analysis for waves is not available (Lefevre and Aouf, 2012), so the scope of this 

document is limited to reference data comprising observations only.  Metrics are categorised 

with respect to reference data as ‘common’ where data from in-situ and remote sensed 

sources can be used interchangeably, ‘in-situ based’ where additional features of in-situ 

datasets can be applied, and ‘satellite based’ where additional features of satellite remote 

sensed data can be applied. 

The remainder of the document is set out as follows: in Section II guiding principles that will 

influence the approach to metrics for MCS verification are discussed; Section III presents the 

user consultation process that will be used to refine the proposed metrics during the 

remainder of the MyWave project; section IV proposes metrics be evaluated through the 

consultation process, these are also summarised in tables presented in Annex A.  The 

metrics which can be made available in an operational system are constrained by data 

availability and statistical constraints and these are discussed in Annex B. 

Outside the scope of this document are a discussion of ensemble prediction system metrics 

and methods for application of observation error data, which will be subjects of an 

accompanying MyWave project report in this deliverable (MyWave-D4.2b) and as part of 

deliverable D4.3. 
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II PRINCIPLES FOR MCS VERIFICATION 

This section defines a set of guiding principles that the metrics and system used for 

portraying operational verification of wave models should aspire to meet. 

Regarding metrics, in order to cover the needs of as wide a range of users as possible, it is 

suggested that a MCS verification system should comprise metrics which: 

• Provide data to indicate whether the prediction system makes a realistic simulation of 

the observed environment. 

• Provide measures that enable users to quantify prediction uncertainty (for the 

remainder of this document these will be termed ‘parameter space metrics’). 

• Provide information that estimates the probability of success or failure of predictions 

when MCS model data are used in their raw form (for the remainder of this document 

these will be termed ‘probability space metrics’). 

• Provide (or enable) comparison of prediction performance against other ‘baseline 

prediction’ methods, e.g. a naïve predictor such as random chance or a more 

sophisticated system such as a new wave model. 

• Are considerate of the fact that service users may wish to apply verification data 

within downstream services or decision making processes. 

• Are regularly updated to reflect recent system performance.  For example in the 

MyOcean service metrics are updated every 3 months and are presented in a rolling 

archive of up to 1 year of data (Alistair Sellar, pers. comm.). 

In addition MCS verification should consider presentation of the data provided as a critical 

element of the system.  The following requirements are considered desirable: 

• Operational MCS verification should provide rapid discovery of metrics that allow 

downstream users to easily understand performance of the prediction system 

relevant to their particular use of the MCS data.   

• Metrics should be accessible to lay-users; for example, if the metrics provided cannot 

be explained with a few sentences of text, they are probably not fit for purpose. 

• Metrics comparing prediction system performance against a baseline prediction 

should be meaningful in terms of user decision making. 
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Adopting these principles means that there is a need to clearly associate given metrics with 

an application that users can recognise, also to ensure that verification data which can 

practicably be made available within an operational verification scheme covers as many key 

user applications as possible.  Section IV of this document describes a proposed basket of 

metrics in these terms.   

The requirements also drive or are constrained by a number of technical considerations for 

verification, which are discussed further in Annex B of this report. 
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III  USER CONSULTATION 

III.1 Overview of the consultation process 

The MyWave project aims to incorporate user feedback into its final definition of operational 

metrics and proposal for an MCS verification system (project deliverable D4.4).  The 

approach adopted for obtaining this feedback comprises 3 stages: 

Stage 1: Preliminary survey of potential users in order to establish user types and interest 

in verification information. 

Stage2: Detailed survey of verification requirements for users identified as having an 

interest in verification. 

Stage 3: Review of specific metrics and forms for presentation with users identified as 

having an interest in specific applications of verification data. 

The final outcome from this process is expected to be a set of metrics and associated 

metadata that can be linked to particular user types and have undergone a period of trial and 

review. 

III.2 Initial findings 

III.2.1 Stage 1 

At writing the preliminary MyWave survey1 has been provided to 68 potential service users to 

assess their initial reaction to the project and the concept of a wave component of a Marine 

Core Service.  Responses have been received from 35 users.  Questions were included that 

aimed to identify users based on a hypothetical user categorisation presented in MyWave-

WP4(UC).  From the responses to these questions an ‘in practise’ breakdown of users 

comprises: 

                                                      

1
 http://www.surveygizmo.com/s3/1299480/MyWave-Preliminary-Survey 
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• All Scales Developer-Forecasters: 7 respondents said they worked with wave 

information from data generation at both global/large regional scales and coastal 

scales through to provision of forecasts, and that their data and products were used 

both for planning and operational purposes.  These users were split 70%-30% 

between commercial and government institutions. 

• Coastal Developer-Forecasters: 9 respondents said they worked with wave 

information from data generation at coastal scales through to provision of forecasts, 

and that their data and products were used both for planning and operational 

purposes.  These users were split approximately 60%-40% between commercial and 

government institutions. 

• Forecasters: 11 respondents said they worked specifically on providing forecasts and 

decision aids and, across the group, undertook an even split of tasks focused on 

marine operations, hazard forecasting and long term planning (using past 

climatology). These users were split approximately 50%-50% between commercial 

and government institutions, with one member of the general public also falling into 

this category. 

• Decision Makers: 4 respondents said they generally acted as decision makers and, 

across the group, undertook an even split of tasks focused on marine operations, 

hazard forecasting and long term planning (using past climatology).  These users 

were split approximately 50%-50% between commercial and government institutions. 

• Developer-Planners: 4 respondents were involved in niche model development 

activities at various scales for planning purposes.  These users were split 75%-25% 

between academic and government institutions. 

Of these users 25 expressed an interest in further contact on the subject of MCS verification 

and were split as 6 All Scales Developer-Forecasters, 7 Coastal Developer-Forecasters, 7 

Forecasters, 2 Decision Makers and 3 Developer-Planners. 
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III.2.2 Stage 2 

A survey containing more detailed questions regarding user requirements for wave 

verification2 was issued on 9th September 2013.  Key findings from initial responses (14 

users, split as 6 All Scales Developer-Forecasters, 3 Coastal Developer-Forecasters, 3 

Forecasters, 1 Decision Maker and 1 Developer-Planner) are that: 

• The main requirements for verification data relate to review and intercomparison 

tasks rather than use in downstream intervention strategies. 

• A majority of users would be interested in near-real time monitoring data and 

downloadable match-up information in addition to review statistics. 

• Interactive webpages were considered the best method to deliver verification data. 

• Overall wave height, period and direction were considered the most important 

parameters to verify by all users.  A 50-50 split in user requirement was found for 

verification of more detailed parameters. 

• Users considered verification of accompanying wind data as a high priority.  

Verification for high energy events and a separation of the verification according to 

wind-sea and swell dominated conditions were identified as important specific 

aspects of model performance to be tested. 

• Quantitative measures of parameter errors were considered to be generally more 

important than measures of performance for predicting given events, with the 

exception of high energy storms. 

• Where ensemble prediction system verification is conducted, users were keen to see 

performance cross-referenced against a deterministic forecast. 

• Users expressed a preference to see verification statistics referenced against raw 

observations (i.e. without accounting for observation errors), a distinction made 

between in-situ and satellite data verification and an effort made to account for 

sampling and temporal variations within the verification’s presentation. 

                                                      

2
 http://www.surveygizmo.com/s3/1306387/MyWave-Verification-Survey  
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• Metadata describing metrics, observed data used as a reference and quality control 

procedures should accompany the verification. 
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IV  METRICS 

IV.1 Identification of metrics by purpose 

Verification is concerned with analysing the relationship between predictions of 

environmental conditions and their occurrence in reality, i.e. the joint probability distribution 

between prediction and reference 

 { }MR,Pr , 

where R describes the sample of reference data and M the sample of predictions.  Since the 

joint distribution is difficult to present and describe concisely, particularly for multi-

dimensional data (Murphy, 1991), the majority of metrics are based on a simplification to a 

single scalar dimension.  Different scalar measures assess a number of attributes of the 

prediction performance: 

• Accuracy, i.e. a value representing overall quality of a set of predictions. 

• Bias, a measure of any systematic difference between the sample of predictions and 

reference. 

• Reliability, which describes accuracy and bias conditional on specific ranges of the 

predictions. 

• Resolution/discrimination, which describe how well predictions in specific ranges are 

associated with similar sub ranges of the reference sample. 

• Sharpness, which describes the prediction variability with respect to background 

climate, i.e. how much the prediction attempts to replicate the reference ‘signal’. 

In this document metrics are classified according to the purpose that each aims to fulfil.  

Clearly defining what each metric does is important to a MCS application since, in general, it 

is expected that users are unlikely to wish to review large numbers of metrics and will instead 

want to quickly discover those key pieces of verification data that meet a specific need.  Five 

overarching purpose categories are identified according to the aspect of model performance 

being tested: 

• Climatology tests (Annex A, Table C) determine the ability of the prediction system to 

replicate the reference climate, for example describing sharpness and bias of the 
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predictions.  These tests ignore any time-referencing in the sample pairs.  The 

outcomes may be used to determine systematic errors and specific process 

representation issues. 

• Measures of prediction uncertainty in parameter space (Annex A, Table M) estimate 

accuracy from the samples of prediction-reference errors.  These metrics enable the 

errors to be viewed in context against background conditions or in prediction system 

intercomparison.  The metrics may also be able to be used in estimating confidence 

limits for predictions or as information to underpin prediction correction strategies 

adopted by users. 

• Measures of prediction accuracy and resolution in probability space (Annex A, Table 

P) describe the ability of the prediction system to successfully identify reference 

conditions, and are often used to determine the skill of a system against a baseline 

prediction.  These data can also be used to evaluate the long term benefits of using 

the model predictions, i.e. whether more gains than losses will be made through 

basing decisions on prediction data. 

• Measures of performance through the parameter range (Annex A, Table R) assess 

reliability and explore the impact of conditional corrections to the original predictions.  

These tests are described specifically in this document as a special case of data 

stratification. 

• Extreme statistics (Annex A, Table X) analyse performance of the model specifically 

at the tail(s) of the distribution of conditions.  The tests described are intended to be 

robust when working with limited data samples. 

Metrics falling into each purpose category are identified within the following subsections.  

These describe (respectively) a set of core metrics that can be applied commonly to 

parameters observed by either in-situ or satellite remote sensed instruments (common 

metrics) and extensions to the metric set that can be achieved when specific properties of in-

situ and satellite remote sensed reference data are taken into account.  Tabular summaries 

of the full set of proposed metrics by purpose category are given in Annex A. 
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IV.2 Common metrics 

IV.2.1 Role and limitations of common metrics 

The envisaged role of metrics that can be applied regardless of the observation source is to 

provide a core set of common and widely available verification data that allow users to work 

with consistent uncertainty information for any region covered by MCS predictions.  The aim 

is to make verification data available over the maximum geographic coverage using a mixed 

portfolio of observed references so that verification is available in both areas of the deep 

ocean where in-situ data are virtually non-existent or where satellite data quality is limited 

near to the coast.  Where both data types are available the incentive of being able to 

compare verification and better estimate uncertainty from a combined data sample exists. 

To achieve common ground between in-situ and satellite data (which have different sampling 

regimes, see Annex B, subsection VIII2.2) the sample of events verified must comprise 

instantaneous ‘snapshots’ of given parameters at specific locations/times (as opposed to, for 

example, a sample comprising event durations).  The impact of viewing the match-up sample 

in this manner is that, strictly speaking, the metrics applied cannot assume or make use of 

any spatial or temporal linkage between events.  In reality, if the sampling rate is high, such 

links will be present and it may then become important to ensure that the sample used is not 

aliased by particular sub-collections of data within the sample (e.g. Annex B, subsection 

VIII.4.1). 

Within this subsection the description of metrics is focused on single parameters rather than 

application to multi-variate cases.  The extension to multi-variate cases is discussed further 

in subsections IV.3, IV.4 and within Annex B, subsection VIII.2.3 

IV.2.2 Common metrics for climatology tests (Table C) 

One characteristic of the model’s representation of climate that cannot be reproduced using 

common metrics is how well the model reproduces parameter signal variations in the time 

dimension.  The omission is necessitated by the assumption that no temporal links exist 

between sampled events. 

If available, a long term climatology may provide a useful baseline predictor for these tests 

since, due to interannual and/or seasonal variability, a skilful prediction system might be 

expected to reproduce the short term climate better than a long term estimate. 
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Test C1: Reproduction of general features of the reference climate 

Viewing a collection of parameter space metrics allows the user to quantitatively assess how 

well the parameter distribution has been reproduced and assess the sharpness of the 

predictor.  The data also provide a useful background description of climate to accompany 

other tests and, because of this, it is proposed that the values provided are absolute 

quantities.  The most concise metrics are based on comparing moments of the event sample 

distributions and should include higher moments of the distribution relating to skewness and 

kurtosis, since many parameters being tested (e.g. significant wave height, wind speed) 

cannot be assumed to be normally distributed. 

Proposed metrics (in combination): 

• Parameter mean, [ ]
n

x
x

∑
=E  (for variable x with sample size n); differentials in 

reference and predicted means measure bias 

• Parameter root mean square (RMS) value, [ ]
n

x
x

2

RMS
∑

=  

• Parameter standard deviation [ ]
[ ]( )

n

xx
x

∑ −
==

2
E

Varσ  

• Parameter skewness 
[ ]



















 −
=

3
E

E
σ

γ
xx

 

• Parameter kurtosis, 
[ ]



















 −
=

4
E

E
σ

β
xx

, or kurtosis exceedence from the normal 

distribution value, i.e. β - 3 

Test C2: Reproduction of details of the reference climate 

Distribution comparisons can be used to provide more detail in representation of the 

reference climate and highlight sub-ranges of conditions which are particularly well or poorly 

replicated.  For example, Quantile-quantile (Q-Q) plots view the samples by comparing 

values achieved at different percentiles within the cumulative probability distribution and 

provide a more useful visualization for the distribution tail than direct comparison of the 

probability distribution function against a set of parameter bins.   
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Proposed metrics: 

• Q-Q plot, for parameters with long distribution tails (e.g. significant wave height) split 

over two levels to resolve body and tail of distribution 

• Comparison/anomaly of occurrence probabilities for binned parameter ranges (e.g. 

0.0<Hs<=1.0m, 1.0<Hs<2.0m etc.) 

 

IV.2.3 Common metrics to measure prediction uncertainty in parameter space 
(Table M) 

For common metrics persistence cannot be used as a baseline since consistent time 

indexing is not assumed in the event sample, but a baseline prediction can be used based on 

either a random sample from the observations or the mean value.  Using the mean is 

recommended as this places error data in context against climatological variability of the 

wave field. 

Test M1: Quantify the scale of errors 

In parameter space, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are 

the most recognised metrics for overall error description.  RMSE, which is a composition of 

bias and a measure of error scatter, is a particularly popular metric, but has been 

demonstrated to have drawbacks when comparing data with similar levels of performance 

(Mentaschi et al., 2013).  As a result it is recommended that RMSE is presented alongside a 

breakdown of contributions to the metric as described in Test M1a.  Mentaschi et al. (2013) 

also discuss use of a corrected normalised indicator following Hanna and Heinold (1985), 

which mitigates issues with RMSE by symmetrically normalising the squared error data using 

both prediction and reference values. 

Proposed metrics: 

• Mean Absolute Error, 
n

EP
MAE

∑
= , where EP denotes the sample of errors for 

prediction (M) and reference (R), ( iii RMEP −= ) 

• Root Mean Squared Error (as for parameter RMS with EP as the input variable) 
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• Hanna and Heinold (1985) symmetrically normalised RMSE; 
∑
∑

=
ii

i

RM

EP
SNRMSE

2

 

Test M1a: Assess effects of prediction ‘sharpness and reliability’ on RMSE 

Reviewing the contribution to RMSE of prediction variability, correlation or bias is expected to 

be useful to model developers studying the overall effects of system changes.  Mean Square 

Error (MSE) comprises bias and error variance contributions as 

 [ ] [ ]2
EVar EPEPMSE += , 

where error variance further breaks down as 

 [ ] [ ] [ ] [ ]RMMREP ,Cov2VarVarVar −+= . 

MSE can be normalised by Var[R] (to give a skill score relative to a naïve predictor based on 

the reference mean).  The normalised variance component is a form of (squared) Scatter 

Index (SI, which has also been defined in other forms by Bidlot et al., 1997; Ardhuin et al., 

2007; Filipot and Ardhuin, 2012).  Breaking down the SIRVar
2 used here gives 

 
[ ]
[ ]

[ ]
[ ]R

RM

R

M
SIRVar

Var

,Cov
2

Var

Var
0.1

2
−+=  

in which the third term can be re-written in terms of correlation and variance using 

[ ]
[ ]

[ ]
]Var[

]Var[
,Corr

Var

,Cov

R

M
RM

R

RM
= . 

The normalised prediction variance and correlation can, respectively, be viewed as 

measures of the prediction systems’ sharpness (i.e. how much the prediction attempts to 

replicate the reference ‘signal’) and reliability (i.e. whether the prediction is able to track the 

reference as it transitions through the range of conditions).  In an ideal situation the 

normalised MSE will be reduced when both the normalised prediction variance and the 

correlation tend to 1.0 (so that SIRVar
2 tends to 0.0), and when the bias part tends to 0.0.  

However the relationship for SIRVar
2 is minimised when normalised prediction standard 

deviation is equal to the correlation value and therefore MSE will favour prediction systems 

with lower variance as correlation reduces.  Mentaschi et al. (2013) also demonstrate 
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dependence between SI and bias, such that SI is reduced in cases where the prediction has 

a negative bias.  It can be argued that for wave prediction neither a reduction in forecast 

sharpness or a tendency to under-predict are desirable qualities, and so the MSE breakdown 

as described should help to indicate if reduced RMSE scores have resulted from either of 

these effects.  When many predictions are being compared the Taylor plot (Taylor, 2001) 

provides a useful visualization of the SIRVar
2 breakdown. 

Proposed metrics (in combination): 

• MSE normalised by reference variance 

• Bias normalised by reference variance 

• (Squared) Scatter Index, SIRVar
2 

• Pearson Correlation 

• Standard deviation of prediction normalised by reference standard deviation 

• Taylor plot 

Test M2:  Quantify parameter uncertainty for the predictions 

Moments of the error distribution provide a concise estimate of distribution characteristics 

and it is recommended that in addition to mean and standard deviation, skewness and 

kurtosis values are provided to indicate significant deviations from a normal form. 

Proposed metrics (in combination): 

• Error mean (bias) 

• Error standard deviation 

• Error skewness 

• Error kurtosis exceedence 

Test M3: Compare errors from two prediction systems 

All the previously described tests can be intercompared.  In addition, comparing errors from 

two prediction systems in Q-Q format may also be useful to model developers and 

forecasters, since the plot provides detail as to which aspects of the error sample are 

changed and can highlight if major differences are found in the error distribution tail(s).  For 
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operational verification of a single model it may be useful to provide a Q-Q plot which 

references against a standard pdf (e.g. a normal distribution) as the reference.  Such a 

comparison would enable forecast users to assess value in applying error bars to a 

deterministic forecast by ‘dressing’ the forecast using a standard pdf. 

Proposed metric: 

• Q-Q plot comparing error samples 

 

IV.2.4 Common metrics to measure of prediction uncertainty in probability 
space (Table P) 

The basis for all probability space metrics is a test of whether predictions successfully 

identify the reference state within a given tolerance, i.e. 

{ } { }tolRMtolRM correct +<<−= PrPr , 

{ } { }correctincorrect MM Pr0.1Pr −= . 

When the joint probability of correct prediction and the probability of predicting a given event 

are considered, results of the test can be broken down into four mutually exclusive states 

denoting correct and incorrect identification of the event and correct and incorrect rejection of 

the event.  Common terms for correct identification, incorrect identification and incorrect 

rejection are Hit, False Alarm and Miss respectively.  Often the data are presented in the form 

of a ‘contingency table’ as below: 

 Event observed Event not observed 

Event predicted Hit False Alarm 

Event not predicted Miss Correct Rejection 

A wide array of options for these metrics are available, both in terms of the criteria applied to 

define a successful prediction and the credit given to successful, ‘near miss’ and 

unsuccessful predictions can be altered.  In order not to overcomplicate the system, it is 

expected that the role of MCS verification should be to provide only a basic set of measures 

to indicate prediction uncertainty.  It is proposed that scores directly indicating the probability 

of forecast success or failure provide the most understandable metrics.  To enable users to 
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build on these data specific to their own decision making processes it should be considered if 

the underlying match-up data can be published so that users can pick up and apply the data 

to their own specific scoring methods. 

Metrics derived using a random chance selection from the reference data as the baseline 

prediction may provide useful context for the proposed scores. 

Test P1: Quantify likelihood of predictions to fall outside prescribed tolerance 

In probability space, simple accuracy/resolution metrics can be generated by expressing the 

probability of a correct or incorrect forecast based on errors falling within different threshold 

tolerances (e.g. +/- 0.1m, 0.25m, 0.5m, > 1m for significant wave height).  It is proposed that 

data are presented in terms of ‘the risk of seeing a parameter error larger than value x’. 

Proposed metric: 

• Percentage risk of error greater than predefined values 

Test P2: Quantify ability to predict event x 

From a basic contingency table for a predefined event and tolerance, accuracy metrics can 

be defined.  If the contingency table itself is published numerous metrics can be generated 

by knowledgeable users, but it is proposed that the MCS verification scheme would also 

publish a small set of critical and accessible parameters.  Initially these are identified as: 

SampleSize

ectionsCorrectRejHits
rrectFractionCo

+
= , which quantifies the chance that predictions 

successfully identify both events and non-events. 

sFalseAlarmHits

Hits
ioSuccessRat

+
= , which quantifies the chance that an event will occur if 

predicted. 

ioSuccessRatRatioFalseAlarm −= 1 , which quantifies the chance that an event will not occur 

if predicted. 

ectionsCorrectRejMisses

Misses
MissRatio

+
= , which quantifies the chance of an event occurring 

if not predicted. 
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Proposed metrics: 

• Contingency table for event 

• Percentage scores for: Fraction Correct, Success Ratio, False Alarm Ratio and Miss Ratio 

Test P3: Quantify long term benefit of decision making using predictions of event x 

A simple cost-loss assessment of forecasts can be provided using the principal that a 

predicted event is associated with a cost (the same value is taken for a false alarm or a hit) 

and any miss is associated with a loss.  This allows an Economic Value score to be 

generated against a varying cost-loss ratio (C/L in the range 0 to 1) since the cost of the 

prediction system will be 

 ( ) MissesLsFalseAlarmHitsCEV .. ++=  

Relative scores can be generated by referencing against a baseline prediction.   

Carrasco et al. (2013) discuss application of a relative score, following Richardson (2000), 

that is constructed from costs associated with a situation in which no forecasts are available 

(in the case where action is never taken the cost will be ( )MissesHitsLEVc += ) and a 

perfect forecast (cost is ( )MissesHitsCEVperfect += ), so that Relative Economic Value: 

 
perfectc

EPSc

EVEV

EVEV
REV

−

−
= . 

Proposed metric: 

• Relative Economic Value score 

Test P4: Quantify effects of altering prediction threshold(s) for event x 

An alternative use of categorical verification is to examine effects of corrections to prediction 

thresholds in order to optimise the performance of the prediction data.  An example would be 

adjustment of the threshold criterion for prediction that significant wave height exceeds value 

x, as is made in the ‘alpha factor’ approach to de-risking forecasts taken by Det Norske 

Veritas (DNV) for marine operations assurance (DNV, 2011).  Using the revised threshold 

allows new contingency tables to be constructed and statistics derived using Tests P2 and 

P3 to be generated and presented graphically.  Effects on P2 metrics can be provided 
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graphically to the user in the form of Relative Operating Characteristic curves (ROC, e.g. 

Mason, 1982; Buizza and Palmer, 1998) which compare Probability of Detection (chance of 

correctly forecasting an event) against False Alarm Rate (chance of forecasting an event that 

did not occur), or alternatively a Detection Error Trade-off curve (DET, Miss Ratio versus False 

Alarm Rate; Martin et al., 1997) for cases where users are more interested in ensuring that an 

event is not missed. 

Proposed metric: 

A required task will be to explore the usefulness of these statistics within the user 

consultation process. 

Proposed metrics: 

• Contingency table comparisons 

• Percentage scores for: Fraction Correct, Success Ratio, False Alarm Ratio and Miss Ratio 

• Relative Operating Characteristic plot 

• Detection Error Trade-off plot 

• REV comparison 

 

IV.2.5 Common metrics to measure performance through event range (Table R) 

Test R1: Quantify errors through predicted event sub-ranges 

The simplest and most recognised way of visualising the full range of the error sample 

against conditions is to use a scatterplot.  Scatterplot data are particularly useful in 

contextualising conditional error or fitted relationships and detecting outliers in the error 

sample.  Extra value can be added if a plotting scheme is used that illustrates the density of 

data in sub-regions of the sample space (e.g. using contouring, a hexbin plot or overlaying 

binned probability values). 

Parameter space measures of error, similar to those described for overall performance, can 

be applied to binned sub-samples of event conditions.  It is expected that these data might 

be useful to modellers attempting to understand system errors and forecasters checking for 

deviations in the forecast errors from simple rules of thumb.  In particular bias and standard 
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deviation of errors enable simple visualization, although a box and whiskers approach might 

be perceived as clearer by some users.   

Proposed metrics: 

• Scatterplot (including density data) 

• Mean and standard deviation of errors over sub-sample bins 

• Box and whiskers plot for errors over sub-sample bins 

Test R2: Test if a fitted relationship improves the predictions 

Conditional relationships that aim to minimise errors can also be derived by generating a 

‘best fit’ relationship between model and observations.  Numerous methods to derive these 

relationships are available but, in lieu of user feedback, for simplicity it is suggested that 

MCS verification might only examine a linear fit between data.  Adopting the simplest option 

raises a question as to whether an MCS should also make its underpinning match-up data 

available within the service, so that users seeking to perform other tests can do so.   

Prediction system data should be used as the independent variable since the most useful 

information that can be derived for users is one that corrects the prediction toward the 

reference.  For any fitted relationship (at least) revised overall RMSE and breakdown 

statistics (Tests M1 and M1a) should be provided for the fitted data in order to make a 

comparison with the original model sample values. 

Proposed metrics: 

• Linear fit relationship 

• (At least) Tests M1 and M2 comparisons 

 

IV.2.6 Common metrics to assess performance in extreme conditions (Table X) 

Test X1: Test that reference extremes are reproduced by the prediction system 

The simplest test of whether predictions have the necessary sharpness to reproduce 

extreme conditions is to use a Q-Q comparison based on the tail of the distribution (Test C1).  
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For very high percentiles it may be useful to annotate the data with numbers of events above 

the percentile in order to assess the extent to which sample size will affect the comparison. 

Proposed metric: 

• Q-Q plot for upper percentiles of distribution (95%ile and beyond) 

Test X2: Test that events in the tails of the predicted and reference distributions are 
well correlated 

To understand visually how data are matched in time and examine outliers, a scatterplot will 

be an effective visual metric.  It is recommended to overlay event pairs identified by a 

predicted value exceeding the extreme event threshold (set in parameter or probability 

space) and pairs identified using reference value exceedence in order to understand the 

potential for missed events and false alarms (i.e. whether the resolution of the predictions is 

adequate). 

Proposed metric: 

• Scatterplot based on pairs identified by exceedence of 95%ile for both prediction and 

reference data 

Test X3: Quantify prediction threshold effects on risk of a missed event, and impact 
on the number of false alarms 

In this test, which is a special case of test P4, the risk of a missed event (Miss Ratio) is 

calculated against a moving parameter threshold.  The trade-off in False Alarm Rate can be 

presented on the same DET plot for contrast.  These data should be presented alongside 

occurrence statistics for the event. 

Proposed metric: 

• Miss Ratio and False Alarm Rate plotted against parameter for reference 95%ile 

threshold 

• Detection Error Trade-off plot with threshold data as sample points 
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IV.3 Extension to metrics using in-situ reference data 

Match-up data samples acquired from in-situ data sources enable common metrics to be 

extended in two regards.  Large parts of the in-situ dataset should be continuous in time and, 

as described in Annex B Table B.1, a number of collocated parameters are available 

dependent on platform type.   

Test C3: Reproduction of temporal variability in the reference climate 

Use of autopectra or autocorrelation comparisons might provide useful information to model 

developers.  However it is expected that processing requirements, necessary to ensure 

continuity and stationarity in the data and significance of the tests at key process timescales, 

would be difficult to implement within an operational system.  More practical and accessible 

metrics may be generated based on evaluating the distribution of parameter ‘windows’ (i.e. 

periods of time when the parameter exceeds or falls below a critical threshold) over a time-

series of data.  When window length in time is considered as a parameter in its own right, 

metrics described in tests C1 and C2 can be applied. 

Proposed metrics: 

• Mean and standard deviation of window length for prescribed thresholds 

• Q-Q comparison of window length for prescribed thresholds 

Extension to M tests 

Where in-situ data are available the use of persistence as a baseline prediction system can 

be applied. 

Where directional data are available methods can be extended to an error in directional 

space as described in Annex B, subsection VIII.2.3. 

Test M4: Describe parameter uncertainty for bi-variate predictions 

Where collocated significant wave height, period and direction parameters are available the 

most accessible evaluation of bi-variate errors is via a scatterplot (with density information 

included).  For data using a direction component approaching the parameter in vector form to 

provide a visual of zonal and meridional component errors is recommended. 
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Proposed metric: 

• Scatterplot (including density data) 

Extension to P tests 

Where in-situ data are available the use of persistence as a baseline prediction system can 

be applied. 

All tests listed in Table P can be applied to predictions of condition windows (e.g. if a 12 hour 

period with significant wave height less than 2m was predicted, did it occur?).  Similarly a 

successful forecast can be determined based on conditions for several parameters being 

met.  When producing multi-variate probability space metrics, presentation of accompanying 

data showing failure rates associated with individual parameters may also be useful. 

Test X4: Test for prediction of an extreme event within a time window 

Reviewing data in a time window around a reference extreme should enable the user to 

understand if the prediction system provides ‘timely’ (rather than exact) indications of 

extreme events.  Output metrics are scatterplots of maximum parameter value within the 

given event window, and distribution of timing differentials.  The metric relies on 

independence between events. 

Proposed metrics: 

• Scatterplot of maximum parameter values within event window 

• Distribution of timing differentials between prediction and reference maxima 

 

IV.4 Extension to metrics using satellite remote sensed reference data 

Match-up data samples acquired against satellite observations enable common metrics to be 

extended since large parts of the satellite dataset should be continuous in space and, as 

described in Annex B Table B.1, a number of collocated parameters are available dependent 

on platform type.  Spatial sampling also creates the possibility of providing mapped metric 

data, subject to sampling requirements being met (Annex B, subsection VIII.3.1). 



 Proposal of metrics for user focused 
verification of deterministic wave prediction 

systems 

Ref : MyWave-D4.2a 

Date  : 02 Oct 2013 

Issue : 1.1 

 

 © My Wave – Public      Page 30/ 54 

Extension to M and P tests 

Test M4 and tests in Table P can be applied for collocated satellite parameters as in Section 

IV.3. 

Test X5: Test that predictions indicate the areal extent of an extreme event 

Reviewing data in an along-track distance window around a reference extreme should 

enable the user to understand if the prediction system provides ‘area consistent’ indications 

(rather than exact prediction) of extreme events.  Output metrics are scatterplots of maximum 

parameter values within the given event window (defined by up and down crossing of a 

parameter threshold) and comparison of event window along-track distances and maxima 

locations.  The metric relies on independence between events, differentiating this test from 

Test M2. 

Proposed metrics: 

• Scatterplot of maximum parameter values within event window 

• Scatterplot of along track event windows 

• Distribution of along-track location differentials between prediction and reference 

maxima 
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V  SUMMARY AND NEXT STEPS 

It is believed that a successful MCS verification scheme will be based on provision of 

uncertainty and performance data that is relevant to a variety of marine users and which can 

be clearly portrayed and simply discovered.  This document proposes a number of metrics 

that are believed to have utility in describing specific aspects of uncertainty and performance 

of operational wave models on a regularly updated basis, and associates a purpose with 

each metric.  Establishing a defined purpose for the metrics is considered important for MCS 

portrayal of the verification since it will enable rapid discovery of relevant metrics by different 

user types.   

The proposal of these metrics is influenced by a number of technical considerations (as 

discussed in Annex B). A major constraint on the metrics and sample period they represent 

is the availability of observed reference data, particularly for parameters other than significant 

wave height.  In order to calculate statistics with a reasonable level of accuracy it is expected 

that at least 3 month samples of the most common observed parameters will be required for 

regional sea areas, and that this will need to be increased to 6 month or 12 month periods 

where multi-variate or extreme data are tested.  In terms of portrayal of data, it is identified 

that methods may need to be introduced that help communicate variability in the statistics 

resulting from the conditions sampled, effects of sample size and observation errors. 

Assumptions about both the user requirements for certain metrics and technical feasibility of 

implementation and portrayal will require testing.  This will be carried out through the process 

of user consultation and evaluation of proposed metrics as discussed in Section III of this 

document. 

Additions to this process will be made by integration of metrics for ensemble forecast data 

and assessing the steps that can be taken to evaluate or mitigate the effects of observation 

errors within the metrics.  These subjects will be dealt with in accompanying reports from 

MyWave Work Package 4. 
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VII  ANNEX A: TABLES OF PROPOSED METRICS 

Tables in this section summarise metrics that are proposed to be tested within the MyWave user consultation on verification as part of WP4.  

The heading ‘Target parameter(s) for user review’ denotes data that will be used in testing of the metrics.  The heading ‘Extension’ denotes 

parameters that could also be considered for verification within an operational scheme subject to observed data availability. 

Table C: Climatology tests 

Purpose Primary 
Reference 

Proposed Metric(s) Target parameter(s) for 
user review 

Extension 

C1: Reproduction of general features 
of the reference climate  

Common Combined comparison of 
parameter: Mean; RMS; 
Standard Deviation; 
Skewness; Kurtosis 
Exceedence 

Hs 

Tp/Tz for in-situ reference 

Spectral Hs and Mdir for spectral in-situ 
buoys and (sub-range of spectrum) SAR data 

C2: Reproduction of details of the 
reference climate 

Common Q-Q plot 

Binned probability plot and 
anomaly 

Hs 

Tp/Tz for in-situ reference 

Binned probability anomaly 
for Hs-T 

Spectral Hs and Mdir for spectral in-situ 
buoys and (sub-range of spectrum) SAR data 

Hs-Dirn for spectral in-situ and (sub-range of 
spectrum) SAR 

C3: Reproduction of temporal 
variability in the reference climate 

In-situ Mean; Standard Deviation 

Binned probability plot and 
anomaly 

Windows defined by Hs 
threshold 
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Table M: Measures of prediction uncertainty in parameter space 

Purpose Primary 
Reference 

Proposed Metric(s) Target parameter(s) for 
user review 

Extension 

M1: Quantify the scale of errors Common MAE 

RMSE 

SNRMSE 

Baseline prediction is 
mean reference value 

Hs Error 

Tp/Tz Error for in-situ 
reference 

Spectral Hs and Mdir for spectral in-situ buoys 
and (sub-range of spectrum) SAR data 

Baseline reference can be extended to 
persistence for in-situ data 

M1a: Assess effects of prediction 
‘sharpness and reliability’ on RMSE 

Common Combined: Normalised 
MSE; Normalised Bias; 
(Squared) SI; Pearson 
Correlation; Normalised 
Standard Deviation 

Taylor Plot 

Hs Error 

Tp/Tz Error for in-situ 
reference 

Spectral Hs and Mdir for spectral in-situ buoys 
and (sub-range of spectrum) SAR data 

M2: Quantify parameter uncertainty 
from for the predictions 

Common Combined: Mean; 
Standard Deviation; 
Skewness; Kurtosis 
Exceedence 

Hs Error Tp/Tz for in-situ reference; Spectral Hs and 
Mdir for spectral in-situ buoys and (sub-range 
of spectrum) SAR data 

M3: Compare errors from two 
prediction systems 

Common Q-Q plot Hs Error Tp/Tz errors for in-situ reference; Spectral Hs 
and Mdir for spectral in-situ buoys and (sub-
range of spectrum) SAR data 

M4: Describe parameter uncertainty 
for bi-variate predictions 

In-situ; Satellite Scatterplot (including 
density information) 

Hs-Tp/Tz Errors for in-situ 

Hs-MDir Errors for spectral 
in-situ 

Hs-MDir for spectral in-situ and (sub-range of 
spectrum) SAR 
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Table P: Measures of prediction uncertainty in probability space 

Purpose Primary 
Reference 

Proposed Metric(s) Target 
parameter(s) for 
user review 

Extension 

P1: Quantify likelihood of predictions 
to fall outside prescribed tolerance 

Common % risk of error greater 
than predefined value 

Baseline prediction is 
mean reference value 

Hs Tp/Tz for in-situ reference; Spectral Hs and Mdir for 
spectral in-situ buoys and (sub-range of spectrum) 
SAR data 

Assess for single parameters and multi-variate 

Baseline reference can be extended to persistence 
for in-situ data 

P2: Quantify ability to predict event x Common Contingency Table 

Combined % scores: 
Fraction Correct; 
Success Ratio; False 
Alarm Ratio; Miss 
Ratio 

Baseline prediction is 
mean reference value 

Hs 

Windows for in-
situ 

Spectral sub-range Hs for SAR data 

Multi-variate for in-situ 

Baseline reference can be extended to persistence 
for in-situ data 

P3: Quantify long term benefit of 
decision making using predictions of 
event x 

Common REV Score 

Baseline prediction is 
mean reference value 

Hs 

Windows for in-
situ 

Spectral sub-range Hs for SAR data 

Multi-variate for in-situ 

Baseline reference can be extended to persistence 
for in-situ data 

P4: Quantify effects of altering 
prediction threshold(s) for event x 

Common Tests P2, P3 

ROC, DET curve 

Hs Extension to windows for in-situ 
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Table R: Measures of performance through event range 

Purpose Primary 
Reference 

Proposed Metric(s) Target 
parameter(s) for 
user review 

Extension 

R1: Quantify errors through predicted 
event sub-ranges 

Common Scatterplot (including 
density data) 

Sub-range bin error 
Mean and Standard 
Deviation 

Sub-range bin error 
box and whiskers 

Hs  

R2: Test if fitted relationship improves 
the predictions 

Common Combined: Linear fit 
relationship; Tests M1, 
M2 

Hs  
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Table X: Assessment of performance in extreme conditions 

Purpose Primary 
Reference 

Proposed Metric(s) Target parameter(s) for 
user review 

Extension 

X1: Test that reference extremes are 
reproduced by the prediction system 

Common Q-Q plot above 95%ile Hs above 95%ile  

X2: Test that events in the tails of 
model and observed distributions are 
well correlated 

Common Scatterplot Hs above 95%ile (identified 
in both prediction and 
reference data) 

 

X3: Quantify prediction threshold 
effects on risk of a missed event and 
impact on the number of false alarms 

Common Miss Ratio and False 
Alarm Rate plotted vs 
parameter range 

Detection Error 
Tradeoff plot 

Hs  

X4: Test for prediction of an extreme 
event within a time window 

In-situ Scatterplot 

Probability distribution 

Hs maximum in window 

Hs maximum timing 
differential 

 

X5: Test that predictions indicate the 
areal extent of an extreme event 

Satellite Scatterplot 

Scatterplot 

Probability distribution 

Hs maximum in window 

Event window lengthscale 

Hs maximum position 
differential 
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VIII  ANNEX B: TECHNICAL CONSIDERATIONS FOR WAVE VERIFICATION 

The purpose of this annex is to highlight and discuss technical considerations relating to both 

the metrics proposed in Section IV of this document and requirements for underpinning 

reference data. 

VIII.1 Background to verification metrics 

Verification is concerned with analysing the relationship between predictions of 

environmental conditions and their occurrence in reality, i.e. the joint probability distribution 

between the prediction and reference 

 { }MR,Pr , 

where R describes the sample of reference data and M the sample of predictions.  Since the 

joint distribution is difficult to present and describe concisely, particularly for multi-

dimensional data (Murphy, 1991), the majority of metrics are based on a simplification to a 

single scalar dimension.  Different scalar measures assess a number of attributes of the 

prediction performance: 

• Accuracy, i.e. a value representing overall quality of a set of predictions. 

• Bias, a measure of any systematic difference between the sample of predictions and 

reference. 

• Reliability, which describes accuracy and bias conditional on specific ranges of the 

predictions. 

• Resolution/discrimination, which describe how well predictions in specific ranges are 

associated with similar sub ranges of the reference sample. 

• Sharpness, which describes the prediction variability with respect to background 

climate, i.e. how much the prediction attempts to replicate the reference ‘signal’. 

The usual approach is to assess these attributes by analysing the sample distribution of 

prediction–reference errors EP defined by the difference between matched pairs of prediction 

and reference data 

iii RMEP −= . 
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A generalised form for an error pair, where the reference is an observation, is illustrated in 

Figure B.1.  This form is applicable to verification of both probabilistic and deterministic 

predictions, and cases which aim to account for observation errors.  In the figure both 

prediction and reference values for a given parameter space (which for simplicity has been 

shown in a single dimension, but could be multi-dimensional or even circular) have 

uncertainties associated with them, which are shown in the form of pdfs.  For the predicted 

data this form would be adopted if some measure of uncertainty were being applied to the 

predicted data (e.g. by using an ensemble prediction system).  In the deterministic case the 

pdf is simplified to having a value of 1 at the predicted parameter value and zero elsewhere.  

The reference data sample will be drawn from the joint probability distribution of the true 

condition plus an observation error.  

Parameter Space
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Figure B.1.  Schematic for parameter/probability space definition of prediction-observation 

error. 

In this form two approaches to deterministic prediction verification can be taken.  The first is 

to examine the sample estimate of the pdf of parameter space distances (errors) between 

the prediction and reference.  In theory this estimate can be used to quantitatively inform 

uncertainty estimates in working predictions (e.g. operational forecasts) or as a measure of 

the impact of changes to the prediction system.  Metrics associated with this approach define 

the accuracy, bias, reliability and sharpness of the predictions. 
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The second approach is to quantify probability of the prediction correctly or incorrectly 

identifying the reference state, based on prediction and/or reference pdfs and some 

predefined parameter space tolerance.  In the case of deterministic verification the assumed 

pdfs are functions that have probability of 1.0 at the predicted and reference values and 0.0 

elsewhere.  The probabilities generated define the uncertainty associated with using the 

prediction system in its original form for decision making.  Often the metrics focus on a 

specific event and correct/incorrect data are further subdivided into identification/rejection 

categories.  The metrics tell the user about resolution and discrimination properties of the 

predictions in addition to accuracy. 

For the purpose of this and other WP4 documents the two approaches will be referred to as 

‘parameter space verification’ and ‘probability space verification’ respectively.  It is expected 

that the different outcomes from parameter space and probability space metrics will resonate 

differently with different user types, and one task of WP4 will be to identify whether this is the 

case. 

VIII.2 Definition and availability of wave parameters 

VIII.2.1 Definition of wave data and consequences for verification 

In the context of wave prediction and observing, the term ‘wave’ is a catchall for statistics 

describing the population of individual waves propagating over the ocean surface.  

Predictions and observations will vary in the detail at which these statistics are estimated and 

include: 

• Significant wave height, period, direction and spreading parameters estimated from a 

weighted summation of energy in the full two-dimensional wave spectrum 

• Similar parameters defined using a predefined sub-range of the spectrum 

• Details of energy and direction information over the spectra 

• Details of energy distribution over the (2D) frequency-direction spectrum 

This leads to a situation where metrics can be applied to number of wave statistics 

independently. However, in order to review the true overall performance of a wave model, 

understanding how particular parameter combinations are predicted is also important.  

Common to weather model verification, for any increase in the detail at which predictions are 
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reviewed there will be a trade-off in terms of a) the required data sample size that will enable 

statistics to be robust; b) in being able to draw simple and useable conclusions from the data.  

Model developers assessing detailed performance changes over long time periods should 

seriously consider the data that can be obtained from metrics derived using wave spectra 

(Bidlot et al., 2005).  However, for an operational scheme which is particularly targeted at 

downstream forecast agencies and lay-users, concise and conclusive metrics are more likely 

to be generated based on summary parameters derived from either the full spectrum or 

some well defined and practically useful sub-ranges. 

VIII.2.2 Available observations of wave parameters 

Although availability of data has significantly improved in the last 20 years, wave 

observations are still sufficiently sparse to be a limiting factor in the verification that can be 

practically generated.  This is particularly the case for operational verification that generally 

uses data sampled over periods of a few months.  Here two observed sources of reference 

data are focused on.  ‘In-situ data’ describes any form of observation (e.g. using a heave 

sensor, laser altimeter) made from platforms that are fixed in space and sample at regular 

short intervals in time.  ‘Satellite data’ describes remote sensed observations made by 

instruments mounted on low orbit space vehicles.  These platforms are not geostationary and 

so the observations are made along tracks following the satellite’s (polar) orbit of the earth.  

This leads to a data sample that is spatially dense along-track but temporally sparse at fixed 

points. 

Wave parameters commonly observed by various instruments are listed in Table B.1.  What 

becomes immediately apparent is that significant wave height and wind speed are observed 

in significantly higher volumes than other wave data.  This may lead to a requirement for 

different sample periods to be used for verification of different parameters. 

VIII.2.3 Treatment of circular and vector parameters 

As defined in subsection VIII.2.1 the full wave field or its components are ideally represented 

as (at least) a 3-dimensional entity comprising the energy associated with the waves (usually 

expressed as significant wave height), their period (which also relates to speed of 

propagation) and the direction in which the energy is transmitted.  These characteristics are 

not independent and a verification scheme should consider what degree of multi-variate 

testing should be carried out.  In addition, direction is a ‘circular’ variable and this needs to be 

dealt with in data processing. 
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Table B.1.  Availability of observed parameters for wave verification 

Wave Parameter Available Platforms Notes 

Significant wave height In-situ (approx. 400 
instruments globally) 

Satellite Altimeter (generally 2 
missions available) 

Mix of instrument types 

Peak wave period In-situ (approx. 270 
instruments globally) 

Mix of instrument types 

Mean zero-upcrossing wave period In-situ (approx. 150 
instruments globally) 

Mix of instrument types 

Mean/peak wave direction In-situ (approx. 150 
instruments globally) 

Data from spectral sensors 

Mean/peak wave directional spread In-situ (approx. 150 
instruments globally) 

Data from spectral sensors 

Frequency range wave energy In-situ (approx. 150 
instruments globally) 

SAR (generally 1 mission 
available) 

Data from spectral sensors 

 

Spectral sub-range available 

Frequency range wave direction In-situ (approx. 150 
instruments globally) 

SAR (generally 1 mission 
available) 

Data from spectral sensors 

 

Spectral sub-range available 

Sub-range wave height In-situ (approx. 150 
instruments globally) 

SAR (generally 1 mission 
available) 

Data from spectral sensors 

 

Spectral sub-range available 

Sub-range wave direction In-situ (approx. 150 
instruments globally) 

SAR (generally 1 mission 
available) 

Data from spectral sensors 

 

Spectral sub-range available 

Maximum wave height In-situ (approx. 20 instruments 
globally) 

 

 

Regarding the direction parameter, the majority of the metrics described in this document 

can be applied if the error between directions is considered simply as a clockwise or anti-

clockwise shift.  The shift chosen is taken as the minimum rotation required, e.g. for the case 

of direction expressed in degrees 

 ( ) ( )RMRMRMshift DDDDDDD −−−−= sgn.360,min . 
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Scatterplots of direction data (and hence fitted relationships) can also be generated by 

extending axes above and below 0 and 360 degrees respectively and applying the shift value 

to the independent (x-axis) variable. 

Achieving clarity in the multi-variate case is simple for probability space metrics, since these 

test events rather than measuring differentials, but is more complex for parameter space 

metrics.  Based on this requirement and the types of data that would be regularly available 

for operational verification, bi-variate analyses based on the following parameter pairs are 

recommended: 

• Wave height error and direction shift 

• Meridional and zonal wave energy error (i.e. how much wave energy is transported 

north and east) 

• Wave height error and period error 

• Wave group speed and direction shift. 

At the point of consultation with users, it is expected that assessing the utility of graphically 

expressing the distribution of bi-variate errors (e.g. via a scatterplot with axes in parameter 

error space) is required before approaching any statistics where a distribution might be fitted 

to the data. 

VIII.3 Sampling requirements 

VIII.3.1 Estimate of sample size requirements 

In order to place the impact on metrics of sample size in context, two simple cases can be 

looked at.  In parameter space the mean of variable x will, assuming the central limit 

theorem, follow a normal distribution with variance σ and for sample size n can therefore be 

determined to within a given sample space 95% confidence interval using 

 
n

xCI
n

x
σσ 22

+<<− . 

For an example of the northern North Sea, where winter error standard deviation for 

significant wave height can be in the order of 0.6m, a confidence interval of +/-2cm for the 
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mean error would be obtained from a sample of 3600, and an interval of +/-5cm would be 

obtained from a sample of 576 data points. 

In probability space a proportion of successful or unsuccessful forecasts will be estimated.  In 

the case of independent data the estimate should follow a (scaled) Binomial distribution and 

has a maximum variance of 0.25n when the proportion value is 0.5.  Following the Wald 

(1943) method for the binomial distribution and using the maximum variance value the 

sample size for a 95% confidence interval of given width (W) can than be obtained using: 

 
2

4

W
n = . 

Thus for a confidence interval for normalised probability of +/-0.05 (10%) a sample of size 

400 is required and for an interval of +/-0.01 (2%) a sample size of 10000 is needed. 

From these rough estimates it is clear that minimum independent samples of the order of 

between 400-600 points are desirable for wave verification. 

VIII.3.2 Use of independent data 

The metrics in this document assume use of a sample of independent events.  This 

assumption becomes a necessity in order to understand the confidence that can be placed in 

these statistics (for example to assess the effects of sample size using re-sampling methods 

as recommended in a recent update to World Meteorological Organisation from the 

Coordination Group for Forecast Verification, 2012).  Work by Greenslade and Young (2005), 

Janssen et al (2007), and Palmer and Saulter (2013) suggests that wave data are well 

correlated over time and space scales in the range 12-18 hours and 50-300km, although 

these quantities are regionally and parameter dependent (e.g. longer scales exist for 

significant wave height in swell dominated tropical areas than in higher latitude storm tracks). 

Figures B2 and B3 assess the effects of applying independence criteria to samples of 

significant wave height obtained from in-situ and remote sensed observations in the North 

Sea.  This was achieved by applying temporal and spatial restrictions of 12 hours and 220km 

following Palmer and Saulter (2013).  The sub-sampling scheme used to generate the 

examples applies both criteria using a ‘first come first served’ approach, i.e. once a reference 

data value has been read which occupies a given space-time coordinate any subsequent 

values within a set distance-time range are rejected.  To check how fairly the scheme works 

the order of the data was randomised before sub-sampling and the process was repeated 50 
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Figure B.2.  Effects of using a sub-sampling technique to achieve an independent sample of 
satellite (Envisat) data in the North Sea.  The top four panels show 3 monthly samples of 
observed significant wave height, and the lower four panels show samples of model-
observation error for the same periods.  The green line indicates the original observed 
distribution, whilst the blue lines show the median (solid), 25th and 75th percentile (dashed), 
and 5th and 95th percentile differential in sample distribution for 50 sub-samples. 
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Figure B.3.  Effects of using a sub-sampling technique to achieve an independent sample of 
in-situ data in the North Sea.  The top four panels show 3 monthly samples of observed 
significant wave height, and the lower four panels show samples of model-observation error 
for the same periods.  The green line indicates the original observed distribution, whilst the 
blue lines show the median (solid), 25th and 75th percentile (dashed), and 5th and 95th 
percentile differential in sample distribution for 50 sub-samples. 
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times – hence the changes to the sub-sampled data are shown as a plume in the figures 

rather than a single line.  The principle result of this analysis is the reduction in data sample 

size resulting from adopting these strict sampling criteria.  In both figures data volumes are 

reduced by close to a factor of 20. 

The North Sea is expected to be representative of other regional seas in terms of observed 

data coverage, if not better populated.  So the analyses presented in Figures B2 and B3 

suggest that for verification focused on a limited spatial area a 3 month sample period is 

likely to be the minimum required to achieve a robust independent sample of data.  The 

sampling period should be correspondingly increased if focusing on specific parts of the data 

sample or when evaluating combined parameters.  For example, a contingency table defined 

for event prediction verification stratifies the verification sample according to prediction or 

non-prediction of the event of interest.  In this case the confidence levels associated with the 

results need to be judged based on the sample size in either predicted (for hits and false 

alarms) and non-predicted categories.  In the example of a rare event the hit and false alarm 

proportions may have much larger confidence intervals placed upon them than the miss and 

correct rejection proportions due to the relative difference in the sample sizes.   

VIII.4 Additional considerations for metric generation 

VIII.4.1 Conditional influences on the metrics 

A consideration for operational metrics that are updated regularly and use short sample 

periods is how to communicate conditional influences on the statistics associated with the 

samples used.  The requirement to do this is driven by potentially different applications of 

verification data by different users.  Traditionally the model developer view of verification is 

either as a method of reviewing recent performance of a model in order to identify system 

issues, or as data with which to make intercomparisons between systems using a consistent 

baseline.  A forecaster or decision making user may wish to use the data differently however, 

for example by applying measures of uncertainty to future predictions in order to estimate 

decision risk.  This second example, where the verification data are applied downstream, 

might be particularly sensitive to conditional effects. 

For example, Figure B4 shows the relationship between root mean squared error (RMSE) 

and both mean significant wave height and standard deviation of wave height (as proxies for 

the distribution of conditions) in monthly reference samples for 1 year of data from North Sea  
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Figure B4.  Monthly values during 2010 of mean and standard deviation of significant wave 
height versus RMSE for in-situ platforms in a) North Sea, b) North Atlantic European Margin 
regions.  Colours and shapes denote different platforms. 

 

and North Atlantic in-situ platforms.  The data are well scattered from site to site and month 

to month, and a trend for increasing RMSE with both parameters is present.  Other metrics 

may be more sensitive, for example threshold based contingency statistics for events with 

low sample size.  In Figures B2 and B3 the distribution of observed parameter values were 

changed significantly when independence criteria were applied, suggesting some aliasing of 

data in the original sample toward particular conditions.  Aliasing is likely to have occurred in 

the in-situ sample due to clustering of observations from oil platforms in particular areas 

around the North Sea, and can also be sensibly explained for the satellite by considering the 

sample of fetch lengths that can be achieved for various locations in the North Sea.  The 
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satellite will sample regularly from central locations (with similar fetches onto site of the order 

200km or more) and less regularly from coastal locations (for which some sectors will see 

extremely short fetches).  The impact on the error sample in the figures appears much more 

limited. 

The simplest approach to mitigating this issue is to present the verification as sampled, and 

with appropriate caveats.  This is the approach that has been adopted up to now within 

MyOcean (Alastair Sellar, pers. comm.).  In this instance it is then the user’s decision as to 

whether and how strictly to apply these data as part of a downstream process.  Variability in 

these metrics might be reinforced to users by presenting longer term records of the metrics. 

However, it may be possible to explore other methods.  For example drawing data from the 

original verification sample in order to more consistently represent the event population 

associated with a long-term regional climatology of conditions.  The verification described in 

this instance should be representative of a sample from the population of errors that a user 

might experience if operating throughout the region and over the long term.  An alternative is 

to generate a revised sample or metrics in which reliability associated with events of different 

types is equally represented, i.e. the final statistics should be (reasonably) independent of 

the underlying climatology.  Data conforming to this ideal can be established based on a 

stratification of the sample, for example using Neyman allocation in which the revised 

(optimal) sample is drawn from strata according to the local sample estimate of standard 

deviation of errors.  For long tailed distributions typical of wave parameters, using preset 

condition ranges (e.g. 0-1m, 1-2m etc. for significant wave height) is not practical, but forms 

of sampling where either the original sample is broken into a small number of equal width 

percentile sub-ranges, or following a Cumulative Frequency of the Square Root method 

(Dalenius and Hodges, 1959) should be acceptable.  The trade-off with both re-sampling 

techniques is that the level of complexity for the metric is increased whilst still not entirely 

meeting the user need.  Identifying if any of these methods are applicable to user focused 

verification could be included within the project consultation if time is available. 

VIII.4.2 Application of resampling techniques 

Consistent with recommendations from the WMO Coordination Group for Forecast 

Verification (2012), application of resampling techniques, e.g. using the Bootstrap (Efron and 

Gong, 1983), in order to assess sensitivity of the metrics should be considered by MCS 

verification.  The approach is not without compromise however.  Analyses of resampled 

metrics introduce an extra level of complexity to presentation and interpretation of verification 



 Proposal of metrics for user focused 
verification of deterministic wave prediction 

systems 

Ref : MyWave-D4.2a 

Date  : 02 Oct 2013 

Issue : 1.1 

 

 © My Wave – Public      Page 50/ 54 

data.  In addition processing requirements for the data may be significant.  A suggested 

method to reduce the processing overhead is to employ a Block Bootstrap (Carlstein, 1986; 

Kunsch, 1989).  The method maximises use of an original (dependent) data sample by 

dividing the sample into blocks of sufficient size that can be considered as an independent 

subset of the overall data sample.  In this instance the identification of independent data 

blocks needs only to be made once and the need for multiple simulations of observation 

errors is also reduced as the sample size for each bootstrap member is maximised.  The 

main issue is in adopting a best method for establishing the data blocks and ensuring that 

each supplies an equal number of observations to the bootstrap member samples.  This is 

likely to be more of a concern for in-situ data than for satellite data due to the clustering of in-

situ platform locations. 

Figure B4 shows results from application of a scheme that used sampling in predefined 

areas and time periods as the basis for block selection for both in-situ and satellite data.  In 

these tests a limited area of the northern part of the North Sea was divided into non-

overlapping 2 degree latitude by 4 degree longitude boxes in order to define the area blocks 

and non-overlapping 24 hour periods to define the time blocks.  The area blocks were set in 

order to ensure that an even number sample of observations would be captured in each 

area, however the block resampling scheme also identified a minimum sample size for each 

block and rejected or sub-sampled from the blocks based on this value.  Data volumes used 

in the statistics were reduced compared to the original sample by a factor of 2-4, rather than 

the factor of 20 described for the independent data test in subsection VIII.3.2.  In Figure B5 it 

is demonstrated that whilst the sample mean of predicted conditions used in the verification 

did not vary significantly between instruments (with the exception of the final quarter of 

2010), the MAE values generated are distinct and suggest a possible discrepancy between 

the sampled instrument measurements of conditions. 

Whilst the example in Figure B5 allows us to infer the trust we can place in the statistics for 

particular examples, questions need to be asked as to whether general application of this 

type of procedure can be made to work in a wide ranging operational verification scheme, 

and whether the resulting presentation of data will be suitably accessible for users. 
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Figure B5.  Comparisons of model sample mean and model-observation MAE values for 3 
month block-bootstrap samples of in-situ (blue) and Envisat altimeter (green) significant 
wave height match-up data. 
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VIII.4.3 Accounting for observation errors 

A final consideration for a verification scheme that may reference against different observed 

sources is that each observation type will have different error characteristics.  Two types of 

observed errors can be considered, namely ‘representation errors’ and ‘instrument errors’.  

Within a verification scheme ‘representation errors’, which relate to the scales over which 

waves are sampled by the observing system or represented in a model, can be mitigated by 

standardising the scales over which observations are aggregated as much as possible.  

Achieving consistency in this respect is desirable as it means that the role of representation 

errors in the verification will only vary with the model used.  Previous work has used an 

estimated model scale to determine aggregation schemes for observations (e.g. Bidlot and 

Holt, 2006; Bidlot et al., 2007).  However, for a MCS verification system which potentially 

compares different models, and bearing in mind the common perception that in-situ 

observations are the de-facto standard for true sea-state, it can be argued that referencing 

against a 15-30 minute in-situ sample enables more consistent and user focused 

intercomparison.  This length of sample at a fixed point is equivalent to an approximate 8-25 

km area sample for deep water wave energy at period 5-16 seconds and, for example, would 

be represented by 2-4 data points from altimeter soundings at 1Hz frequency.   

Instrument errors comprise systematic and random components.  Evaluating (relative) 

systematic and random errors within the observations requires assessment of the 

observations over a long time period (e.g. through triple collocation studies; Janssen et al., 

2007), particularly if errors through the parameter sub-range are to be assessed (e.g. Abdalla 

et al., 2010).  Incorporation of observed error estimates within ensemble prediction 

verification scheme has been demonstrated by Saetra et al. (2004).  An approach, based on 

Saetra et al. (2004)’s method, and applicable to deterministic model verification will be 

discussed further in an accompanying MyWave report as part of deliverable D.4.3.  However 

it is important at this stage in the consultation to pose the question as to whether verification 

against an estimated truth is more relevant to users than direct comparisons of the 

consistency between predictions and observations, since the latter will more likely reflect 

experience of direct use of observations and predictions in the operating environment. 

VIII.5 Summary 

The aim of this annex has been to identify and discuss technical issues that influence the 

proposed verification metrics discussed in Section IV and their method of portrayal.  A major 
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constraint on the metrics and sample period they represent is the availability of observed 

reference data, particularly for parameters beyond significant wave height.  In order to 

calculate statistics with a reasonable level of accuracy it is expected that at least 3 month 

samples of the most common observed parameters will be required for regional sea areas, 

and that this will need to be increased to 6 month or 12 month periods where multi-variate or 

extreme data are tested. 

In terms of portrayal of data, it is identified that methods may need to be introduced in order 

to help communicate variability in the statistics that may be introduced by the conditions 

sampled, effects of sample size and observation errors.  In reviewing whether and how to 

implement these, the project will need to consult with users and be mindful that accessibility 

and simplicity in the metrics will be of paramount importance to a successful MCS verification 

scheme. 
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I INTRODUCTION 

 

Tasks in MyWave WP4 will define operational verification methods that can be robustly 

applied within a wave element of a Marine Core Service (MCS).  The purpose of this 

document is to propose metrics that provide model developers and (downstream) users with 

model performance or uncertainty data for (short-range) ensemble wave forecasts.  Whilst 

there is significant overlap, the two communities are treated separately in this document to 

reflect that development of short-range high-resolution wave Ensemble Prediction Systems 

(wave-EPS) is an ongoing activity in the MyWave project (MyWave-WP3) and requires 

particular metrics in order to understand details of system configuration.  On the other hand, 

the user community are identified as having a requirement for metrics that are particularly 

accessible (i.e. concisely presented and easily understood) and can be connected to 

application of wave forecast data.  To that end, this document has been co-developed with 

colleagues in MyWave-WP3 in order to propose metrics critical to wave-EPS development 

(Section III), whilst further metrics are proposed as ‘user focused’ (Section IV) and will be 

reviewed as part of a process of user consultation described in Annex B. 

This report accompanies a similar proposal for user focused metrics in report MyWave-

D4.2a.  In that report metrics were identified and categorised according to their purpose, i.e. 

the information that will be portrayed to the user.  A similar approach is adopted here.  Due to 

limitations in available observations a truly reliable analysis for waves is not available as a 

verifying reference, so the scope of this document is limited to verification applied to 

reference data comprising observations only.  Furthermore we focus on metrics which can be 

‘commonly’ derived against either in-situ or remote sensed sources for the most regularly 

sampled wave parameters.  This is a pragmatic view which has been taken because high 

volumes of reference data are needed for ensemble verification and we will discuss metrics 

which will be applied in operational systems, where sample periods are likely to be limited to 

between a few months and a year. 

The remainder of the document is set out as follows: in Section II the overall purpose of 

ensemble prediction and verification are described and some guiding principles that will 

influence the approach to metrics for MCS verification are set out; Section III presents 

metrics that will be important to the development of the wave-EPS systems in WP3; Section 

IV identifies further metrics that are likely to have resonance with users and will be evaluated 
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through the user consultation process.  The metrics are summarized in tables presented in 

Annex A.  The user consultation process for verification metrics is outlined in Annex B. 
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II PRINCIPLES FOR ENSEMBLE PREDICTION AND MCS VERIFICATION 

II.1 Purpose of Ensemble Prediction Systems (EPS) 

In considering EPS verification it is useful to outline the purpose of an EPS and attributes of 

the system that should be tested.  In numerical weather prediction (NWP) a deterministic 

forecast can be considered as a ‘best guess’ of future conditions.  Significant effort will have 

been made to ensure that the starting estimate (analysis) of conditions is as accurate as 

possible and that the prognostic model uses the best available parameterizations of real-

world physical processes.  Nevertheless, both analysis and model physics will be subject to 

uncertainty.  In theory, verification of the deterministic system allows determination of these 

uncertainties, however in practise sampling all the possible permutations of weather and 

ocean conditions in order to robustly describe uncertainty in any given situation is not 

possible. 

Ensemble prediction aims to provide dynamically varying and accurate estimates of 

uncertainty on a forecast by forecast basis by sampling the uncertainty associated with 

weather system development and, if physics variations are introduced, model 

parameterization.  The underpinning method involves running multiple instances of a forecast 

model from analyses where a level of variation has been permitted (and possibly physics; 

e.g. Bowler et al., 2008; Bonavita et al., 2008, 2010).  The outcome is a set of discrete 

forecasts that should be sampled from the probability distribution function (pdf) of true 

conditions that could be realized a numbers of hours/days/weeks into the future. 

Expected EPS properties which are to be verified should include: 

• EPS members are a representative sample from the true pdf.  One characteristic of 

this is that probability data for the occurrence of a given event in the EPS should have 

a direct relationship with the real-world probability of an event occurring (also known 

as forecast reliability; Murphy, 1993). 

• Lower levels of uncertainty are predicted in the EPS when the evolution of conditions 

is stable and predictable (for example when a well established blocking high pressure 

system is in place) than in dynamic, unstable cases.  This property links spread in the 

EPS to skill in a ‘control’ deterministic forecast. 
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• The EPS provides (at least) a qualitatively accurate guide as to whether conditions 

are more likely to be worse or better than predicted in the deterministic (control) case.  

If this is the case a forecast derived statistically using all EPS members should 

perform better than the control forecast. 

• The EPS should have the ability to identify high impact situations with low probability 

at long-range and converge steadily toward these solutions at short-range in 

subsequent forecasts if real-world conditions develop in that way.  This property is a 

function of the ability of the EPS base model to generate an extreme condition and 

reliability of the probability forecast at varying lead times. 

In addition, the base model(s) used in the EPS will be subject to the same criteria as any 

deterministic model in terms of being able to accurately resolve the full range of 

climatological conditions without significant bias. 

II.2 Comparison of approach to ensemble versus deterministic verification 

The aim of ensemble verification is to test each of the properties described in Section II.1 

and to demonstrate improvements to decision making enabled when using the EPS as an 

alternative to a deterministic forecast.  In order to consider the basic approach to any of 

these tests Figure 1 presents a generalised form for an error pair used in verification where 

the reference is an observation.  In the figure both prediction and reference values for a 

given parameter space (which for simplicity has been shown in a single dimension, but could 

be multi-dimensional or even circular) have uncertainties associated with them, which are 

shown in the form of pdfs.  In the case of an EPS the forecast members should comprise a 

representative sample from the prediction uncertainty pdf.  In the purely deterministic case 

the pdf is simplified to having a value of 1 at the predicted parameter value and zero 

elsewhere.  The reference observation will be drawn from the joint probability distribution of 

the true condition plus an observation error.  

Deterministic verification will either measure the (parameter space) distances between 

prediction and reference (i.e. the prediction errors) in order to quantify parameter uncertainty, 

or will measure the probability of a successful (or unsuccessful) forecast of dichotomous 

(yes/no) events based on predefined success criteria.  Three further approaches are 

available in EPS verification that extend the deterministic case.  In the first instance, where 

deterministic verification measures parameter space errors, EPS tests can be extended to 
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assess whether the uncertainty distribution associated with each forecast is correlated with 

the occurrence of high or low errors, i.e. the spread-skill relationship.  Secondly, parameter 

space error measurements can be applied to probabilities derived from the EPS (e.g. the 

Brier Score; Murphy, 1973), including measures of reliability.  In the third case, where 

deterministic forecasts treat event prediction in a dichotomous (yes/no) manner, for an EPS 

the predicted event probability should vary between 0.0 and 1.0.  This allows an extension to 

metrics that assess the ability of EPS members to identify events, and probability thresholds 

at which to make a deterministic decision about event occurrence.  Besides, deterministic 

tests can be applied to deterministic forecasts derived statistically from the EPS member 

distribution (e.g. the ensemble mean value). 
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Figure 1.  Schematic for parameter/probability space definition of prediction-observation 

error. 

 

II.2.1 Prediction ‘dressing’ 

Potential applications of an EPS include those where the distribution of discrete ensemble 

members is used as a proxy for a continuous pdf.  We may also wish to compare the EPS 

with deterministic forecasts in order to understand how the extra information in the EPS 
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might improve decision making, and in these cases it should be considered that in practical 

usage deterministic forecasts will be treated ‘with a pinch of salt’ and some form of 

uncertainty will be implicitly built into decision making using deterministic data.  Figure 1 

acknowledges that observations used as a reference will be subject to a level of uncertainty 

relative to the ‘true’ sea-state.  Each of these factors can be taken into account by application 

of suitable ‘dressing’ of the verified forecasts.  However, the schemes used should be 

mindful of the fact that the aim is to verify the EPS forecasts and not a post-processed 

version of the data. 

As a result it is proposed that dressing within the context of MyWave verification should be 

approached as simply as possible.  Dressing applied to the EPS should concentrate 

principally on assessing the effects of observation errors on occurrence of EPS-observation 

outliers in the tail of the estimated pdf (following Saetra et al., 2004).  Baseline probabilistic 

forecasts constructed from deterministic systems should be based on past verification data 

(e.g. Flowerdew et al., 2010).  In both cases the kernel function used to dress the data can 

be assumed to take a relatively simple form, such as a Gaussian. 

II.2.2 Application of observation errors 

Two types of observed errors can be considered, namely ‘representation errors’ and 

‘instrument errors’.  Representation errors, which relate to the scales over which waves are 

sampled by the observing system or represented in a model, can be mitigated in a 

verification scheme by standardising the scales over which observations are aggregated as 

much as possible.  Achieving consistency in this respect is desirable as it means that the role 

of representation errors in the verification will only vary with the model used.  Previous work 

has used an estimated model scale to determine aggregation schemes for observations (e.g. 

Bidlot and Holt, 2006; Bidlot et al., 2007).  However, for a MCS verification system which 

potentially compares different models, and bearing in mind the common perception that in-

situ observations are the de-facto standard for true sea-state, it can be argued that 

referencing against a 15-30 minute in-situ sample enables more consistent and user focused 

intercomparison.  Based on propagation speeds for wave energy, this length of sample at a 

fixed point is equivalent to an approximate 8-25 km area sample for waves (in deep water) of 

period 5-16 seconds and, for example, would be represented by an aggregation over 2-4 

data points from satellite altimeter soundings at 1Hz frequency.   

Instrument errors comprise systematic and random components.  Previous studies have 

demonstrated that these errors can be estimated via assessment of the observations over a 
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long time period (e.g. through triple collocation studies; Janssen et al., 2007).  An 

assessment of in-situ and satellite altimeter errors and their subsequent application to 

verification metrics is part of ongoing work within MyWave-WP4 and for ensemble metrics 

will follow the philosophy employed by Saetra et al. (2004).  The basic principle is to assume 

that the EPS samples uncertainty in the development of the true conditions and that 

instrument errors are independent.  In this case the prediction versus reference pdf should 

be properly represented when instrument uncertainty estimates are convolved with the 

ensemble member distribution in order to generate a forecast pdf. 

II.2.3 Baseline forecasts 

In certain cases, particularly when using scoring metrics, it may be important to contextualise 

the verification by referencing against another ‘baseline’ prediction system.  The eligible 

baselines are highlighted: 

• The verifying reference climate will provide a perfectly reliable and resolved prediction 

of the reference dataset, but will not vary dynamically from forecast to forecast.  

These data are incorporated in uncertainty components of scores such as the Brier 

Score (Murphy, 1973) and Continuous Ranked Probability Score (Hersbach, 2000). 

• The EPS control member plus an associated deterministic uncertainty measure (e.g. 

errors from past verification) will provide a dynamic forecast but with an estimated 

(and not physically representative) degree of spread.  This comparison may be 

particularly useful in situations where forecast uncertainty might be expected to be 

particularly constrained, for example at very short lead times or when depth or 

topography limits the wave climate that can be achieved. 

• Long term model climatology will provide forecasts that should resolve climate in a 

similar fashion to the EPS, but may be neither a reliable or well resolved estimate of 

the verifying reference climatology.  These forecasts will not change dynamically, but 

could be assumed to be a best available predictor if no forecast system were 

available. 
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II.3 Practical considerations for wave-EPS verification 

Within both the scope of wave-EPS development in the MyWave project and potential 

requirements for regularly updated operational verification a number of practical 

considerations will constrain the metrics and parameters that can be verified. 

A major constraint is that probabilistic forecast metrics are ‘data hungry’, particularly in 

instances where reliability, spread-skill relationships or probability thresholds are being 

evaluated.  In these instances both an adequate range of reference conditions and EPS 

probabilities of occurrence need to be (independently) sampled.  MyWave-D4.2a discusses 

sampling requirements for deterministic metrics and suggests that the minimum sample 

period for evaluation of forecasts against in-situ or satellite observed baselines in regional 

seas should be 3 months.  Based on a relationship derived by Candille and Talagrand 

(2004), in order to estimate reliability to a precision of 10% based on an ensemble of 20 

members a sample size of approximately 14000 events is required.  On this basis a 

recommended sample period for wave-EPS verification is at least 3-6 months and is 

applicable only for summary statistics from univariate analysis of the most regularly sampled 

parameters.  The sample period may need to be extended further for testing multiple 

variables together and assessing reliability.  Parameters considered as regularly sampled 

are: 

• Significant wave height (from either in-situ or satellite altimeter data) 

• Wave period (where a sufficient number of in-situ platforms exist)  

• Wave direction (where a sufficient number of in-situ platforms exist) 

• Wind speed (from either in-situ, satellite altimeter or scatterometer data) 

• Wind direction (from either in-situ or scatterometer data). 

Using the reference data in a manner that is common to both in-situ and satellite remote 

sensed data requires that the sample of events verified comprise instantaneous ‘snapshots’ 

of given parameters at specific locations/times.  Verification that uses these data cannot 

assume or make use of any spatial or temporal linkage between events.  In reality, if the 

sampling rate is high, such links will be present and it may then become important to ensure 

that the sample used is not aliased by particular sub-collections of data within the sample (for 

example if in-situ data within a region are clustered in a particular area).  In MyWave-D4.2a it 

has been proposed that the use of a block bootstrap approach (Carlstein, 1986; Kunsch, 
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1989) be explored in order to ensure that a series of independent data blocks are used in 

construction of metrics whilst retaining the maximum number of observations within the 

verifying sample.  A similar approach could be explored for wave-EPS metrics (e.g. Candille 

et al., 2007), although this leads to extra complexity in both processing and presentation of 

the verification data. 

A further consideration in presentation of verification will be that, as for the deterministic 

case, some conditional sampling effects on the metrics might be expected.  Use of a suitable 

resampling scheme (e.g. block bootstrap) to assess some aspects of sampling effects and 

retaining a rolling record of certain metrics in order to assess long term variability in the data 

are suggested options to help understand and explain these effects to users. 

II.4 Principles for Marine Core Service verification 

Metrics in this report are expected to be used both to assess and demonstrate performance 

of wave-EPS data during systems development and to provide performance data for users 

within an operational framework (as part of a MCS).  The key attributes of a wave-EPS that 

the metrics should verify are discussed in subsection II.1, but it is proposed that MCS 

verification should be mindful of some further guiding principles regarding usage and 

portrayal of verification data: 

• The system may need to be considerate of the fact that service users might wish to 

apply verification data within downstream services or decision making processes. 

• Metrics should be regularly updated to reflect recent system performance.  For 

example in the MyOcean service metrics are updated every 3 months and are 

presented in a rolling archive of up to 1 year of data (Alistair Sellar, pers. comm.). 

• The system should enable rapid discovery of metrics that allow downstream users to 

easily understand performance of the prediction system relevant to their particular 

use of the MCS data.   

• The metrics should be accessible to non-scientific users; for example, if the metrics 

provided cannot be explained with a few sentences of text, they are probably not fit 

for purpose. 

• Metrics comparing prediction system performance against a baseline prediction 

should be meaningful in terms of user decision making. 
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Adopting these principles means that there is a need to clearly associate given metrics with 

an application that users can recognise, and also to ensure that verification data which can 

practicably be made available within an operational verification scheme covers as many key 

user applications as possible.  To this end the metrics presented in this document will be 

classified according to the purpose that each aims to fulfil.  Clearly defining what each metric 

does is important to MCS application since, in general, it is expected that users are unlikely 

to wish to review large numbers of metrics and will instead want to quickly discover those key 

pieces of verification data that meet a specific need.   

In this document four overarching purpose categories for EPS verification are identified 

according to the aspect of model performance being tested: 

• Climatology tests (Annex A, Table EC) determine the ability of the prediction system 

to replicate the reference climate, for example describing sharpness and bias of the 

predictions.  These tests ignore any time-referencing in the sample pairs.  The 

outcomes may be used to determine systematic errors and specific process 

representation issues and, in the context of an EPS, can be used to assess the 

underpinning model and any statistically derived predictor (e.g. the ensemble mean). 

• Measures of prediction uncertainty in parameter space (Annex A, Table EM) estimate 

accuracy from the sample of prediction-reference errors in the deterministic case.  

These metrics enable the errors to be viewed in context against background 

conditions or in prediction system intercomparison.  In the EPS context these are 

extended to assess the relationship between EPS spread and deterministic forecast 

uncertainty and to summarize probability errors and reliability. 

• Measures of (dichotomous) prediction uncertainty in probability space (Annex A, 

Table EP) describe the ability of a prediction system to successfully identify given 

reference conditions.  These data can be used to evaluate the long term benefits of 

using the predictions (i.e. whether more gains than losses will be made through 

basing decisions on prediction data).  For an EPS these are extended to assess use 

of EPS event probability prediction data as the decision making system. 

• Assessment of performance in forecasting extreme conditions (Annex A, Table EX) 

analyse performance of the model specifically at the tail(s) of the distribution of 

conditions.  The tests described are intended to be robust when working with limited 

data samples. 
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Metrics falling into each purpose category are identified within the following subsections.  

Tabular summaries of the full set of proposed metrics by purpose category are given in 

Annex A. 
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III  PROPOSED METRICS FOR WAVE-EPS DEVELOPMENT 

Metrics proposed in this section comprise a set of core tests that are anticipated to be 

required in order to validate a successful implementation of short-range wave-EPS systems 

with MyWave-WP3. 

III.1 Deterministic Metrics 

Deterministic metrics test properties of either individual members of the EPS, or products 

derived statistically from the distribution of EPS members that can be used in a deterministic 

fashion (e.g. the ensemble mean).  The metrics enable intercomparison between members, 

against other deterministic forecast systems, or against naïve predictors such as chance or 

climatological mean.  A range of deterministic metrics are discussed in MyWave-D4.2a, from 

which the metrics considered most pertinent to developing the wave-EPS systems are 

proposed below.   

In particular it will be useful to understand if inequalities in predictive skill exist between 

members, for example if there are significant deviations in performance of individual 

members compared to the control (for example as a result of the inclusion of lagged forecast 

members in the Met Office wave-EPS in MyWave-WP3).  In principle individual members of 

the EPS should adequately replicate the reference climate, whilst forecasts derived 

statistically from the ensemble (e.g. the ensemble mean) may be limited in this sense they 

are not direct simulations of the physical environment.  This may be particularly true for 

replication of conditions within the tail of the distribution.  Intercomparison of the deterministic 

metrics enables this, although in an ensemble consisting of more than a few members 

graphical presentation will allow the most accessible and concise view of the data. 

Test EC1: Reproduction of general features of the reference climate 

The most concise metrics are based on comparing moments of the event sample 

distributions and should include higher moments of the distribution relating to skewness and 

kurtosis since many parameters being tested (e.g. significant wave height, wind speed) 

cannot be assumed to be normally distributed. 
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Proposed metrics (in combination): 

• Parameter mean, [ ]
n

x
x

∑
=E  (for variable x with sample size n); differentials in 

reference and predicted means measure bias 

• Parameter root mean squared (RMS) value, [ ]
n

x
x

2
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∑

=  

• Parameter standard deviation [ ]
[ ]( )

n

xx
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∑ −
==
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Varσ  
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• Parameter kurtosis, 
[ ]




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







 −
=

4
E
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σ

β
xx

, or kurtosis exceedence from the normal 

distribution value, i.e. β - 3 

Test EC2: Reproduction of details of the reference climate 

Distribution comparisons can be used to provide more detail in representation of the 

reference climate and highlight sub-ranges of conditions which are particularly well or poorly 

replicated.  Quantile-quantile (Q-Q) plots are recommended for development as these 

provide a useful visualization for the distribution tails.   

Proposed metrics: 

• Q-Q plot; for parameters with long distribution tails (e.g. significant wave height) split 

over two levels to resolve body and tail of distribution 

Test EM1: Quantify the scale of errors 

In parameter space, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are 

the most recognised metrics for overall error description.  RMSE, which is a composition of 

bias and a measure of error scatter, is a particularly popular metric, but has been 

demonstrated to have drawbacks when comparing data with similar levels of performance 

(Mentaschi et al., 2013).  As a result it is recommended that RMSE is presented alongside a 
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breakdown of contributions to the metric as described in Test M1a.  Mentaschi et al. (2013) 

also discuss use of a corrected normalised indicator following Hanna and Heinold (1985), 

which mitigates issues with RMSE by symmetrically normalising the squared error data using 

both prediction and reference values. 

Proposed metrics: 

• Mean Absolute Error, 
n

EP
MAE

∑
= , where EP denotes the sample of errors for 

prediction (M) and reference (R), ( iii RMEP −= ) 

• Root Mean Squared Error (as for parameter RMS with EP as the input variable) 

• Hanna and Heinold (1985) symmetrically normalised RMSE; 
∑
∑

=
ii

i

RM

EP
SNRMSE

2

 

Test EM1a: Assess effects of prediction ‘sharpness and reliability’ on RMSE 

Reviewing the contribution to RMSE of prediction variability, correlation or bias is expected to 

be useful to model developers studying the overall effects of system changes.  Mean Square 

Error (MSE) comprises bias and error variance contributions as 

 [ ] [ ]2
EVar EPEPMSE += , 

where error variance further breaks down as: 

 [ ] [ ] [ ] [ ]RMMREP ,Cov2VarVarVar −+=  

MSE can be normalised by Var[R] (to give a skill score relative to a naïve predictor based on 

the reference mean).  The normalised variance component is a form of (squared) Scatter 

Index (SI, which has also been defined in other forms by Bidlot et al., 1997; Ardhuin et al., 

2007; Filipot and Ardhuin, 2012).  Breaking down the SIRVar
2 used here gives: 

 
[ ]
[ ]

[ ]
[ ]R

RM

R

M
SIRVar

Var

,Cov
2

Var

Var
0.1

2
−+=  

in which the third term can be re-written in terms of correlation and variance using: 
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=  

The normalised prediction variance and correlation can, respectively, be viewed as 

measures of the prediction systems’ sharpness (i.e. how much the prediction attempts to 

replicate the reference ‘signal’) and reliability (i.e. whether the prediction is able to track the 

reference as it transitions through the range of conditions).  In an ideal situation the 

normalised MSE will be reduced when both the normalised prediction variance and the 

correlation tend to 1.0 (so that SIRVar
2 tends to 0.0), and when the bias part tends to 0.0.  

However the relationship for SIRVar
2 is minimised when normalised prediction standard 

deviation is equal to the correlation value and therefore MSE will favour prediction systems 

with lower variance as correlation reduces.  Mentaschi et al. (2013) also demonstrate 

dependence between SI and bias, such that SI is reduced in cases where the prediction has 

a negative bias.  It can be argued that for wave prediction neither a reduction in forecast 

sharpness or a tendency to under-predict are desirable qualities, and so the MSE breakdown 

as described should help to indicate if reduced RMSE scores have resulted from either of 

these effects.  When many predictions are being compared the Taylor plot (Taylor, 2001) 

provides a useful visualization of the SIRVar
2 breakdown. 

Proposed metrics (in combination): 

• MSE normalised by reference variance 

• Bias normalised by reference variance 

• (Squared) Scatter Index, SIRVar
2 

• Pearson Correlation 

• Standard deviation of prediction normalised by reference standard deviation 

• Taylor plot 

Test EP1: Quantify deterministic ability to predict event x 

This test is expected to be particularly applicable for comparing deterministic performance of 

ensemble control and mean, although it could also be used to detect performance 

differentials between members.  For model development the main issue is selecting a 

suitable series of events against which the tests can be conducted.  The basis for this test is 

a ‘contingency table’ for a dichotomous (yes/no) forecast as presented below: 



 Proposal of metrics for developer and user 
focused verification of wave ensemble 

prediction systems 

Ref : MyWave-D4.2b 

Date  : 02 Oct 2013 

Issue : 1.0 

 

 © My Wave – Public      Page 23/ 45 

 

 Event observed Event not observed 

Event predicted Hit False Alarm 

Event not predicted Miss Correct Rejection 

Within MyWave-D4.2a it was proposed that the MCS verification scheme would also publish 

a small set of critical and accessible parameters.  Initially these are identified as: 

SampleSize

ectionsCorrectRejHits
rrectFractionCo

+
= , which quantifies the chance that predictions 

successfully identify both events and non-events. 

sFalseAlarmHits

Hits
ioSuccessRat

+
= , which quantifies the chance that an event will occur if 

predicted. 

ioSuccessRatRatioFalseAlarm −= 1 , which quantifies the chance that an event will not occur 

if predicted. 

ectionsCorrectRejMisses

Misses
MissRatio

+
= , which quantifies the chance of an event occurring 

if not predicted. 

Proposed metrics: 

• Contingency table for event 

• Percentage scores for: Fraction Correct, Success Ratio, False Alarm Ratio and Miss Ratio 

 

III.2 Testing properties of ensemble spread 

The metrics in this subsection test the ability of the ensemble spread to dynamically predict 

uncertainty associated with a deterministic prediction of the reference conditions.  In general 
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it is expected that the spread measure used is associated with the choice of deterministic 

prediction, i.e. relative to either the control member or ensemble mean. 

Test EC3:  Quantify forecast to forecast variability in EPS spread 

This climatology test evaluates mean and variance of EPS spread from forecast to forecast 

and provides a first check that the EPS spread is a useful dynamic quantity.  Since the test 

relies only on EPS data, gridded visualizations of the metrics can be generated.  The 

baseline reference in this case would be a spread measure applied to a long term model 

climatology of the parameter being tested. 

Proposed metric(s): 

• Mean spread (site/area specific or mapped) 

• Standard deviation of spread (site/area specific or mapped) 

• Spread histogram 

Test EM2: Quantify probability that ensemble spread captures variability of the 

reference 

A simple and accessible method of testing whether ensemble spread is sufficient to capture 

variability associated with the reference is to use a bounding box metric (Weiseheimer et al., 

2005) in which the EPS is successful if the reference data are captured within the range 

covered by EPS members.  The approach can be extended to multi-variate cases.  The 

metric may be sensitive to systematic biases in the EPS however.  This metric allows 

comparison of the EPS against either long term model climatology (as test for systematic 

issues in predicting extremes) or a dressed deterministic forecast (where the bounding box is 

defined by a window around the deterministic forecast value) as a baseline prediction. 

Proposed metric: 

• Bounding box 

Test EM3: Describe characteristics of overspread or underspread in the EPS 

More detailed assessments of EPS spread characteristics relative to the reference can be 

made by assessing where the reference value falls relative to a list of EPS members ranked 
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by parameter value.  In the univariate case the data are graphically presented using a Rank 

Histogram (RH; Talagrand and Vautard, 1996; Hammill and Collucci, 1997) and can be 

extended to multi-variate cases, for example using distances derived with a Minimum 

Spanning Tree method (Wilks, 2004; Gombos et al., 2007). 

Proposed metric(s): 

• Rank Histogram (extension to MST in multi-variate cases) 

Test EM4: Describe the relationship between EPS spread and deterministic forecast 

errors 

If tests EM2 and EM3 provide sensible results then a comparison between the EPS forecast 

spread and errors for a deterministic forecast (e.g. control member, ensemble mean) will 

illustrate whether changes in the ensemble spread successfully discriminate levels of 

deterministic forecast uncertainty.  The measures that can be used for both spread and error 

are somewhat flexible, for example Scherrer et al. (2004) compare RMS values of both EPS 

spread and deterministic error whilst Saetra and Bidlot (2004) compare absolute errors with 

EPS inter-quartile range. 

Proposed metric(s): 

• Spread-Skill scatterplot for EPS spread versus deterministic error 

• Relationship fit to Spread-Skill data 

 

III.3 Testing properties of probabilistic forecasts 

The final set of development tests assess the viability of using quantitative probabilities 

derived from the EPS as a prediction of the reference state.  Two forms of testing are 

identified which a) evaluate errors in the EPS probability forecast of the reference data (and 

are effectively measures in parameter space), b) assess the use of EPS probabilities as a 

dichotomous (yes/no) forecast method. 



 Proposal of metrics for developer and user 
focused verification of wave ensemble 

prediction systems 

Ref : MyWave-D4.2b 

Date  : 02 Oct 2013 

Issue : 1.0 

 

 © My Wave – Public      Page 26/ 45 

Prediction baselines for these tests can be long term model or reference climatology, or a 

dressed deterministic forecast.  For model development the main issue is selecting a suitable 

set of events against which the dichotomous forecast tests can be conducted. 

III.3.1 Testing that probabilities in the reference data are replicated 

Test EM5: Summarize performance of probabilistic forecasts in parameter space 

The Continuous Ranked Probability Score (CRPS, Hersbach, 2000) provides a summary 

measure of probability forecast errors in parameter space that can be viewed as an 

extension to the deterministic Mean Absolute Error.  The CRPS is constructed for an 

individual case using: 

( ) ( ) ( )[ ]∫
∞

∞−

−= dxxPxPxPCRPS rr

2
,  

Where P(x) and Pr(x) are cumulative distributions for the prediction and reference and: 

 ( ) ( )∫
∞−

=
x

dyyxP ρ , for the predicted pdf ρ(x) 

 ( ) ( )rr xxxP −= H  

where H is the Heaviside function, 

 ( )




<

≥
=

0for  0

0for  1

y

y
yH  

The metric will reward an EPS that is accurate and limits its spread as much as possible.  

The data can be presented either as a distribution of CRPS scores or as an overall mean.  

Hersbach (2000) also describes a decomposition of the score into reliability, uncertainty and 

resolution components.  The mean of the reliability estimates the degree to which the 

cumulative distribution function(s) (cdf) from the ensemble forecast reflects the reference cdf.  

The uncertainty score is the CRPS for the reference climatology and resolution quantifies the 

level to which the EPS improves on the reference climatology as a naïve forecast. 

Proposed metrics: 
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• Mean Continuous Ranked Probability Score (CRPS) 

• CRPS reliability, resolution and uncertainty 

• Distribution of CRPS scores 

III.3.2 Testing application of probability data to dichotomous event forecasting 

Test EP2: Compare the number of EPS members predicting event x with rates of 

forecast success 

This test allows the model developer to assess both the rates at which the EPS members will 

identify given conditions, and the associated outcomes regarding occurrence or non-

occurrence of the event in the reference data.  The method proposed is to extend the 

standard deterministic contingency tables such that the table rows correspond to number of 

members predicting the event, i.e.: 

Number of members 
predicting event 

Event 
Observed 

Event Not  
Observed 

N   

N-1   

… … … 

1   

0   

Proposed metric(s): 

• Extended contingency table 

Test EP3: Summarize probability forecast errors for event x 

The Brier Score (BS; Murphy, 1973) is the mean squared error of the probability forecast: 

 ( )[ ]2
E ee rBS −= ρ , 

where ρe is the predicted probability of event e and re is set to either 1 or 0 dependent upon 

whether the event occurred or not.  Murphy (1973) also demonstrates a decomposition into 

reliability, uncertainty and resolution components, where reliability compares forecast 

probabilities to observed relative frequencies, uncertainty describes the variance of reference 
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value frequency in the sample and resolution estimates the ability of the EPS to issue reliable 

forecasts with very high or low probability values. 

Proposed metric: 

• Brier Score 

• Reliability, resolution and uncertainty decomposition 

Test EP4: Describe probability forecast reliability for event x 

Where enough data are available the Reliability diagram (Wilks, 1995) provides a direct 

visual comparison between EPS forecast probabilities and associated rates of occurrence in 

the reference sample. 

Proposed metric: 

• Reliability diagram 
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IV USER FOCUSED METRICS 

User focused metrics should provide an accessible summary of EPS performance 

characteristics and present verification that helps users understand prediction uncertainty in 

terms of its application to decision making.  The baseline prediction for a number of these 

tests is ideally a deterministic forecast (with an appropriate form of dressing applied) since 

this is most likely to be the available alternative forecast system. 

For deterministic elements derived from the EPS (control, mean) any of the user focused 

tests described in MyWave-D4.2a are appropriate.  In particular it is suggested that users 

may want to compare the distributions of control versus ensemble mean errors (Tests M2, 

M3 and R1) and replication of extreme events (Tests X1, X2).  In addition, from the metrics 

described in the Section II for EPS development, the following tests are proposed as suitable 

for user focused verification: 

• EC1: Intercomparison of climate metrics for individual ensemble members plus mean 

• EM1/1a: Intercomparison of RMSE and breakdown for individual members plus mean 

• EM2: Quantify the probability that EPS spread captures variability of the reference 

data 

• EM4: Describe the relationship between EPS spread and deterministic forecast errors 

• EM5: Summarize performance of the probabilistic forecast in parameter space 

• EP1: Quantify deterministic ability to predict event x 

• EP2: Compare the number of EPS members predicting event x with rates of forecast 

success 

• EP3: Summarize probability forecast errors for event x 

• EP4: Describe probability forecast reliability for event x 

 



 Proposal of metrics for developer and user 
focused verification of wave ensemble 

prediction systems 

Ref : MyWave-D4.2b 

Date  : 02 Oct 2013 

Issue : 1.0 

 

 © My Wave – Public      Page 30/ 45 

IV.1 Further metrics for probability forecasts 

Test EM6: Quantify the ability of an EPS probability forecast to identify a reference 

event within given bounds 

Describing the probability with which the EPS predicts reference conditions (within 

predefined bounds) provides a very accessible metric which also has a direct analogue to 

testing that can be carried out on a deterministic model (Test P1 in MyWave-D4.2a).  The 

basis for the metric is the Wilson Score (WS; Wilson et al., 1999) which calculates the 

probability from the EPS forecast for the reference event within predefined bounds, and is 

described for a given forecast as: 

 ( )∫
∆+

∆−

=
rr

rr

xx

xx

dxxWS ρ . 

The metric is influenced by the choice of error bounds applied to the reference, and therefore 

allows the metric to be presented in such a way that the user can compare the range 

expected for reference outcomes against levels of probability regularly predicted by the EPS. 

Proposed metric: 

• Mean Wilson Score 

• Distribution of WS values 

Test EP5: Quantify effect of probability threshold for forecasting event x 

A guide to the effects of varying the probability threshold on decision making can be provided 

visually to the user via Relative Operating Characteristic curves (ROC, e.g. Mason, 1982; 

Buizza and Palmer, 1998) which compare Probability of Detection (chance of correctly 

forecasting an event) against False Alarm Rate (chance of forecasting an event that did not 

occur), or alternatively a Detection Error Trade-off curve (Miss Ratio versus False Alarm Rate; 

Martin et al., 1997) for cases where users are more interested in ensuring that an event is 

not missed. 

Proposed metric: 

• Relative Operating Characteristic plot 
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• Detection Error Trade-off plot 

Test EP6: Test long term value of using probability forecasts in decision making 

Some users may wish to apply their own cost-loss models in order to verify the impact that 

EPS based decision making will have on their operations, for which the extended 

contingency table (Test EP2) will be relevant.  It is also suggested that a generalised 

comparison of cost-loss benefits, using a simple cost-loss assessment in which a predicted 

event is associated with a cost (the same value is taken for a false alarm or a hit) and any 

miss is associated with a loss, will be a useful presentation in MCS verification.  This cost-

loss assumption allows an Economic Value score to be generated against a varying cost-loss 

ratio (C/L in the range 0 to 1) since the cost of the prediction system will be: 

 ( ) MissesLsFalseAlarmHitsCEV .. ++=  

Relative scores can be generated by referencing against a baseline prediction.  Carrasco et 

al. (2013) discuss application of a relative score, following Richardson (2000), that is 

constructed from costs associated with a situation in which no forecasts are available (in the 

case where action is never taken the cost will be ( )MissesHitsLEVc += ) and a perfect 

forecast (cost is ( )MissesHitsCEVperfect += ), so that Relative Economic Value: 

 
perfectc

EPSc

EVEV

EVEV
REV

−

−
= . 

REV values can be plotted in comparison to one another for various forecast strategies, e.g. 

EPS versus deterministic and for various threshold criteria. 

Proposed metric: 

• Relative Economic Value plot 

IV.2 Application to extreme cases 

For extreme cases the main issue for generating the metrics is sample size.  Atger (2004) 

discusses the use of a fitted relationship to the ROC curve in order to then estimate forecast 

reliability.  However, within an operational scheme presented to users adopting more simple 
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metrics that trace recent events is proposed as a more accessible approach.  It is suggested 

that these metrics are applied to events above the 95th percentile of the reference 

distribution. 

Test EX1: Quantify the number of extreme events that were predicted within bounds of 

the EPS forecast 

This test uses the Bounding Box principle to establish how often extreme conditions are 

successfully identified within the scope of the EPS members.  This should provide users with 

a simple first estimate of whether the EPS suffers from any form of low bias. 

Proposed metric: 

• Bounding Box 

Test EX2: Quantify deterministic errors between extreme events and maximum / mean 

/ control ensemble members 

The purpose of this test is to quantify systematic errors between reference and various 

deterministic forecast indicators obtained from the EPS.  In particular these tests should 

highlight variations between forecasts representing the centre of the EPS sample and the 

upper bounding member. 

Proposed metrics: 

• Error distribution 

• Bias 

• MAE 

Test EX3: Quantify the number of EPS members indicating event 

This test reviews the number of EPS members that indicated reference extreme events, 

based on preset criteria.  The criteria can be quantitative in parameter space (e.g. using a 

significant wave height threshold for high wave events) or in terms of a predefined 

climatology (e.g. in the manner used in ECMWF’s Extreme Forecast Index; Lalaurette, 2003; 

Petroliagis and Pinson, 2012).  Presenting several criteria should enable users to make 

sensible judgements on how to employ the EPS to ensure that the risk of missing an extreme 
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event is minimised, but in this case the converse metric that presents the trade off between 

Miss Ratio and False Alarm Rate should be provided. 

Proposed metric: 

• Distribution of member numbers achieving event indication criteria for reference 

events 

• Detection Error Trade-off plot for set criteria 
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V  SUMMARY AND NEXT STEPS 

This document proposes a set of metrics that the MyWave project will test in verification of 

wave-EPS data, both during system development and for the purpose of communicating the 

main aspects of system performance to users under operational conditions.  In order to 

identify the relevance of the metrics to wave-EPS development or user focused task, the 

purpose of each metric presented has been defined.  These definitions are considered 

particularly important to MCS portrayal of the verification since they should enable rapid 

discovery of relevant metrics by different user types.  A summary of the metrics is presented 

in the tables in Annex A. 

A number of technical considerations for EPS verification have been discussed at a high 

level, and will require consideration and a more detailed approach to be adopted within 

MyWave-WP3.  In particular a limited approach to dressing the EPS members has been 

suggested in order to ensure that the raw ensemble is verified rather than a post-processed 

version of the data.  The approach follows Saetra et al. (2004) and concentrates on applying 

effects of observation errors to the discretised sample of conditions forecast by ensemble 

members.  This will be discussed in more detail in later reports from WP3 and WP4.   

A major constraint on the metrics and sample period they represent is the availability of 

observed reference data.  In order to calculate statistics with a reasonable level of accuracy it 

is expected that at least 3 month samples of the most common observed parameters will be 

required for regional sea areas, and that this will need to be increased to 6 month or 12 

month periods where multi-variate, reliability or extreme data are tested. 

Assumptions about both the user requirements for certain metrics and technical feasibility of 

implementation and portrayal will require testing.  This will be carried out through the process 

of user consultation and evaluation of proposed metrics as discussed in Annex B of this 

document. 
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VII  ANNEX A: TABLES OF PROPOSED METRICS 

Tables in this section summarise metrics that are proposed to be tested within development of new wave-EPS in MyWave WP3 and in the 

MyWave user consultation on verification as part of WP4.  Deterministic products from the EPS may also be tested using the metrics described 

in MyWave-D4.2a. 

Table EC: Climatological Tests 

Purpose Proposed Metric(s) Feature of EPS verified Target Audience 

EC1: Test that general features of the 
reference climate are reproduced 

Combined comparison of parameter: Mean; 
RMS; Standard Deviation; Skewness; Kurtosis 
Exceedence 

EPS members 

Ensemble mean 

Developer + User 

EC2: Test that details of the reference 
climate are reproduced 

Q-Q plot Control member 

Ensemble mean 

Developer 

EC3: Quantify forecast to forecast 
variability in EPS spread 

(Spread) Mean; Standard Deviation; Histogram EPS spread Developer 
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Table EM: Measures of prediction uncertainty in parameter space 

Purpose Proposed Metric(s) Feature of EPS verified Target Audience 

EM1: Quantify the scale of errors MAE 

RMSE 

SNRMSE 

Bias 

EPS members 

Ensemble mean 

Developer + User 

EM1a: Assess effects of prediction ‘sharpness and 
reliability’ on RMSE 

Combined: Normalised MSE; Normalised Bias; 
(Squared) SI; Pearson Correlation; Normalised 
Standard Deviation 

EPS members 

Ensemble mean 

Developer + User 

EM2: Quantify probability that ensemble spread 
captures variability of the reference 

Bounding Box EPS spread Developer + User 

EM3: Describe characteristics of overspread or 
underspread in the EPS 

Rank Histogram (univariate and multivariate) 

Minimum Spanning Tree 

EPS spread Developer 

EM4: Describe the relationship between EPS spread 
and deterministic forecast errors 

Spread-skill scatterplot 

Fitted relationship 

EPS spread Developer + User 

EM5: Summarize performance of the probability 
forecast in parameter space 

Continuous Ranked Probability Score; mean 
and distribution 

Probabilistic forecast Developer + User 

EM6: Quantify EPS forecast probabilities for 
parameter within given bounds 

Wilson Score; mean and distribution Probabilistic forecast User 
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Table EP: Measures of (dichotomous) prediction uncertainty in probability space 

Purpose Proposed Metric(s) Feature of EPS verified Target Audience 

EP1: Quantify deterministic ability to predict event x Contingency Table 

Combined % scores: Fraction Correct; Success 
Ratio; False Alarm Ratio; Miss Ratio 

Control 

Ensemble mean 

Developer + User 

EP2: Compare the number of EPS members 
predicting event x with rates of success 

Extended Contingency Table Distribution of EPS 
members 

Developer + User 

EP3: Summarize probability forecast errors for event 
x 

Brier Score; decomposition into reliability, 
resolution and uncertainty 

Probabilistic forecast Developer + User 

EP4: Describe probability forecast reliability for event 
x 

Reliability diagram Probabilistic forecast Developer + User 

EP5: Quantify effect of probability threshold for 
forecasting event x 

Relative Operating Characteristic plot 

Detection Error Trade-off plot 

Probabilistic forecast 

Threshold criteria 

User 

EP6: Test long term value of using probability 
forecasts in decision making 

Relative Economic Value score Probabilistic forecast User 
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Table EX: Assessment of performance in extreme conditions* 

Purpose Proposed Metric(s) Feature of EPS verified Target Audience 

EX1: Quantify the number of extreme events that 
were predicted within bounds of the EPS forecast 

Bounding Box EPS spread User 

EX2: Quantify deterministic errors between extreme 
events and maximum/mean/control ensemble 
members 

Error distribution 

Bias 

Mean Absolute Error 

Ensemble maximum 

Ensemble mean 

Control member 

User 

EX3: Quantify the number of EPS members 
indicating event 

Mean and distribution of member numbers 

Detection Error Trade-off plot 

Distribution of members 

Threshold criteria 

User 

* here proposed as reference events exceeding above 95
th
 %

ile
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VIII ANNEX B - USER CONSULTATION 

VIII.1 Overview of the consultation process 

The MyWave project aims to incorporate user feedback into its final definition of operational 

metrics and proposal for an MCS verification system (project deliverable D4.4).  The 

approach adopted for obtaining this feedback comprises 3 stages: 

Stage 1: Preliminary survey of potential users in order to establish user types and interest 

in verification information. 

Stage2: Detailed survey of verification requirements for users identified as having an 

interest in verification. 

Stage 3: Review of specific metrics and forms for presentation with users identified as 

having an interest in specific applications of verification data. 

The final outcome from this process is expected to be a set of metrics and associated 

metadata that can be linked to particular user types and have undergone a period of trial and 

review. 

VIII.2 Initial findings 

VIII.2.1 Stage 1 

At writing the preliminary MyWave survey1 has been provided to 68 potential service users to 

assess their initial reaction to the project and the concept of a wave component of a Marine 

Core Service.  Responses have been received from 35 users.  Questions were included that 

aimed to identify users based on a hypothetical user categorisation presented in MyWave-

WP4(UC).  From the responses to these questions an ‘in practise’ breakdown of users 

comprises: 

                                                      

1
 http://www.surveygizmo.com/s3/1299480/MyWave-Preliminary-Survey 
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• All Scales Developer-Forecasters: 7 respondents said they worked with wave 

information from data generation at both global/large regional scales and coastal 

scales through to provision of forecasts, and that their data and products were used 

both for planning and operational purposes.  These users were split 70%-30% 

between commercial and government institutions. 

• Coastal Developer-Forecasters: 9 respondents said they worked with wave 

information from data generation at coastal scales through to provision of forecasts, 

and that their data and products were used both for planning and operational 

purposes.  These users were split approximately 60%-40% between commercial and 

government institutions. 

• Forecasters: 11 respondents said they worked specifically on providing forecasts and 

decision aids and, across the group, undertook an even split of tasks focused on 

marine operations, hazard forecasting and long term planning (using past 

climatology). These users were split approximately 50%-50% between commercial 

and government institutions, with one member of the general public also falling into 

this category. 

• Decision Makers: 4 respondents said they generally acted as decision makers and, 

across the group, undertook an even split of tasks focused on marine operations, 

hazard forecasting and long term planning (using past climatology).  These users 

were split approximately 50%-50% between commercial and government institutions. 

• Developer-Planners: 4 respondents were involved in niche model development 

activities at various scales for planning purposes.  These users were split 75%-25% 

between academic and government institutions. 

Of these users 25 expressed an interest in further contact on the subject of MCS verification 

and were split as 6 All Scales Developer-Forecasters, 7 Coastal Developer-Forecasters, 7 

Forecasters, 2 Decision Makers and 3 Developer-Planners. 
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VIII.2.2 Stage 2 

A survey containing more detailed questions regarding user requirements for wave 

verification2 was issued on 9th September 2013.  Key findings from initial responses (14 

users, split as 6 All Scales Developer-Forecasters, 3 Coastal Developer-Forecasters, 3 

Forecasters, 1 Decision Maker and 1 Developer-Planner) are that: 

• The main requirements for verification data relate to review and intercomparison 

tasks rather than use in downstream intervention strategies. 

• A majority of users would be interested in near-real time monitoring data and 

downloadable match-up information in addition to review statistics. 

• Interactive webpages were considered the best method to deliver verification data. 

• Overall wave height, period and direction were considered the most important 

parameters to verify by all users.  A 50-50 split in user requirement was found for 

verification of more detailed parameters. 

• Users considered verification of accompanying wind data as a high priority.  

Verification for high energy events and a separation of the verification according to 

wind-sea and swell dominated conditions were identified as important specific 

aspects of model performance to be tested. 

• Quantitative measures of parameter errors were considered to be generally more 

important than measures of performance for predicting given events, with the 

exception of high energy storms. 

• Where ensemble prediction system verification is conducted, users were keen to see 

performance cross-referenced against a deterministic forecast. 

• Users expressed a preference to see verification statistics referenced against raw 

observations (i.e. without accounting for observation errors), a distinction made 

between in-situ and satellite data verification and an effort made to account for 

sampling and temporal variations within the verification’s presentation. 

                                                      

2
 http://www.surveygizmo.com/s3/1306387/MyWave-Verification-Survey  
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• Metadata describing metrics, observed data used as a reference and quality control 

procedures should accompany the verification. 

 

 


