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I INTRODUCTION 

MyWave WP4 seeks to define operational verification methods that can be robustly applied 

within a wave element of a Marine Core Service (MCS).  In particular, project tasks have 

been concerned with methods associated with the provision of consistent information 

regarding wave forecast model uncertainty based on verification that uses a mix of both 

satellite remote sensed and in-situ observations of the true sea-state as a reference.  The 

aim is to describe sampling properties, representation scales and observation errors 

associated with the two types of observing system, and to assess and quantify variability in 

metrics derived when wave model outputs are verified using these baselines.  The outcome 

from WP4 is to propose a set of measures that will ensure a MCS for waves can provide a 

set of self-consistent performance metrics across European waters for primary marine 

forecast parameters such as significant wave height and mean wind speed using either, or 

both, in-situ and satellite observations as a reference. 

In this report a regional assessment of measurement errors associated with in-situ platforms 

and satellite altimetry has been made (Subtask 4.1.1), and a method to apply the resulting 

data within verification metrics is demonstrated and discussed (Subtask 4.2.1).  The focus is 

on establishing a generic and user relevant approach to verification which can be reviewed 

through generation of example metrics and ongoing consultation with end users (Subtask 

4.2.1) in order to produce a final proposal for essential components of a MCS wave 

verification system (MyWave D4.4).  Section 2 presents the results of the regional triple 

collocation study.  Section 3 discusses the verification methodology and Section 4 provides a 

summary and notes follow-up activities for WP4 during the remainder of the MyWave project. 
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II ESTIMATION OF REGIONAL OBSERVATION ERRORS USING A TRIPLE 
COLLOCATION METHOD 

In order to account for observation errors within verification, those errors must first be 

quantified.  Whilst observation error statistics have been derived for global applications using 

triple collocation methods (e.g. Janssen et al., 2007), a sufficient body of evidence exists to 

suggest that regional variations in these statistics are likely to occur, particularly in respect to 

the errors attributed to in-situ networks (e.g. Durrant et al., 2009).  In this study the feasibility 

of quantifying observation errors specific to regional sea areas has been explored. 

II.1  Study regions and source data 

Regional triple collocation assessments of observation errors in measurement of significant 

wave height were carried out for two European sea areas where high densities of in-situ data 

are available: 

• North Sea (3°W - 10°E , 51°N - 63°N) 

• North European Atlantic Margin (NEAM, 20°W- 0°W, 30°N- 65°N) 

These regions represent somewhat different environments in terms of the wave climate, with 

the North Sea area being a semi-enclosed shelf sea generally dominated by short to 

moderate fetch wind-seas, whilst waves in the NEAM have often developed over longer 

fetches and the wave climate comprises a mix of developing and mature wind-seas plus 

swell. 

In order to use contemporary data from three independent sources, model, buoy and satellite 

the period from 2010 to 2012 inclusive were selected for this study.  The wave model data 

used came from a hindcast run using the WAVEWATCH III model (Tolman, 2009) configured 

for an 8km resolution European domain. In-situ data were sourced from an hourly 

observation dataset made available to ECMWF as part of the WMO/IOC Joint Commission 

On Marine Meteorology (JCOMM) international wave forecast intercomparison project (Bidlot 

et al., 2007).  Fast delivery satellite altimeter data from Envisat, Jason-1 and Jason-2 

missions were downloaded for this period via the GlobWave project (Globwave, 2012).  
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II.2  Study Method 

II.2.1  Error estimation method 

A number of examples of global triple collocation studies are available from the literature and 

have been described in report MyWave-D4.1 (section 3.1.1). The error assessment method 

used in this study follows that of Janssen et al. (2007; hereon denoted as JEA07, see also 

MyWave-D4.1 Section 3.3.2), although details of the spatial and temporal windows used for 

collocation have been changed in order to reflect regional correlation lengthscales and the 

higher resolution of the regional wave model used (see next subsection).  The method 

assumes that observations of true sea-state comprise a systematic error and an 

(independent) random error.  Outputs from the analysis estimate these error components 

using (respectively) a linear calibration constant (slope) and relative error (Scatter Index, SI) 

value.  The slope is calculated relative to one data source as an unbiased estimator of the 

truth and in this study, consistent with JEA07, the in-situ data were used as that reference 

observation. 

II.2.2  Collocation criteria 

Choosing suitable spatial and temporal scales for collocation of the model and 

measurements is a crucial part of any triple collocation study. The scales chosen will depend 

on the spatial resolution of the model, the spatial distribution of the in-situ data and the 

numbers of collocations available. While it is desirable to collocate the measurements as 

closely as possible in space and time, it is also essential for the error estimates to be derived 

from a statistically robust dataset.  Therefore a balance needs to be struck between using the 

largest possible sample and ensuring that the collocations are valid.   

In order to investigate the spatial scale at which observations made at different locations will 

measure conditions that are sufficiently similar to allow an assumption that the observing 

errors are directly comparable, a study using the background error covariance matrix was 

carried out in the two study areas.  The details of this study are given in Palmer and Saulter 

(2013).  The results of this investigation were used to establish spatial distances at which 

high levels of correlation in background error (greater than 0.8) occurred relative to different 

in-situ platform locations.  The lengthscales varied with location, but were generally longer in 

the NEAM and shorter in the North Sea.  The averaged results are shown in Tables 2.1-2.2 

and generally support using a collocation distance of 50km.  It should also be noted that this 

study related to the correlation of background errors and, with further investigation, actual  
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Table 2.1.  NEAM 0.8 correlation distance (km) by season and directional sector. 

 

Table 2.2.  North Sea 0.8 correlation distance (km) by season and directional sector. 

  

Table 2.3.  NEAM 0.5 correlation distance (km) by season and directional sector. 

 Spring Summer  Autumn  Winter 

North 230.7 160.2 234.1 208.9 

South 281.6 180.0 286.3 244.8 

East  336.7 274.5 356.4 327.6 

West 380.5 256.0 408.7 353.7 

 

Table 2.4.  North Sea 0.5 correlation distance (km) by season and directional sector. 

 Spring Summer Autumn Winter 

North 145 107.1 116.4 180.0 

South 120.7 85.7 250.7 177.1 

East  194.3 117.5 221.4 222.0 

West 181.4 172.9 211.4 279.2 

 

 Spring Summer Autumn Winter 

North 104.8 70.2 100.9 88.3 

South 112.7 71.6 115.2 84.8 

East 152.3 106 149.5 116.7 

West 156.4 108.3 159.8 115.0 

 Spring Summer Autumn Winter 

North 49.2 36.4 45.0 60.7 

South 44.3 35.0 43.7 52.8 

East 85.0 75.0 91.4 94.0 

West 81.4 72.9 92.8 115.0 
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measurements were often found to be highly correlated over much greater distances.  Some 

notable exceptions were found in the North Sea, but this was largely due to the proximity of 

in-situ platforms to the coast, where gradients in the spatial structure of the wave field are 

high and satellite measurements can be unreliable.  These locations were removed from the 

triple collocation study. 

A 0.5 correlation distance was also assessed in order to provide an indication of the 

distances at which individual measurements might be considered to be independent.  

Establishing an independence lengthscale was considered an important test for the study 

since, if the same conditions are sampled disproportionally, then these data may skew the 

results of the triple collocation error estimate.  Averaged distances for the 0.5 correlation of 

background errors are shown in Tables 2.3 and 2.4.  These results show that in some areas 

the proximity of individual wave buoys may result in a number of duplicate measurements 

existing within the triple collocation sample, particularly in the northern North Sea.  In order to 

test the sensitivity of the results to the location of these wave buoys some subsampling of the 

data was carried out. 

II.2.3  Sensitivity tests 

Due to the constrained areas and time periods necessitated by undertaking regional error 

assessment of contemporary observations, a key difference between this study and JEA07 is 

the number of data available in the triple collocation sample.  In order to make some 

evaluation of the robustness of the resulting error assessments a number of sensitivity tests 

were made. 

One test was to establish the effect on the results of the number of satellite soundings 

averaged in order to provide the matchup satellite value (or so-called ‘super-observation’).  

Error assessments were carried out using super-observed data comprising 3 and 5 altimeter 

soundings within a given super-observation and contrasted with a control dataset that used a 

single sounding. 

The stability of the errors calculated using the triple collocation method was assessed using 

a rolling analysis of 12 month data samples over the available satellite data within 2010-

2012.  The start time of the data sample was moved forward by one month at a time. A 

sampling window of one year was used to ensure that a sufficiently large number of 

matchups occurred in each sample.  In the NEAM typical sample sizes obtained were of the 

order of 550-750 data values for the Jason-2 satellite and 1000-2000 values for all satellite 
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data combined during the period 2010-2012.  In the North Sea Jason-2 sample sizes were in 

the region 750-1200 and 1200-1600 data values were captured when all satellite 

observations were combined.  These samples sizes enabled convergence of the error 

estimation algorithm, consistent with findings of other researchers (Peter Janssen, pers. 

comm.). 

The requirement for the matchup data to be independent was tested using data subsamples 

based on the independence correlation lengthscale established in Palmer and Saulter 

(2013).  The distance allowed between each matchup (based on the in-situ platform location) 

was expanded from 50km to 100kmand 150km and in the NEAM also to 200km, 250km, 

300km and 350km.  A time window of 3 hours was used so that if the samples occurred 

during a very different time period (e.g. on a different day) they would not be excluded from 

the data set.  It was found that in the NEAM this had little impact on the results because 

matchups did not occur within 300km and 3 hours of each other.  This is not unexpected due 

to the size of the domain and the distance between the individual in-situ locations. In the 

North Sea however there are a number of in-situ platforms located in relatively close 

proximity and the subsampling resulted in a modest reduction of the number of matchups 

used in the analysis.  Results from analyses carried out on the subsampled dataset were 

compared with results generated when the full sample of matchups was used. 

II.3  Study Results 

II.3.1  Sensitivities to inhomogeneity in the matchup sample 

In the assessment of 12 month rolling data samples the Jason-2 satellite data were treated 

as a special case since this mission provided a robust sample of data throughout the study 

period and thus provided a consistent dataset against which to examine the temporal stability 

of the error estimates.  Figure 2.1 shows an example time-series of error estimation results 

(SI and slope) for this satellite in the NEAM.  In this analysis the satellite data were super-

observed such that three altimeter soundings were averaged in order to generate the satellite 

data value, and each month given on the x-axis in the figure is the first month of a 12 month 

sample (i.e. January 2010 corresponds to a sample taken over the period January-December 

2010).  In Figure 2.1 it is immediately evident that there is a significant change with time for 

the in-situ and model errors and some more limited instability in the Jason-2 data also.  The 

results are more stable in the latter part of the series (post January 2011) however.  This 
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raised the question as to whether these changes were brought about by in-homogeneities in 

the data sample, or as an effect of sample size itself.  In reviewing the model data it was 

noted that, for the hindcast used, a change in the wind data source was made in January 

2011 (from a downscaling atmospheric model run using ERA-Interim boundary conditions, to 

operational Met Office global atmospheric model analysis winds) which was likely to have 

improved the correlation of the wave model with observations.  This is consistent with the 

steady fall in the model error during 2010, since with each successive 12 month window 

more post-January 2011 data will be incorporated in the sample, and subsequent levelling 

out of the model SI and slope values. 

The sharp change in SI for the in-situ data was also linked to an anomaly in the data sample.  

Figure 2.2 shows Hs scatter plots for in-situ versus Jason-2 data and the locations of in-situ 

sites within the sample for each of the 12 month windows used in the analysis.  Common to 

these plots, prior to the December 2010 sample, are the existence of some outlying high in-

situ Hs readings matched with significantly lower satellite (and model) values and the 

presence of the Brittany wave buoy.  When this location is no longer present in the data 

record (post December 2010) the in-situ errors reduce and stabilise.  To test that these few 

outliers were responsible for the changes in the in-situ error estimates, the data were 

removed (4 data values were identified at Brittany) and the analysis re-run.  Figure 2.3 shows 

the revised results.  In-situ errors were stabilised for the whole period and reduced in 2010-

2011 data by approximately 4%.  Jason-2 slope and SI were also stabilised (variability of 

order 1%), whilst the model errors retained their steady improvement to a stable state during 

the analysis period.   A similar effect was noted when enlarging the dataset by including all 

available satellite data (sample size increased by a factor of 2-3) and suggests that although 

convergent error estimates were achieved, the triple collocation method can be particularly 

sensitive to a few outliers in the sample and that quality control procedures in the 

assessment need careful attention.  On a more positive note, this example has also shown 

that the technique is extremely adept at identifying issues in a small part of the observing 

network and that with proper quality control the change in model skill could be tracked. 

A similar analysis was conducted for the North Sea data and the results are shown in Figure 

2.4.  In this instance the satellite error estimates are relatively stable, whilst a steady drift 

(toward lower errors) are seen in the rolling 12 month samples of both model and in-situ 

data.  For the model the drift is consistent with the result found the NEAM and the change in 

hindcast wind forcing.  The drift in the in-situ errors appears consistent with changes in the 

in-situ network, but may also be influenced by the presence of a few particularly large storm 
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events within the match-up sample as of January 2011 (Figure 2.5).  These effects can be 

seen as a particularly marked change in the slope value for the Jason-2 data, which can be 

attributed purely to in-situ data changes as it is not believed that the altimeter observation 

processing algorithm for the satellite was altered dramatically during this period. 

 

 

Figure 2.1.  Time-series of rolling 12 month sample error estimates for model, in-situ platform (labelled 

buoy) and satellite SI (upper panel) and slope (lower panel) for the NEAM.  Samples were determined 

based on Jason-2 altimeter data with 3 soundings in each super-observation; the in-situ data provided 

the reference ‘truth’ for the slope estimate. 
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Figure 2.2.  Hs scatter data (Jason-2 vs in-situ, top panel) and unique in-situ locations used in rolling 

12 month triple collocation samples for NEAM analyses. 
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Figure 2.3.  Time-series of rolling 12 month sample error estimates for model, in-situ platform (labelled 

buoy) and satellite SI (upper panel) and slope (lower panel) for the NEAM after removal of Brittany 

outlier data.  Samples were determined based on Jason-2 altimeter data with 3 soundings in each 

super-observation; the in-situ data provided the reference ‘truth’ for the slope estimate. 

 

Figures 2.6 and 2.7 illustrate the sensitivity of the error estimates to varying the satellite data 

contributing to the matchup sample by presenting time-series of SI and slope for an analysis 

in which all available satellite observations were used.  Figure 2.6 shows the NEAM analysis 

and can be compared directly with Figure 2.3.  The effect of including the extra match-ups is 

to increase SI estimates for all three data sources by approximately 1%, whilst the slope 

values for both model and satellite are increased by approximately 2%.  For the North Sea 

data in Figure 2.7, the change from the Jason-2 only results in Figure 2.5 are less marked.  

Variation for all data sources is of the order of 1%.   
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Figure 2.4.  Time-series of rolling 12 month sample error estimates for model, in-situ platform (labelled 

buoy) and satellite SI (upper panel) and slope (lower panel) for the North Sea.  Samples were 

determined based on Jason-2 altimeter data with 3 soundings in each super-observation; the in-situ 

data provided the reference ‘truth’ for the slope estimate. 

 

II.3.2  Sensitivity to use of independent matchup data 

A further alteration to the matchup sample can be made by choosing to strictly enforce 

independence criteria in the data.  These tests were applied for the North Sea matchups, 

which (as illustrated in Figure 2.5) include several clusters of closely located in-situ platforms.  

Since the use of subsampling reduces the sample size available, the independence  
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Figure 2.5.  Hs scatter data (Jason-2 vs in-situ, top panel) and unique in-situ locations used in rolling 

12 month triple collocation samples for North Sea analyses. 
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Figure 2.6.  Time-series of rolling 12 month sample error estimates for model, in-situ platform (labelled 

buoy) and satellite SI (upper panel) and slope (lower panel) for NEAM after removal of Brittany outlier 

data.  Samples were determined based on all available Envisat, Jason-1 and Jason-2 altimeter data 

with 3 soundings in each super-observation; the in-situ data provided the reference ‘truth’ for the slope 

estimate. 

 

sensitivity tests were carried out on the full period available for analysis.  Table 2.5 shows the 

standard deviation of SI and slope estimates taken from analyses of an ensemble of 1000 

matchup subsamples Each subsample was derived by randomly drawing unique 

independent data based on the time and distance criteria given in subsection II.2.3.  The  



 Estimation of regional observation errors and 
application to MyWave metrics 

Ref : MyWave-D4.3 

Date  : 23 Dec 2013 

Issue : 1.0 

 

 © My Wave – Public      Page 24/ 52 

 

 

Figure 2.7.  Time-series of rolling 12 month sample error estimates for model, in-situ platform (labelled 

buoy) and satellite SI (upper panel) and slope (lower panel) for the North Sea.  Samples were 

determined based on all available Envisat, Jason-1 and Jason-2 altimeter data with 3 soundings in 

each super-observation; the in-situ data provided the reference ‘truth’ for the slope estimate. 

 

impact of this subsampling was virtually negligible; the mean SI and slope values did not 

change from an analysis of the full dataset by more than 0.1% and the standard deviation 

from the mean was also less than 0.05%.  
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Table 2.5.  Distance between observation independence criteria subsampling results for North Sea 

error estimates; standard deviation of estimates from 1000 member ensemble of random draws from a 

match-up sample determined based on Jason-2 altimeter data with 3 soundings in each super-

observation; the in-situ data provided the reference ‘truth’ for the slope estimate.  

Distance Model SI Buoy SI  Satellite SI Model Slope Satellite Slope 

100 0.00037 0.000036 0.00037 0.00042 0.00040 

150 0.00018 0.00014 0.00018 0.00020 0.00019 

 

II.3.3  Effects of satellite super-observation 

The dependence of the error estimates on satellite super-observation were tested by 

comparing results derived when 1, 3, and 5 averaged altimeter soundings were used in 

generating the satellite data used in the matchup samples.  Results of these tests showed 

that variability in the error estimates were isolated purely to the satellite and its SI.  Here the 

effect of super-observation was to reduce SI values by approximately 1-2% with each 

successive super-observation step, as is illustrated for the Jason-2 case in the North Sea in 

Figure 2.8.  The results for 1 sounding and 5 sounding super-observation can be compared 

directly with the 3 sounding super-observation data in the upper panel in Figure 2.4.  Whilst it 

might be expected that there will be an asymptotic limit to how low the error can become with 

further super-observation this was not tested and so, for the scales one might wish the 

observations to represent for the purpose of regional verification (equivalent to approximately 

20km, see MyWave-WP4.2a), the choice of satellite super-observation methodology is 

expected to be somewhat subjective. 

II.3.4  Summary of overall results 

Based on the sensitivities noted in the previous subsections an overall analysis of the data 

from period 2010-2012 was made based on matchup samples using 3 sounding altimeter 

super-observation and no subsampling criteria.  In view of sample limitations and changes 

with time however, bootstrap resampling (Efron and Gong, 1983) was applied to the data to 

create a 1000 member ensemble of matchup data from which the effects of sample variability 

could be judged. 
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Single altimeter sounding 

 

5 sounding super-observation 

 

Figure 2.8.  Time-series of rolling 12 month sample error estimates for model, in-situ platform (labelled 

buoy) and satellite SI for the North Sea.  Samples were determined based on Jason-2 altimeter data 

with (upper panel) 1 sounding and (lower panel) 5 soundings in each super-observation. 
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Table 2.6.  Bootstrap ensemble mean SI and slope values for 2010-2012 period in the NEAM; for 

matchup samples determined using Jason-2 data only and all satellites. 

Satellite Model SI Buoy SI  Satellite SI Model Slope Satellite Slope 

Jason-2 0.125 0.106 0.055 0.969 1.024 

All 0.126 0.114 0.063 0.996 1.046 

 

Table 2.7.  Bootstrap ensemble standard deviation of SI and slope values for 2010-2012 period in the 

NEAM; for matchup samples determined using Jason-2 data only and all satellites. 

Satellite Model SI Buoy SI Satellite SI Model Slope Satellite Slope 

Jason-2 0.0036 0.0078 0.0048 0.0043 0.0033 

All 0.0025 0.0085 0.0031 0.003 0.0026 

 

Table 2.8.  Bootstrap ensemble mean SI and slope values for 2010-2012 period in the North Sea; for 

matchup samples determined using Jason-2 data only and all satellites. 

Satellite Model SI Buoy SI  Satellite SI Model Slope Satellite Slope 

Jason-2 0.133 0.105 0.072 1.019 1.058 

All 0.130 0.110 0.065 1.020 1.066 

 

Table 2.9.  Bootstrap ensemble standard deviation of SI and slope values for 2010-2012 period in the 

North Sea; for matchup samples determined using Jason-2 data only and all satellites. 

Satellite Model SI Buoy SI Satellite SI Model Slope Satellite Slope 

Jason-2 0.0035 0.0041 0.0038 0.0042 0.0034 

All data 0.0025 0.0054 0.0031 0.0032 0.0028 
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Results are given in Tables 2.6 and 2.7 for the NEAM and Tables 2.8 and 2.9 for the North 

Sea, and are based on overall matchup samples and those using only the Jason-2 data.  

Over the two regions model relative errors (SI) were reasonably consistent (within 1-2%) and 

an overall estimate from the test period is approximately 12–13%, in-situ SI is 10–11% and 

the satellite SI was lowest of all at approximately 5–7%.  Systematic errors (slope) were 

more strongly differentiated between the two regions (by approximately 3-4%), with the in-

situ data seen to be lower relative to the other data sources in the NEAM.  The comparison 

between Jason-2 only data and the ‘all satellite’ sample was differentiated by less than 1%.  

Calculated standard deviations from the bootstrap ensemble fell between 0.2-0.5% for all 

error estimates, suggesting that a good confidence can be placed on the values provided in 

this analysis within +/-1% of the those estimated by the bootstrap mean. 

II.4  Discussion 

This study has demonstrated that it is feasible to generate sensible triple collocation 

estimates of observation errors on a regional basis following the JEA07 method.  In general, 

results for relative error (SI) and linear calibration coefficient (slope) were found to be 

accurate within +/-1%.  Key sensitivities in the results were to changes in the in-situ data 

used and, for satellite SI only, changes in super-observation.  Within the regions analysed 

differentials in relative error shown by in-situ and satellite based observing systems were 

generally limited, however the differentials in linear calibration constant appear sufficiently 

different to justify a regional approach.   

No major requirement to ensure location-time independence in the underlying matchup data 

was found in the samples analysed, which is useful since this allows the number of data 

used in the matchup sample to be maximised and this in turn improves the likelihood that the 

error estimates will be convergent and robust.  However, the results can be particularly 

sensitive to outliers and, with only a small number of in-situ data available in most regional 

sea areas, any changes in the in-situ network.  Therefore significant effort may need to be 

spent in quality controlling data in an operational triple collocation assessment that is sample 

constrained in space and time.  On the other hand, the technique was proven very adept in 

tracking background changes in the data sources assessed and provided a stable estimate 

of observation errors even when the model data used was a ‘moving target’. 
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III  APPLICATION OF OBSERVATION ERRORS TO VERIFICATION METRICS 

III.1  User requirement 

This section describes a method by which observation error data, for example as calculated 

using the triple colocation technique described in the previous section, can be used to assist 

users understand and contextualise the verification data.   

MyWave report D4.1 noted various analytical and simulation methods with which metric data 

might be corrected to include the effects of observation errors (e.g. following Tolman, 1998; 

Saetra and Bidlot, 2004; Saetra et al., 2004; Bowler et al., 2006).  However, through 

consultation with users WP4 has identified a preference for users to be presented with 

verification data that focuses on a direct comparison between prediction and reference 

observation (rather than a corrected result); which retains a separation of metrics measured 

against different observed references (e.g. in-situ and satellite data); which quantifies the 

verification in real terms rather than as a skill score; and which aims to contextualise the 

results of the metrics where possible (see MyWave-D4.2a).   

This feedback has focused the project toward methods that contrast direct comparisons 

between prediction and reference with an ‘idealised’ verification that quantifies the effect of 

observation errors. 

III.2  Method to contextualise verification metric data 

In the proposed method three steps are taken to contextualise the direct comparison 

verification results: 

1. Re-sampling to help understand the effects of the sample used. 

2. Generation of idealised verification data to estimate target performance levels. 

3. Generation of naïve prediction verification data to define a low performance 

boundary. 



 Estimation of regional observation errors and 
application to MyWave metrics 

Ref : MyWave-D4.3 

Date  : 23 Dec 2013 

Issue : 1.0 

 

 © My Wave – Public      Page 30/ 52 

The effect of the sample used in verification is tested through re-sampling the prediction-

reference matchup data, calculating an individual metric many times and showing the range 

of results this produces.  The use of re-sampling is particularly beneficial when dealing with 

small sample sizes that may be aliased by outlying data.  Making the calculations many 

times also enables a robust assessment of the effect of observation errors when estimating 

the idealised verification. 

The underlying assumption for the idealised verification is that the original prediction data 

makes a reasonable estimate of the observed climate.  If this holds a metric can then be 

calculated using the scenario where the prediction correctly represents the truth and the 

observation is represented by prediction plus a draw from an observation error probability 

distribution function (pdf).  In this case errors are attributed to the observation and the 

resulting scores estimate how well the truth might expect to perform against the observation 

as a reference.  Since the observations are simulated the effect of the observation errors can 

be tested for a large variety of metrics.  The simulations are highly unlikely to replicate the 

exact observation errors incorporated into the direct prediction-reference comparison, but 

applying the error simulation multiple times within a re-sampled ensemble should generate a 

robust dataset and enable easy comparison with direct prediction-observation based metrics. 

In consultation users were opposed to working with a skill score that combined direct 

comparison data with a naïve prediction.  However, when treated separately in order to 

define a low performance boundary, it is believed that the evaluation of the performance of 

an unskilled naive prediction lends further context (this position will be made subject to 

further testing with users as the project progresses).  Numerous options are available for the 

naive prediction, but in this document we propose the use of a random draw from the original 

sample of prediction data.  This is suggested in preference to observation derived baselines 

since the naïve prediction retains systematic bias features of the originating prediction 

system.  Besides, the prediction system is logically the only source from which forecast data 

can be provided apriori to the observed events. 

The use of idealised and naïve prediction metric data allows the direct prediction-observation 

metric to be placed within a continuum as indicated in Figure 3.1.  The optimum score for the 

metric is achieved when the prediction agrees perfectly with the reference data.  However, 

the idealised scenario verification will fall some distance away from the optimal score as a 

result of the observation errors and the aim of the direct comparison should be to fall close to  
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Figure 3.1.  Schematic of a continuum for metric values. 

 

this value.  The naïve prediction metric provides a baseline for low levels of performance and 

the value of the prediction system being verified is questionable when close to this score. 

III.3  Example application 

This section describes an example application of the principles described in subsection 3.2 to 

verification data.  The verification sample used compares predictions from the Met Office 

global (35km) wave model against in-situ data taken from the JCOMM international 

intercomparison of operational ocean wave forecasting systems maintained by ECMWF 

(Bidlot et al., 2007) and satellite observations derived from Jason-2 near real-time altimeter 

data.  In the following examples the performance of the model is assessed for a region of the 

North Sea (Figure 3.2) during the months from January-March 2012. 

III.3.1Block bootstrap data sampling 

The block bootstrap (Carlstein, 1986; Kunsch, 1989) approach in this application uses data 

acquired from the spatial blocks indicated in Figure 3.2 and with the temporal block time set 

at 24 hours.  In order for the blocks to carry equal weight in the verification, a standard 

sample size is set and data up to this size are drawn randomly (without replacement) from 

the block sample each time the block is accessed.  For the in-situ data this led to a sample 

size of approximately 2200 data points distributed over 270 blocks and for the Jason-2 data 

approximately 300 data points distributed over 60 blocks.  The blocks are accessed and 

assigned to the verification sample using a standard bootstrap draw with replacement.  In 

this case an ensemble comprising 1000 bootstrap members was generated. 
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Figure 3.2.  Positions of in-situ observation platforms and area blocks (white squares) for the block 

bootstrap applied to Central-Northern North Sea area verification. 

 

III.3.2  Generation of idealised observation data 

For each bootstrap member a pseudo-observation was generated by applying a simulation of 

the observation errors to the original prediction member.  The form of the errors affect certain 

metrics differently, for example an idealised (unbiased) RMSE estimate will depend primarily 

on the scale value for the assumed observation error pdf, whilst a stratification by predicted 

quantity will yield results that have a dependency on whether the errors are assumed to be 

homo- or heteroscedastic (e.g. Figures 3.8-3.9).  In the examples provided the assumed 

error distribution is a standard normal and heteroscedasticity is expected following the logic 

that the largest observation errors are more likely to occur when measuring the highest 

energy conditions.  The model used then takes the form: 

 ( )σβ ,0N+=
ii

MOE , 

where OE are the idealised observations, M are the prediction data, β beta is the observation 

slope data and the normal distribution scale factor σ is calculated as the multiple of the mean 

prediction value with the observation error scatter index (SI) as described by JEA07.  The  
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Figure 3.3.  Comparison of significant wave height scatter data for (upper panel) model versus in-situ 

observed data (green) and an idealised observation generated from model using a homoscedastic 

assumption (blue); (lower panel) model versus in-situ observed data (green) and an idealised 

observation generated from model using a heteroscedastic assumption (blue). 
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effect of using the heteroscedastic assumption is shown in Figure 3.3.  For the simulations a 

value of β = 1.0, SI = 10% were used for the in-situ data and β = 1.05, SI = 6% were used for 

the Jason-2 data based on results in Section II. 

III.3.3  Naïve prediction 

For each ensemble member the naïve predictions were generated by randomising the order 

of the original prediction sample. 

III.3.4  Application to metrics 

The metrics shown in this subsection are a subset of metrics described in MyWave-D.4.2a.  

Examples presented are: 

• Test C2: Quantile-quantile plot 

• Test M1: Symmetrically Normalised Root Mean Square Error (SNRMSE; Mentaschi 

et al., 2013) 

• Test P1: Probability of significant wave height (Hs) predicted within 0.25m of the 

reference value 

• Test P2: Success ratio for prediction of Hs greater than 2m 

• Test R2: Bias and error standard deviation through Hs prediction range. 

Figure 3.4 illustrates application of the method to a quantile-quantile plot.  In the figure the 

blue ‘point and cross’ symbols show the direct comparison between model and observation 

and the green symbols show the idealised scenario.  The point values are sited at the 

location of the bootstrap ensemble mean values (in this case Hs for every second percentile 

from 2-98% of the distribution) and the extent of the crosses represent 5% and 95% values 

across the ensemble.  In the upper panel of Figure 3.4, the idealised data are derived using 

in-situ error estimates (which are assumed unbiased) and so the ideal case lies almost 

directly on the 1:1 line in the plot.  In the lower panel the comparison is made against Jason-

2 data and the idealised data can be seen to be biased away from the 1:1 line toward the 

reference (y-axis) as a result of the slope correction.  The cross-lengths are significantly 

larger for the satellite verification than for the in-situ verification illustrating the uncertainties 

associated with the low sample size in the Jason-2 matchup dataset.  The comparison 

between model and observation is illustrated by the deviation from the 1:1 line, and the  
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Figure 3.4.  Quantile-quantile plots for (upper panel) model (at T+0) versus in-situ observations (blue) 

and idealised observation (green); (lower panel) model (at T+0) versus Jason-2 observations (blue) 

and idealised observation (green).  Quantiles are shown every 2% from 2-98%, marker centres show 

bootstrap ensemble mean and cross extents show ensemble 5% and 95% values. 
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comparison between model and estimated truth is illustrated by the deviation between the 

blue and green symbols.  In both cases, above 2m, there is insufficient overlap in the cross 

part of the symbols to imply that differences in the data are an effect of sample size. 

Figure 3.5 illustrates the application of the method to SNRMSE, which for the model is 

compared through lead time.  Context is given by plotting the idealised metric value (green) 

and naïve prediction (orange) scores associated with the T+0 model data.  For this metric the 

idealised data are derived directly from the RMS of the observation error distribution and are 

related to the applied slope and scale factors.  The T+0 context data are applied constantly 

across the plot in this instance since we assume that at T+0 the model makes its best 

representation of climatology (used in generating the idealised data) and that a prediction 

using a random ordering of the model climate would be the best available naïve prediction 

regardless of lead time.  For the idealised and naïve metric scores the variation introduced 

within the bootstrap ensemble is shown using a banded plume (set at 1%, 5% and 25% from 

the distribution tails).  For the direct model-observation comparison a box and whiskers 

display is used.  In this instance the centre value represents the ensemble mean, the box 

outer and inner lines indicate 5% and 25% data values from the distribution tails and the 

flyers indicate the 1% quantiles from the tails.  Interpreting the plot, a number of conclusions 

can be drawn.  The direct comparison data show sufficient change with increasing lead time 

versus spread in the box and whiskers to expect that the increase in SNRMSE with lead time 

shown in the plot is genuine.  The direct comparison errors are substantially higher than the 

idealised scenario, suggesting that there is room for improvement in the model, but the direct 

comparison errors are in turn much smaller than the naïve prediction errors, suggesting that 

overall the model is skilful even at the 5 day range.  Spread in both the naïve prediction and 

T+120 SNRMSE ensembles are high, indicating that the value taken by the metric in lower 

skill situations is significantly affected by sample size and effects of random chance within 

the match-up sample.  In contrast the target idealised values are very stable. 

Figure 3.6 shows application to a metric testing probability of the prediction falling within 

0.25m of the observed value.  The plot is set out in the same manner as for Figure 3.5.  In 

this case the metric has a strong dependency on the background wave climate, and since 

the waves are relatively high at this time of year even the idealised case achieves a relatively 

low score (which is a function of the threshold used and both scale factor and pdf applied to 

the observation error distribution).  Overall, variability is higher in this plot than in Figure 3.5,  
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Figure 3.5.  Symmetrically Normalised Root Mean Square Error (SNRMSE) versus lead time for model 

against in-situ platform data.  Box and whiskers symbols show the direct model-observation 

comparison (marker at bootstrap ensemble mean, inner box lines at 25-75% range, outer box lines at 

5-95% range and flyers at 1-99% range), the green plume shows idealised SNRMSE (same ranges) 

and the orange plume shows the naïve prediction SNRMSE (same ranges). 

 

partially due to the use of Jason-2 data as the reference leading to a lower sample size.  

Variability of the idealised case is higher than for the naïve prediction, indicating that the 

sample affects this metric substantially in terms of identifying moderate or good performance 

and that a well defined lower limit for performance exists for this metric.  The influence of the 

sample on the direct comparison is relatively constant through the forecast range but the 

trend for decreasing performance with increasing lead time is still clear, as is the potential for 

the model to improve further in terms of this metric at all lead times.  Indeed, at T+120 the  
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Figure 3.6.  Probability of prediction falling within 0.25m of reference value versus lead time for model 

against Jason-2 data.  Box and whiskers symbols show the direct model-observation comparison 

(marker at bootstrap ensemble mean, inner box lines at 25-75% range, outer box lines at 5-95% range 

and flyers at 1-99% range), the green plume shows idealised SNRMSE (same ranges) and the orange 

plume shows the naïve prediction SNRMSE (same ranges). 

 

model might be expected to have limited skill in meeting this particular criterion when 

compared with satellite data. 

Figure 3.7 shows a success ratio metric, which will be heavily influenced by the background 

climate in terms of the proportion of the sample that contributes to the score.  In this case a 

relatively high number of forecasts are well above the 2m threshold and all the predictions 

score highly on the metric.  However, by contextualising the data it can be seen that although  
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Figure 3.7.  Success Ratio for forecasts of Hs greater than 2m versus lead time for model against in-

situ data.  Box and whiskers symbols show the direct model-observation comparison (marker at 

bootstrap ensemble mean, inner box lines at 25-75% range, outer box lines at 5-95% range and flyers 

at 1-99% range), the green plume shows idealised SNRMSE (same ranges) and the orange plume 

shows the naïve prediction SNRMSE (same ranges). 

 

the model could improve throughout the forecast range and the predictions are reasonably 

skilful against the in-situ observations even at T+120. 

Figure 3.8 examines performance of the model, in terms of bias and error standard deviation, 

through the predicted significant wave height range (for a lead time of 48 hours).  In this case 

the data are stratified in (overlapping) 20% quantile ranges of the predicted significant wave 

height in order that sample size is consistent.  If the stratification method used leads to very  
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Figure 3.8.  (left panel) Bias and (right panel) Error Standard Deviation versus predicted significant 

wave height for model against in-situ data.  Box and whiskers symbols show the direct model-

observation comparison (marker at bootstrap ensemble mean, inner box lines at 25-75% range, outer 

box lines at 5-95% range and flyers at 1-99% range), the green plume shows idealised SNRMSE 

(same ranges) and the orange plume shows the naïve prediction SNRMSE (same ranges). 

 

small samples then direct comparison between the metric and an analytical solution (which 

assumes a sample size that converges the metric is achieved) might be misleading.  

Therefore the simulation technique used here enables a more robust comparison.   

In the bias plot the naïve prediction shows large differentials in bias from underprediction 

when wave heights are low, to overprediction when wave heights are high.  This is to be 

expected as the random ordering of the prediction data should mean that the average value 

in each prediction bin is compared with the full sample mean for each bias value calculated.  

The direct comparison data show a similar, if much less marked, drift with increasing wave 

height (which again should be a feature if the prediction and observation are not fully 

correlated), whilst the idealised case shows only a small (sample based) variability around 

zero.  As might be expected, standard deviation of the errors for the direct comparison 

increase markedly for predictions in the tail of the distribution (since in the tail the chance of 

encountering a significantly different value in the observations is proportionately higher than  
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Figure 3.9.  Error Standard Deviation versus predicted wave height for model against in-situ data 

using a homoscedastic error model.  Box and whiskers symbols show the direct model-observation 

comparison (marker at bootstrap ensemble mean, inner box lines at 25-75% range, outer box lines at 

5-95% range and flyers at 1-99% range), the green plume shows idealised SNRMSE (same ranges) 

and the orange plume shows the naïve prediction SNRMSE (same ranges). 

 

for predictions from the main body of the wave height distribution).  The comparison with the 

naïve prediction data suggests that whilst high value predictions are quantitatively less skilful 

than low-mid value predictions, there is still predictive ability in the model at T+48.  This 

conclusion is emphasised by the slope that can be seen in the idealised prediction data 

where, as a result of the heteroscedastic assumption, the idealised error standard deviation 

also increases with predicted wave height.  For comparison Figure 3.9 shows the same 

analysis based on a homoscedastic error distribution, which shows a flatter profile to the 

idealised data plume and a scenario where the direct error comparison falls below the 

idealised case for low predicted wave heights.  This suggests some flaws in an error model 

that assumes the errors are entirely independent from the background wave height. 
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III.4  Comparison of metrics derived against different baselines 

The technique discussed can be applied generically across a number of metrics and for 

comparisons against both in-situ and satellite based observations.  In order to compare data 

derived against different references the idea of contextualising the metric results against 

idealised and naïve prediction results is taken further.  This process necessitates generating 

a skill score since the comparison must in some way account for the fact that (as 

demonstrated in MyWave-D4.2a) the background data sampled against different references 

will vary in terms of its climatology and can in turn affect absolute metric values. 

To make the comparison a normalisation is employed that measures the direct comparison 

value against the ‘skill gap’ between naïve prediction and perfect replication of the 

observation (Figure 3.1): 

 
OVV

OVV
OPS

N

M

−

−
−= 0.1 , 

where OPS is defined the ‘observation prediction skill’ of the system (above model 

background), OV is the optimal verification score (perfect replication of observations), VM is 

the verification score for the model and VN is the verification score for the naïve prediction. 

The justification for using this scale is threefold.  Firstly these comparisons are intentionally 

differentiated in purpose from the quantified metric comparisons shown in subsection 3.3, 

and are expected to be mainly of interest to model developers attempting to identify where 

the model adds skill over and above background.  Secondly, the naïve prediction 

performance provides a less subjective benchmark than the idealised data, since the latter 

have some dependency on the form of error model chosen.  Last, and crucially, the 

normalising factor (a function of the naïve prediction score) will include background condition 

effects.  To illustrate this a simple case can be considered where the naïve prediction and 

observations can be represented by independent normally distributed variables.  In this 

instance the errors generated when comparing the two samples will also be a normal 

distribution with a location value equal to the systematic error between the two samples and 

a scale parameter which is a function of the sum of the variance associated with each 

sample.  As a result the error distribution will increase in variability in line with an increase in 

the background variability of the observations and naïve prediction. 
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III.4.1  Example application 

Figures 3.10-3.12 examine properties of this comparison by examining the variation of the 

observation prediction skill for different metrics derived from a rolling 12 month collection of 3 

month data samples.  These are subject to significant variability in terms of background wave 

conditions, with mean Hs varying from 2.4-2.7m in the winter samples to 1.4-1.8m in the 

summer samples.  In the figures the months are labelled using the first of the 3 months in 

each sample (e.g. 1201 corresponds to January-March 2012).   

In Figure 3.10 the statistic tested is MAE, which shows significant seasonal variability 

through the period examined (upper panel).  The variability has a clear link to changes in 

background conditions.  Whilst the changes in the metric value through time will have a 

connection to varying model skill in predicting different backgrounds, the metric may also be 

influenced more directly by what is being observed.  By applying the comparative measure 

some of this variability is reduced (lower panel) and the clearest change in prediction skill 

occurs toward the end of 2012.  Figure 3.11 shows the same comparison applied to 

probability of the prediction falling within 0.25m of the reference.  The metric results show 

very strong seasonal variability, with an improvement in both the metric data and the 

observation prediction skill during the more benign spring and summer months.  Figure 3.12 

shows the differential in observation prediction skill between direct comparison and the 

idealised case.  When this comparison is made, although the quantitative values differ, a 

similar performance pattern emerges for both metrics with the optimal performance in the 

model shown for the spring-summer transition and in the autumn-winter data in late 2012 

(post a supercomputing upgrade at the Met Office).  A similar comparison for success ratio 

for prediction of Hs greater than 2m (not shown) provides the same qualitative conclusions. 

Examining the metrics in this manner suggests that the use of an observation prediction skill 

normalisation de-sensitises the metric to background conditions to some degree, but retains 

certain variability characteristics.  Comparing the differential to the idealised case, although 

more subjective, may offer some ability to compare performance between different metrics.  

However this would need testing on a larger set of metrics than has been attempted here. 
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Figure 3.10. Mean Absolute Error (MAE) for rolling 3 month samples during 2012 using model (T+0) 

against in-situ data.  (upper panel) Direct comparison, idealised prediction and naïve prediction 

verification displayed using the same schema as for Figures 3.4-3.9; (lower panel) MAE Observation 

prediction skill scores for direct comparison (box and whiskers data) and idealised prediction. 
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Figure 3.11.  Probability of prediction within 0.25m of reference for rolling 3 month samples during 

2012 using model (T+0) against in-situ data.  (upper panel) Direct comparison, idealised prediction 

and naïve prediction verification displayed using the same schema as for Figures 3.4-3.9; (lower 

panel) Observation prediction skill scores for direct comparison (box and whiskers data) and idealised 

prediction. 
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Figure 3.12.  Idealised versus direct comparison observation prediction skill differential for (upper 

panel) MAE and (lower panel) probability of prediction within 0.25m of reference, for rolling 3 month 

samples during 2012 using model (T+0) against in-situ data. 
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Figure 3.13 shows a comparison of SNRMSE derived against both in-situ and satellite 

references.  Prediction skill against each reference is shown explicitly on the x- and y-axis 

and the difference to the idealised case can be seen by judging the distance between the 

direct comparison symbols and the idealised case symbol.  In the plots the green symbol 

marks the idealised case, and the blue symbols mark direct comparisons at different lead 

times.  Cross-centres mark the ensemble mean value and the cross extents lie at the 5% and 

95% quantiles.  The plot shows that the prediction skill in the idealised case is similar against 

both in-situ and Jason-2 references, that the model data conform somewhat more closely 

with the in-situ data than the Jason-2 data and that skill diminishes significantly with lead 

time. 

Figure 3.14 applies the method to the Success Ratio statistic for 2m wave height 

exceedence threshold.  In this figure the performance of the model (over background 

chance) against both references is very similar and skill diminishes with increasing lead time.  

As for the SNRMSE the direct comparison data fall closer to the idealised case for the in-situ 

data than for the Jason-2 data, although the Jason-2 sample size can be seen to have 

considerable impact on the range of values that the observation prediction skill takes (extent 

of the blue crosses). 

III.5  Discussion 

The method shown in this document presents verification that can be used in a quantitative 

sense, or as a qualitative method of assessing model skill in performing particular tasks 

through contextualising the metrics generated from direct comparison between prediction 

and observation against idealised and naive scenarios.  The adoption of this tiered structure 

to the verification process has been established based on MyWave user preferences to see 

the direct comparison and to retain a separation between data derived against satellite and 

in-situ sources.  This is a pragmatic choice, but also one where effects from the choice of 

observation error model used in the idealised case can be viewed explicitly, and the 

verification is not ‘over-processed’ in trying to compensate for the observation errors.  By 

adopting a simulation (rather than analytical) approach the method should be generically 

applicable to the majority of metrics proposed in MyWave-D4.2a. 



 Estimation of regional observation errors and 
application to MyWave metrics 

Ref : MyWave-D4.3 

Date  : 23 Dec 2013 

Issue : 1.0 

 

 © My Wave – Public      Page 48/ 52 

 

 

Figure 3.13.  Observation prediction skill comparisons for SNRMSE at varying model lead time (blue, 

0-circle, 24-square, 48-triangle, 72-diamond, 96-pentagon, 120-hexagon) and idealised prediction 

(green).  X-axis data are comparisons against in-situ observation and y-axis data are comparisons 

against Jason-2. 

 

Visualization and description of the results shown in subsection III.3 indicate that the 

contextual data has utility in helping explain the metric values meaning.   A skill score 

approach is necessitated in order to compare verification derived against different 

backgrounds, but the tiered nature of the verification proposed means that users not 

interested in this aspect of the data would not have to use it.  The next project step is to 

make further trials of the visualization method with interested user groups. 
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Figure 3.14.  Observation prediction skill comparisons for Success Ratio against a 2m threshold at 

varying model lead time (blue, 0-circle, 24-square, 48-triangle, 72-diamond, 96-pentagon, 120-

hexagon) and idealised prediction (green).  X-axis data are comparisons against in-situ observation 

and y-axis data are comparisons against Jason-2 altimetry. 

 

 



 Estimation of regional observation errors and 
application to MyWave metrics 

Ref : MyWave-D4.3 

Date  : 23 Dec 2013 

Issue : 1.0 

 

 © My Wave – Public      Page 50/ 52 

IV  SUMMARY AND NEXT STEPS 

This report has demonstrated the application of a triple collocation method to establish 

regional descriptions of observation error characteristics and has proposed a method to 

incorporate both observation error data and sample variability within verification that uses the 

observation as reference data.  The incorporation of these factors within verification is 

important as it lends crucial context to verification results, particularly in aiding the user to 

understand what ‘good’ performance should look like once errors in the observing systems 

have been taken into account. 

Regional triple collocation assessments of observation errors in two European regional seas, 

the North European Atlantic Margin (NEAM) and the North Sea, demonstrated that robust 

and consistent estimates (within +/-1%) of both in-situ and satellite altimeter errors could be 

generated from comparatively small data samples using the method of Janssen et al. (2007).  

The main issues found in the study were a susceptibility of the results to outlying data (from 

poor in-situ observations), changes in the in-situ network and, at the scales analysed, that 

altimeter observation errors are subjectively controlled by the choice of super-observation 

used.  Nevertheless, relative stable of in-situ and altimeter error estimates were obtained 

despite the model data used being inhomogeneous.  Estimates of (relative) random 

observing errors for both NEAM and North Sea were consistent within 1-2%, at close to the 

10-12% level for the in-situ data and 5-7% level for the satellite data.  However, the linear 

calibration between satellite and in-situ data (as the reference) was more variable between 

the sea areas (1.02-1.04 in the NEAM and 1.06 in the North Sea), suggesting that some 

regional variability in the data should be accounted for when citing observation errors.  The 

largest variations were introduced by changes to the in-situ network changed over time, 

which suggests that if observation errors are to be applied in a quantitative sense in 

operational verification then regular review of triple collocation results with contemporary 

observation data needs to be made. 

The proposed verification methodology has been strongly influenced by user feedback that 

stated a preference to see quantitative direct comparisons between forecasts and 

observations and to retain a distinction between verification against different observation 

types, but which did express an interest in the addition of information showing the effects of 

background sample and (to a lesser degree) observation error.  This has led to adoption of a 

tiered approach in which presentation of direct comparisons between the forecast model and 
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observations are made and the variability of the metric is assessed through re-sampling; a 

comparative score based on idealised forecast performance, (for which the only errors are 

associated with the observation) is synthesized to provide a baseline estimate of what good 

looks like; and a similar naïve comparison is provided to give a lower reference bound.  

Since the direct comparison and idealised/naïve baselines are generated from the resampled 

matchup data and a simulation process, this method can be robustly applied to a large 

number of metrics identified in previous MyWave WP4 reports.  Intercomparison of 

performance against different baselines can be assessed subject to normalising the data in 

order to account for background sample variability. 

Subsequent work within the remainder of the project will undertake a second round of 

consultation with users as to the effectiveness of the proposed verification method, required 

steps to refine presentation and provide metadata to help interpretation, and to identify which 

metrics are best presented in this manner.  The application of observation errors defined in 

the regional triple collocation study will also be extended to wave Ensemble Prediction 

System verification within Subtask 4.3.1 and tasks within MyWave WP3. 
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