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I INTRODUCTION 

I.1 Framework 

Work package 2 (WP2) of the MyWave project focusses on increasing the use of 
earth observations by improving data processing algorithms and data assimilation 
systems for ocean waves. Aiming at, exploration of new methodologies in data 
assimilation, improvement of the use of near-shore satellite data and connection of 
large-scale forecast to near-shore forecasts. Its ultimate goal is to use improved data 
processing and data assimilation methods to obtain better wave forecasts from 
regional or coastal high-resolution models. 

I.2 Motivation 

Data assimilation (DA) techniques can be divided in synchronous and asynchronous 
(Sakov 2010) techniques. Synchronous methods are also known as sequential 
methods. In the synchronous techniques the observations are used to correct the 
model (first guess) data at the analysis moment, without regard for model dynamics 
between analysis moments. The increased availability of computer power has lead to 
an operational use of more advanced and generally asynchronous DA techniques. 
However, the most commonly used DA technique in wave forecasting is still optimal 
interpolation, a simple, synchronous DA technique, where the model results are 
corrected using simultaneous observations accounting for both model and 
observation errors. Although the observations are local, the corrections are spread 
over a larger area (see e.g. Lionello et al., 1995). In numeric weather prediction 
(NWP) the most commonly used synchronous DA technique is three-dimensional 
Variational (3D-Var) which, contrary to optimal interpolation, can handle non-linear 
observation operators. Asynchronous techniques, such as 4D Variational (4D-Var) 
and Kalman filtering techniques, not only consider the errors in the observations and 
model results, they also take into account the dynamics of the models. 4D-Var is the 
DA technique used at the European Centre for Medium-range Weather Forecast 
(ECMWF) operational NWP model. 
 
The application of new insights from the development and application of new data 
assimilation (DA) methods, e.g. asynchronous and variational, mainly from 
meteorology and oceanography, to wave forecasting can significantly improve the 
amount of information extracted from observations. 

I.3 Objectives 

In this report innovative assimilation methodologies being implemented in the 
framework of the WP2 of the MyWave project with coastal wave forecast goals are 
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described. The term innovative is used here not to indicate that the assimilation 
technique is new, rather that its application in the field of wave or non-hydrostatic 
atmospheric modelling) is novel. 

I.4 Contributors to the report 

The MyWave WP2 team members that have contributed to this report are Gert-Jan 
Marseille and Ad Stoffelen from KNMI on assimilation of scatterometer data in a non-
hydrostatic atmospheric model (sections II.2 and III.2), Martin Verlaan and Sofia 
Caires from Deltares on Ensemble Kalman Filter data assimilation on a coastal wave 
model (sections II.3 and III.3) and Kathrin Wahle, Heinz Günther and Joanna 
Stavena, from HZG on neural networks data assimilation on a coastal wave model 
(sections II.4 and III.4). 
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II  METHODOLOGIES 

II.1  Introduction 

Data assimilation covers a range of methods to incorporate observations into a 
model to improve the accuracy of the model forecasts. In many ocean and 
meteorology applications, the main goal is to improve the accuracy of the model 
initial conditions by making use of the available observations. However, in regional 
applications the boundary conditions often play an important role and therefore need 
to be optimized by the data assimilation. Finally, observation biases and uncertain 
model parameters may also be estimated by the data assimilation. 

 
In the 1950’s the weather forecasting models were initialized with interpolated fields 
taken from observations. Obviously, it is difficult to interpolate observations in areas 
where there are only few observations. Later, it became clear that it was useful to 
use the results from the previous forecasts as a starting point for the interpolation of 
observations. Later this subjective procedure was replaced with an objective analysis 
based on statistical estimation theory, where the interpolation weights are computed 
based on assumptions about the accuracy of the model forecast and the accuracy of 
the observations. Major challenges for this approach were the estimation of the error 
covariance and the fact that the meteorological model often showed spurious 
oscillations as a result of an imbalance between the variables of the estimated initial 
conditions. Numerous adjustments to this basic procedure have been proposed to 
overcome these issues. Optimal Interpolation and Incremental 3D-VAR are two of the 
most popular techniques using this approach.  
 
The next major step in data assimilation development was the extension of the 
estimations from three spatial dimensions in order to include time as a fourth 
dimension. This allows observations to be included at the time the observation was 
taken and limits the estimation to those 4D fields that are consistent with the model 
dynamics. 4D-VAR is the most well-known method of this type. It does, however, 
require the laborious determination of the adjoint of the model in question (Kalnay et 
al., 2007). 
 
In 1960 a new method, now known as the Kalman filter, was proposed for the 
conceptually similar problem of state estimation by Kalman (Kalman, 1960). Although 
the Kalman filter quickly became popular in engineering, it was not possible to apply 
the method for data assimilation since the computational load grows too rapidly with 
the size of the model, which is often of 106-107 compared to order 10-100 in many 
engineering problems. Although there are some early applications (Heemink en 
Kloosterhuis 1990), it was not until the introduction of the Ensemble Kalman Filter or 
EnKF (Evensen, 1994, 2003) that Kalman filtering became widespread for data 
assimilation. 
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It is possible to unify most of the methods mentioned in one common framework that 
uses Bayesian estimation as its foundation. Variational methods attempt to find the 
maximum a posteriori probability by computation of the cost function gradient and 
applying optimization methods to search for the cost function maximum. Note that the 
most common approach is to minimize, for convenience, minus the logarithm of the a 
posteriori probability. Combined with the common assumption of Gaussian a priori 
probabilities this leads to a quadratic minimization problem. Kalman filtering takes 
another approach. The model and observation operator are assumed linear, so that 
the optimization can be solved analytically.  

Since data assimilation is often quite computationally demanding many 
approximations have been proposed, such as Proper Orthogonal Decomposition 
(POD, Altaf et al. 2009). Also aiming at computational efficiency, in this report a 
method based on Neural Networks is proposed. 

In the next section, a 3D-var approach for assimilating scatterometer wind data into a 
non-hydrostatic atmospheric model is described. In sections II.3 and II.4, EnKF and 
neural networks approaches for data assimilation in coastal wave models are 
described, respectively. 

II.2 3D-Var assimilation of scatterometer data 

Three-dimensional variational analysis (3D-Var, Courtier et al., 1998) is an 
incremental DA method where the analysis increment is found by iteratively finding 
the minimum of the cost function J : 

 T T( ) ( ) ( ) ( )

b o

b b

J J J

x x x x y Hx y Hx 

 

     1 1
B R

 Eq. II-1
 

with bx  the vector model background state (also denoted as first guess), obtained 

from a short-term forward model integration from the previous cycle, y is the vector 

with all observations, H  is the (non-linear) observation operator that relates 
observed values with the model state x . B  and R  are the positive definite 

background error covariance and observation error covariance matrices, 
respectively. The non-linear observation operator is generally considered as an 
interpolation operator from model grid to observation location but may, for instance, 
also include highly non-linear relationships between observed satellites radiances 
and model state temperature and humidity. The first term on the right hand side of 
Eq. II-1 is denoted the background error and the second term-the observation error. 
The objective of 3D-Var is to find the model state, x , also denoted as the analysis, 

ax , which minimizes the cost function Eq. II-1. Under certain assumptions it can be 

shown that the analysis is obtained from 
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1

T T,     with  a b bx x y Hx


    K K BH HBH R  

, Eq. II-2 

where the optimal weight matrix K is also denoted the Kalman gain and H the 
linearization of the non-linear operator H. In practice, the incremental formulation is 

used to solve the optimization problem by solving the increment bx x x    from 

    1 T 1 T 1

bx y Hx    B H R H H R , Eq. II-3 

where ( )by Hx  is known as the innovation. It can be shown that a bx x x   is the 

minimum variance solution of Eq. II-1, with analysis error covariance matrix A  which 
fulfills the relationship 

 1 1 T 1   A B H R H  Eq. II-4 

Since B and R are positive definite matrices it follows from Eq. II-4 that each 
observation adds information (for non-zero H) and thus contributes to a reduction of 
the analysis error covariance A.  

In a cycled 3D-VAR experiment the forecast initiated with the analysis of the previous 
cycle is used as first-guess in the current cycle. The non-hydrostatic atmospheric 
model used in this study and in which we plan to assimilate scatterometer data is 
HARMONIE (http://hirlam.org/index.php/documentation/harmonie). The cycling 
interval of the HARMONIE is 6 hours, implying 4 cycles per day that are centred at 
00, 06, 12 and 18 UTC, i.e., the analysis times. The 3D-Var assimilation scheme 
assumes that all observations are valid at the analysis time. Observations from for 
instance SYNOP stations are available at one hour intervals, but only those 
observations closest to the analysis time are used in the analysis. 

The text below is extracted from de Haan et al. (2013) but added here for 
completeness to explain the assimilation of scatterometer ocean wind in the 
HARMONIE model. 

The component terms in Eq. II-1 are quadratic forms expressing the ‘distance’ 
between the analysis state and the prior or background state and observations 

respectively. The cost function oJ  comprises the contribution of individual 

observation types, i.e., 

 ASCAToSYNOPoo JJJ ,,       Eq. II-5 

For ASCAT ocean surface winds from the Metop-A/B satellites the cost function is 
defined as 

http://hirlam.org/index.php/documentation/harmonie
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Eq. II-7 

is the cost of the i-th ambiguity. Nj is the number of ambiguities in observation j, ),( vu  

and ),( ii vu  are the analysis and ASCAT wind vector ambiguity components 

respectively, 0 , ASCAT is the expected standard deviation of the error in the 

ASCAT wind components with a value of 1.8 1ms , iP  is the a-priori solution 

probability and p is an empirical weight factor for the ambiguities which currently has 
the value of four. This weight factor emphasizes the discrimination between the 
ambiguities and makes the expression for the cost function behave more as an ‘if’-
statement. 

II.3 EnKF data assimilation in SWAN 

II.3.1 Introduction 

SWAN (Booij et al. 1999, http://swanmodel.sourceforge.net/) is a wave model 
currently used by the Dutch Government for North Sea wave forecasts. Although, 
currently no data are assimilated into the model, the assimilation of data in the model 
using EnKF is under consideration. Next we briefly describe EnKF data assimilation 
and how it has been implemented for SWAN in openDA (http://www.openda.org). 

II.3.2 EnKF data assimilation 

The formulation of the EnKF (Evensen 1994 and 2003) is quite similar to the 3D-Var 
method introduced in the previous section. The main difference is that the static 
background error covariance (B in equation II-1) is replaced by the sample 
covariance. This sample covariance is computed from an ensemble of model 
forecasts in a procedure very similar to Monte Carlo methods.  

Starting from an initial ensemble of model states 0( )a

i t the model is used to compute 

a forecast for each ensemble member: 

 1)( ( ) ( )f a

i k i k i kt M t w t    ,   Eq. II-8 

http://en.wikipedia.org/wiki/Sample_covariance_matrix
http://en.wikipedia.org/wiki/Sample_covariance_matrix
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where ( )i kw t  denote the system noise, used to model uncertainties in the model. 

From this one can compute the sample mean as  

 
1

( ) 1/ ( )
n

f f

k i k

i

x t n t


    Eq. II-9 

and covariance 

 
1

( ) 1/ ( 1) ( ( ) ( ))( ( ) ( ))
n

f f f f f

k i k k i k k

i

t n t x t t x t 


   P .  Eq. II-10 

Similar to the previous section the Kalman gain is expressed as 

 1( ) ( ) )( ) (f f

k k ktt t   H HP H RK P ,  Eq. II-11 

where H  denotes the observation operator that maps the model state to values that 

match the observations. R  is the error covariance of the observations at time kt .  

The analysis or measurement-step of the EnKF uses a perturbation of the 

observations ( )i kv t  and a separate analysis for each of the ensemble members to 

obtain a consistent ensemble of states that incorporate the observations ( )ky t , 

 . 

  

 ( ) ( ) ( )( ( ) ( ) ( ))a f f

i k i k k k i k i kt t t y t H t v t     K  

  Eq. II-12 

If required one can obtain the mean and covariance of the model state after the 
analysis, that can be computed from 

 
1

( ) 1 / ( )
n

k i k

a a

i

t nx t


  ,  Eq. II-13 

and  

 
1

( ) 1/ ( 1) ( ( ) ( ))( ( ) ( ))a
n

k i k k i k

a a a a

k

i

t n t x t t x t 


   P .    Eq. II-14 

Note that the classical EnKF formulation requires the model simulations to stop each 
time an observation is available. In the asynchronous EnKF (Sakov et al., 2010) this 
restriction is relaxed. The observations are accumulated over a predefined time 

interval ] , , ]k k mt t  . During the model forecast for each member the matching values 

( ), , ( )f f

i k i k mt t  H H  are collected. Finally the observations are assimilated all at 
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once as if they occurred at time k mt  , but with the predicted values that were collected 

at the appropriate times. 

II.3.3 Model uncertainty or system noise for spectral wave models 

Since spectral wave models are stable forced systems it is crucial to include system 
noise or model uncertainty. Without system noise or covariance inflation the Kalman 

filter will diverge, i.e., the error covariance matrix ( )f

ktP  will become smaller and 

smaller and the observations will effectively be ignored. 

Two likely sources of uncertainty in a spectral wave model are the uncertainty in the 
wind forcing and uncertainty for the wave parameters that are specified at the open-
boundary. For the wind forcing we have assumed that errors in x and y directions are 
independent. For each component the errors are assumed to be spatially and 
temporally correlated with an exponential decay with distance and time-difference. 
For the open-boundary only an exponential temporal correlation is applied. The 
parameters are interpolated in space from a limited number of support points to the 
other grid cells at the boundary. It may be necessary to include a spatial correlation 
in the future. 

II.3.4 Implementation of SWAN in OpenDA 

OpenDA is a generic toolbox for data assimilation. It includes, among several other 
algorithms, an implementation of the EnKF with the option for asynchronous filtering 
as described above. The easiest and most flexible way to connect a model to 
OpenDA is with what is called a black-box wrapper. The characteristics of a black-
box wrapper are that the model remains a separate executable with interaction by the 
input and output files of the model, see Figure II.1. For this purpose one needs to 
supply subroutines for reading and writing of these model specific file formats. These 
routines have been implemented for SWAN and are made available through the 
official OpenDA release (http://www.openda.org). The examples provided there 
should run out of the box on windows and linux platforms. 

http://www.openda.org/


 Title Ref : MyWave—D2.2 

Date  : 15 Dec 2013 

Issue : 1 

 

 © My Wave – Public      Page 19/ 50 

 

Figure II.1 Schematic diagram of the black box connection between SWAN and 
OpenDA. 

In the EnKF, the model forecasts for each of the n  ensemble members, with n  
typically of the order 100, is quite computationally demanding. Fortunately each of 
the model runs is independent and can thus easily be computed in parallel. OpenDA 
provides this functionality models with a black box wrapper. The model runs are 
distributed over a specified number of nodes using a round robin schedule, see 
Figure II.2. The processing of observations in the analysis of the EnKF cannot be 
performed in parallel yet in OpenDA. In the experiments shown in this document the 
analysis is computed on a separate computational node. It is likely that this will limit 
the scalability of the parallel computation. 
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Figure II.2 Currently available computational schedule of EnKF for SWAN in 
OpenDA. 

II.4 Assimilation using Neural Networks 

II.4.1 Basic Idea 

The neural networks (NNs) approach is a novel method for data assimilation into the 
wave models. In general the NN aims to explore an extensive parallel network of 
simple elements in order to obtain result in a very short time and, at the same time, 
with insensitivity to loss and failure of some of the elements of the network. These 
unique properties make possible to use the NN in a wide range of applications, e.g. 
remote sensing (e.g. Schiller, 2007), financing, engineering, image processes, 
recognition of patterns, etc. Detailed description of the NN method can be found in 
Haykin (1994) and Bischop (1995) 

Neural Networks can be used to approximate an arbitrary non-linear function that 
maps a vector of input variables to a vector of output variables. It is also possible to 
use previous outputs of the NN as input for a next step of the computation, but these 
recursive NN are not considered here. The application of a NN can be divided into a 
training phase and a forecasting phase. During the training phase a large dataset of 
input and output vectors are used to train the NN, i.e. to estimate the coefficients and 
structure of the NN. The training phase consists of adjusting the weights for the best 
performance of the network in establishing the mapping of many input/output vector 
pairs. 

Contrary to physically based models, with the NN it is not necessary that the relation 
between inputs and outputs is causal, a statistical relation like correlation is sufficient. 
This gives an additional freedom to decide which variables are inputs and which 
variables are outputs. This unique property of NN makes possible to perform data-
assimilation by simply changing the input and output variables for the NN. Where 
physically based wave models, such as WAM (http://www.hzg.de/institute/ 
coastal_research/structure/system_analysis/KSD/topics/developments/003136/index
_0003136.html), require wind and boundary conditions as inputs and provide 

http://www.hzg.de/institute/%20coastal_research/structure/system_analysis/KSD/topics/developments/003136/index_0003136.html
http://www.hzg.de/institute/%20coastal_research/structure/system_analysis/KSD/topics/developments/003136/index_0003136.html
http://www.hzg.de/institute/%20coastal_research/structure/system_analysis/KSD/topics/developments/003136/index_0003136.html
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computed wave parameters on the grid-points as outputs, a NN can accept observed 
wave parameters as inputs and wind and boundary conditions as outputs. The 
technical changes for this are very small. The challenge is to select the right input 
and output variables that work well, since a NN will always provide an answer, but 
some choices can result in much more accurate results than others. 

To understand the performance of NNs for data assimilation in the wave models it is 
difficult to estimate both wind and boundary conditions together. One first has to use 
the new methodology either for optimizing the wind forcing or the boundary 
conditions. In this report the estimations are limited to optimizing boundary 
conditions. 

NNs provide a statistical estimation procedure and thus have similar properties to 
e.g. multiple linear regression methods. For example, if too many input variables are 
selected, with a limited set of training data, then the training may overfit the data. It is 
therefore necessary to reserve part of the available data for validation. The most 
obvious indication for overfitting is when the NN has a much higher accuracy for the 
training data than for the validation data. Another property is generalization, i.e. a NN 
may sometimes generate good estimates for new inputs (i.e. data with properties not 
well captured by the training data set), but there is no guarantee. 

An extreme example is if the training data only covers calm weather, than the NN 
may perform poorly for storms. An important technique to reduce overfitting is to 
reduce the number of inputs. One way to do this is with Principal Component 
Analysis (PCA), sometimes also called POD, POP or EOF. Another way is to lump a 
variable e.g. for a whole boundary instead of allowing spatial variation. 

A NN is usually trained for each scalar output variable separately. This makes it 
cumbersome to compute output for many output variables. The approach proposed 
here is to use an 'inverse' NN to estimate the wave parameters at the open boundary 
of the wave model from the observations. Next, these estimated boundary conditions 
can be used as input for a run with a physically based model, here WAM. It is also 
possible to train a forward NN to generate output for a limited number of output 
locations. 

The combined procedure that we are developing works as follows: First train a 
forward NN, with wind forecasts and boundary conditions from a larger scale model, 

e.g. significant wave height ( sH ), mean wave period, etc. at a number of locations 

along the open-boundary. To reduce the number of inputs for wind and boundary 
conditions, a PCA is used. 

The outputs of the forward model are given by the outputs of the wave model 
corresponding to the actual observations. This implies that the forward model will 
mimic the behaviour of the physically based wave model.  

An additional inverse NN is trained with the same data, but with a reversed role. Here 
WAM-output matching the observations as input of the inverse-NN and boundary and 
wind PCA values are obtained as outputs. Note that the experiments with a 
preliminary version in this report use winds as an input for the inverse-NN. Note that 
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the training procedure does not require any real observations, but it does require 
model output for a reasonably long WAM run. In general, it is also possible to use the 
same training procedure, but with real observations.  

After training of the forward-NN and inverse-NN one can perform a forecast by first 
running the inverse-NN with real observations, which results in an estimate for the 
open-boundary (and wind forcing). The forward-NN and/or the WAM model can then 
be used to compute the forecast. To forecast more than a few hours ahead the 
boundary-conditions and wind fields are complemented with forecasted boundary-
conditions from a larger model and wind fields from a meteorological model. 

The experiments in this report are performed with a synthetic dataset. The first-guess 

uses 0sH   at the open-boundary and the 'truth' model, that is used to generate 

training data and synthetic observations, uses wave parameters from the large scale  
North Sea WAM model  for the boundary conditions. 

This is a rather extreme case, which was chosen to clearly show the impact of the 
data-assimilation procedure. It is important to mention that after training NN has a 
lower computational cost than extended and linear KF, variational method, and 
particle filter.  

Within the MyWave Project a new methodology based on the use of NN for data 
assimilation in the wave models is developed. The following assimilation schemes 
have been developed: 

1. apply inverse WAM NN for each (point) measurement → ensemble of 
boundary values (and / or wind ensemble) 

2. apply forward WAM NN for each ensemble member → emulated 
measurements in each point  error (quality) estimate 

3. from these 'ensemble' of boundary values chooses the best one in terms of 
error. 

The idea for the data assimilation based on NN is schematically presented in Figure 
II.3.  
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Figure II.3 Idea of assimilation scheme, w, w’ are the wave measurements, b-
boundary values, g-latitude, longitude and wind values, c-other parameters, q-quality 
indicator. 

One big advantage of using NNs in data assimilation is its computational speed: once 
you have the NNs trained its further application costs little time. Additionally, the NNs 
scheme implies a quality/ out of scope check. These aspects make the use of NNs 
attractive compared to direct inversion of numerical models, like AdWAM by 
Hersbach (1998).  

The methodology and preparation of data for the NNs data assimilation is described 
in the next two sections.    

II.4.2 Preparation of data and training and testing the NN 

The analyses have been done for the German Bight area as a test case. The WAM 
output files for the German Bight for the period from September 1st 2012 to June 
30th 2013 has been used to train and test the Neural Networks. It is taken from the 
German Bight WAM version 4.5.3 model simulations (detailed information about 
the model set-up can be found in the pre-operational wave forecast system for 
COSYNA, www.cosyna.de)  

As a first step the dimensionality (German Bight = 258x203 pixels) of the 
input/output data is reduced by performing principal component analysis for wind 
and boundary data. In either case the first PC describes well above 90% of the 
variance (see Table II.1). Therefore, we decided to take only the first 2 PC's into 
account. 

http://www.cosyna.de/
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 wind u comp. wind v comp. 
sH  bound north sH  bound west 

PC 1 93.2% 91.0% 96.1% 95.4% 

PC 2 3.5% (96.7%) 4.1% (95.2%) 3.6% (99.7%) 3.7% (99.1%) 

PC 3 1.1% (97.8%) 1.9% (97.0%) 0.2% (99.9%) 0.6% (99.7%) 

PC 4 0.5% (98.4%) 0.7% (97.8%)   

PC 5 0.3% (98.7%) 0.4% (98.1%)   

Table II.1 Leading 5 (3) principal components (PC's) for approx. one year WAM data 
of wind and boundary significant wave height in the German Bight. 

The wave data are available every three hours. For each time step the 
'measurement' region was sampled randomly and approx. 20% of the maximum 
available number is usually been retained. Large values (three times higher than 
the year mean in this point) were always kept and even duplicated. (during the 
study  period there were not many strong storms over the German Bight region). In 
this way a large training / testing table was compiled containing: 

• date 

• boundNorthPCA1 @ t=0, -3, -6, -9, -12h 

• boundNorthPCA2 @ t=0, -3, -6, -9, -12h 

• boundWestPCA1 @ t=0, -3, -6, -9, -12h 

• boundWestPCA2 @ t=0, -3, -6, -9, -12h 

• windNorthPCA1 @ t=0, -3, -6, -9, -12h 

• windNorthPCA2 @ t=0, -3, -6, -9, -12h 

• windEastPCA1 @ t=0, -3, -6, -9, -12h 

• windEastPCA2 @ t=0, -3, -6, -9, -12h 

• boundNorth_tm1 (*) @ t=0, -3, -6, -9, -12h 

• boundWest_tm1 (*)  @ t=0, -3, -6, -9, -12h 

• boundNorth_thq (*) (cos and sin) t=-6h 

• boundWest_thq (*)  (cos and sin) t=-6h 

• lonIdx 

• latIdx 

• hs@lonlat @ t=0, -3, -6h 

• tm1@lonlat @ t=0, -3, -6h 

• thq@lonlat (cos and sin) @ t=0, -3, -6h 
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(*) wave period (Tm1) and wave direction (thq) at the boundaries do not vary much 
with space; therefore information of Tm1 and thq was kept in the  data table as 
mean value over boundaries and no PCA was done on these variables. 

The wave travelling time through the German Bight area is 6 to 12 hours. Therefore 
in order to predict present wave height in the 'measurement' region past 6-12 hours 
of wind and boundary values are fully relevant.  

From this large database a subset of approx. 90% (>600,000) was randomly chosen 
for training the various NNs. The remaining 10% (75,000) was used as an 
independent testing data set. 

II.4.3 Forward WAM NN 

Input to the Forward WAM NN are the northern and western boundary values (first 

two PC's of sH , Tm1 and thq at one location) reaching 3 to 12 hours back in time, 

wind (first two PC'a of u- and v component) reaching 0 to 12 hours back in time and 
the location (lat-, lon index) of the wave 'measurement'. The needed output includes 
wave integrated parameters significant wave height, mean wave period (Tm1), and 
mean wave direction (thq) at the same location at the present time and reaching up to 
6 hours back in time. 

 

 

Figure II.4 Performance of forward WAM NN when applied to test data. Left: 
significant wave height. Right: mean wave period. 
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The performance of the NN for sH  and Tm1 (t=0) for all points in the testing set is 

presented on Figure II.4 .The root mean square error for both variables in each of the 
'measurement' locations is shown on Figure II.5. 

 

Figure II.5 Same as Figure II.6 but mean error at each 'measurement' location. 

 

From the analyses it can be seen that: (i) there is a very good overall performance of 
the forward NN (Figures for t=-3 and -6h are very similar) (ii) the performance in the 
very shallow area (south east corner) is much weaker than the one in the off-shore 
area, which is probably due to the wave breaking processes. 

II.4.4  Inverse WAM NN 

As a first attempt we perform the exact inverse of what is described in Section 3 for 

the forward WAM NN, namely:  as input to specify  wave integrated parameters sH , 

Tm1, and thq at a location (given by lat-, lon index) at the present time and reaching 
up to 6 hours back in time. The output are the northern and western boundary values 

(first two PC's of sH , Tm1 and thq at one location) reaching 3 to 12 hours back in 

time, wind (first two PCs of u- and v component) reaching 0 to 12 hours back in time 
and the location (lat-, lon index) of the wave 'measurement'. 
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However, the results from this inverse NN showed errors  that are of one order of 
magnitude larger than the corresponding forward NN experiment (Figure II.6a). The 
reason for these large errors is that the model is not invertible for this experiment: one 
and the same sea state might have been caused by different combinations of swell 
and wind sea. Thus we decided to change the methodology and to reduce the 
complexity of the inversion problem. In this way we thereby improve the NN 
performance by giving additional input information to the NN. Figure II.6b shows the 
errors of the inverse WAM NN when wind information was given as an additional input 
(= NN derives only boundary values). The performance of this experiment is 
considerably improved compared to the one of forward NN. Still, it is interesting to 

note that not only the PC's of boundary data of sH  fit well but also the reconstructed 

wave heights  in the entire basin compare well with the target values (see Figure II.7). 

The results demonstrate that the performance of the simplified inverse WAM NN is 
very promising. Additionally a second inverse WAM NN for deriving wind parameters 
(with boundary values as additional input) will be trained and these two NNs will be 
part of a future assimilation experiment. 
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Figure II.6 Performance of inverse WAM NN when applied to test data. Left: 

dominant PC of northern boundary sH , right: same for western boundary. (a) 

corresponds to first attempt of inverting the model (full inverse), (b) inverse WAM NN 
for emulating only boundary values. 
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Figure II.7 Same as Figure II.6 but for reconstructed significant wave height. (a) 
along each boundary as function of time (top: WAM, bottom: inverse NN); (b) for a 
single point at each boundary. 
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III EXAMPLES 

III.1 Introduction 

In this chapter we present a number of trials carried out with the data assimilation 
techniques presented in the previous chapter. Most of these have been carried out 
using synthetic data. 

III.2 3D-Var 

Single observation experiments have been conducted with the HARMONIE model. 
Such experiments provide a good indication how the assimilation system spatially 
(both horizontal and vertical) spreads the information content of an observation in the 
model domain. Figure III.1 shows the resulting increment, also denoted structure 
function, from a 1 degree temperature innovation. The increment amplitude is 
maximum at the observation location with a value of about 0.35 degrees and decays 
by a factor of 7 at about 200 km distance in North-South direction and about 300 km 
distance in West-East direction from the observation location. 

In a variational data assimilation system like 3D-Var not only the model temperature 
is corrected by a temperature observation but for instance also the flow is corrected 
following geostrophic balance equations, inherent in the background error covariance 
matrix. Figure III.2 shows the corresponding wind component increments resulting 
from a 1 degree temperature innovation at location 51 degrees latitude, 3 degrees 
longitude at 500 hPa pressure level. 

Figure III.3 shows an example where satellite measured ocean surface winds deviate 
from the model first-guess at some locations. The resulting wind increment at the 
lowest model level (10m above the surface) in Figure III.4 clearly demonstrates the 
correction of the wind field of several ms-1 from assimilating scatterometer winds. 
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Figure III.1. Temperature analysis increment (Celsius) at 500 hPa resulting from a 
temperature innovation of 1 degree Celsius at location (lat,lon,pressure) = (51 
degrees, 3 degrees, 500hPa). 

 

 

Figure III.2. Zonal wind (left) and meridional wind (right) increment (ms-1) at 500 hPa 
resulting from a 1 degree temperature innovation at location (lat, lon, pressure) = (51 
degrees, 3 degrees, 500hPa). 
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Figure III.3. HARMONIE 10m wind (purple) and assimilated ocean surface satellite 
winds from the ASCAT scatterometer on Metop-A (red). 

 

  

Figure III.4. 10m wind analysis increment from assimilated observations from 
radiosondes, aircraft, synop (ground) stations and ASCAT scatterometer. Increments 
inside the red circles are mainly from assimilated ASCAT winds, see also Figure III.3. 
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III.3 EnKF 

In this section the EnKF for SWAN, as described in Section II.3, is applied to a 
number of experiments using small SWAN wave models for the North Sea. The 
considered experiments are twin experiments, meaning that the same model is used 
to create the observations and the model results and the differences between the 
observations and the model results are solely due to (known) differences in the 
model input or parameters. The aim of these North Sea twin experiments is to find 
the appropriate settings for this application and to gain insight into the sensitivities. 

In the next section the general EnKF parameters are described. The twin 
experiments were carried out using simplified 1D and 2D SWAN models; these are 
described in sections III.3.2 and III.3.3, respectively. In Section III.3.4 a few 
conclusions are drawn. 

III.3.1 Model parameters and settings 

The ensemble Kalman filter is sensitive to a number of parameters, such as: 

 number of ensemble members; 

 assimilated data and their uncertainty; and 

 uncertainty specification for wind and boundary (control variables). 

Unfortunately, these parameters can only be tuned experimentally and there are also 
some interactions between them.  

As a way of reducing computational time, OpenDA supports asynchronous filtering, 
where the analysis times are specified by the user instead of the times given by the 
observations. A larger interval between subsequent analyses reduces the 
computation time, but increases the analysis increments. This may deteriorate the 
accuracy, but it is uncertain to what extent. 

Given that the presented experiments are twin experiments, a proper tuning of the 
noise parameters cannot be obtained, since it depends on the actual quality of 
observations and model.  

In the twin experiments small models will be considered, these allow for many 
experiments because the runs are fast. On the other hand these models are a 
simplification of a real operational model. It is often efficient to use a small model to 
learn the behaviour of the system and then use this to reduce the number of 
experiments with larger models. 

III.3.2 1D twin experiment 

The SWAN spectral wave model can be run in a 1D mode, where the other direction 
is considered homogeneous. A convenient curve for a 1D trial of EnKF data 
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assimilation in SWAN in the Dutch North sea coast is the arc between the locations 
North Cormorant and Europlatform, see Figure III.5. 

The considered SWAN grid follows a great arc at roughly 172 to 174 degrees with 
respect to North. This arc is divided in 25 grid points of 43.6063km. Several 
observation locations are available near this curve, see Table III.1. 

 

Location Longitude (°) Latitude (°) Distance to boundary (km) 

North Cormorant 1.166 61.340 0 

Anasuria 0.786 57.261 454 

D151 2.934 54.325 787 

K13  3.220 53.218 911 

Europlatform 3.275 51.999 1047 

Table III.1 Coordinates of the observation stations. 

At each grid cell a wave spectrum with 32 frequencies and 36 wave directions is 
computed. The model time step is 1 hour. 

 

Figure III.5 Location (left) and depth schematization (right) of the used 1D SWAN 
model and observation stations.  

III.3.2.1 Kalman filter settings 

The Kalman filter setup includes uncertainty for the open boundary. Here an AR(1) 
model with exponential temporal correlation with scale 6 hours and standard 

deviation 0.4m for the significant wave height ( sH ) is used. Similar perturbations can 
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be added to other boundary parameters, such as the wave-period, but this is not 
used for now. 

Control variables/noise is also used for the wind forcing. The temporal correlation has 
a scale of 12 hours and a magnitude of 1.0m/s and the spatial correlation is of 
500km. The two wind components are treated independently. The noise is specified 
on the same grid as the wind input, which may be different from the computational 
grid. 

Observations of sH  are assimilated every hour at the 5 locations. The standard 

deviation for errors in the observations is set to 0.2m. 

The considered test case is an identical twin experiment, that is the observations are 
generated with the same model, but with different model input. The purpose is to 
show that the data-assimilation works and that the observations are able to recover a 
significant part of the model errors. 
 

The twin experiment is composed of 4 parts: 

1. swell that is present at the boundary for the truth (observations), but not in the 
reference model 

2. swell that is present in the reference model, but not in reality/observations 

3. strong wind (and wind sea) that is present in the observations, but not in the 
reference model. The wind forcing is uniform over the domain. 

4. strong wind (and wind sea) present in the reference model, but not in the 
observations. 

The true and first guess model forcing are shown in Figure III.6. As can be seen in 
the figure, part 2. and part 4. are shifts in time of part 1. and part 3., respectively. We 
note that these simulated differences between the first guess and the observations 
are much larger than what we expect in reality. Nevertheless, we consider such large 
deviations in order to demonstrate the EnKF data assimilation impact more clearly 
and to test the stability of the method. 



 Title Ref : MyWave—D2.2 

Date  : 15 Dec 2013 

Issue : 1 

 

 © My Wave – Public      Page 36/ 50 

 

Figure III.6 Time series of boundary significant wave height and global wind speed 
first guess and observations. 

III.3.2.2 Results 

We have carried out three distinct data assimilation experiments, considering 

1. Uncertainty only in the open boundary; 

2. Uncertainty only in the forcing wind; 

3. Uncertainty in both the open boundary and the forcing wind.  

In all cases we have considered 80 ensembles in the EnKF. 

Figure III.7, Figure III.8 and Figure III.9 show for the considered 5 observation 
stations (cf. Figure III.5), the first guess, observations and EnKF analysis time series 

of the significant wave height, mean wave period, 1,0mT 

1
, and wind speed, 10U , 

respectively. 

We start by describing the differences between the first guess and the observations. 

At all locations there is in the observations time series a single 10U  peak at the start 

of the period that is shifted forward in time in the first guess time series (cf. Figure 
III.9). At the North Cormorant boundary location there is in the observations time 

series a single sH  and 1,0mT   peak at the start of the period (as imposed at the 

boundary) that is shifted forward in time in the first guess time series (cf. top left 

                                                      

1
 There are several parameters for describing the sea state period. One of these is 

1

1,0 1 0( / )mT m m 

   where nm , the n order spectral moment, is 
0

( )n

nm f S f df


  . Using different 

moments other period parameters can be defined. 
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panels of Figure III.7 and Figure III.8). As one moves in the direction of the coast, 

due to the wind forcing in the model domain a second sH  and 1,0mT   peak appears 

(cf. Figure III.7 and Figure III.8). This wind sea peak gains importance in relation to 
the swell peak in the direction to the coast due to the larger wind fetch and the 
dissipation of the swell imposed at the boundary. 

When considering only uncertainty in the boundary sH  (red lines in Figure III.7 and 

Figure III.8) the EnKF analysis is able to move the sH  peak at North Cormorant to 

the period in the observations. However, it does not seem to be able to move the 

1,0mT   peak and also produces a large and spurious wave height and period peak at 

the end of the period. These lead to large differences between the EnKF analysis 
and the observations at all locations. We note that this bad performance of the 
method may be due to instabilities since the differences between the EnKF analysis 
and the observations are lower if more ensembles are considered (not shown). 

When considering only uncertainty in the forcing wind (magenta lines in Figure III.7 to 
Figure III.9) at the boundary North Cormorant location the differences between the 
analysis and the observed wave heights and periods are large, but at the other 
locations the analysis time series are much closer to the observations than the first 
guess time series. That the assimilation of wind only fails to produce the right results 
at the boundary is as expected given that in order to produce the right results at the 
other 4 locations the wind fetch should be none at the boundary. The analysis wind 
fields, which also need to counterbalance the differences between the boundary first 
guess and observation waves, differ more than the first guess winds from the 
observations, but do lead to analysis waves that are closer to the observations. In 

other words, observation of sH  alone is insufficient to fully distinguish between errors 

in boundary and wind forcing. 

When considering uncertainty in both the forcing wind and the boundary sH  (blue 

lines in Figure III.7 to Figure III.9) the analysis (the same parameters that were 

adjusted when producing the first guess and the observations), the sH  (and 1,0mT   to 

a lesser extent) is at all locations rather close to the observations. On the other hand, 
the differences between the analysis and observed winds can still be large, with the 
analysis time series showing wind speed peaks during the observed swell and first 
guess wind event. However, these do not affect the quality of the analysed waves.  

In conclusion, when the chosen control variables are those with associated 
uncertainties then the assimilation of the wave observations is rather successful. 
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Figure III.7 Time series of 1D twin experiment significant wave height at the five 
North Sea observation stations. 

 

Figure III.8 Time series of the 1D twin experiment mean wave period at the five North 
Sea observation stations. 
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Figure III.9 Time series of the 1D twin experiment wind speed at the five North Sea 
observation stations. 

III.3.3 2D twin experiment 

For the purpose of extending the 1D model studied above and testing the 
performance of parallel computing and asynchronous filtering, a somewhat realistic 
albeit very coarse model has been created. Several versions of this model with the 
same domain, but a different resolution were made to test the scaling properties of 
SWAN and the Kalman filter. The coarsest version shown in Figure III.10 has a 
resolution of 0.5 degrees in both directions, which results in 27x21 grid cells. The 
bathymetry for the model has been interpolated from the NOOS bathymetry 
(http://www.noos.cc/), that has a resolution of 1/40° x 1/60°. Two somewhat finer 
SWAN models with resolutions of 1/4° x 1/4°and 1/8° x 1/8° are used to study the 
changes to performance for larger models. All three models have a spectral 
resolution of 32 frequencies and 36 directions, so the model has 32x36 dynamic 
model variables at each grid-cell. 

http://www.noos.cc/
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Figure III.10 Grid of the 2D SWAN model at 0.5° resolution and location of the 
observation stations.  

Since the SWAN wave model is a stable and forced model mostly affected by the 
wind-forcing, in the 2D experiments the system noise for the Kalman filter is added 
only to the wind forcing. The temporal correlation has scale 12 hours, magnitude 
1.0m/s and spatial correlation with scale 1000km. The two wind components are 
treated independently. The noise is specified on the same grid as the wind input, 
which may be different from the computational grid in SWAN. 

Observations of sH  are assimilated for 5 locations with an hourly time-step and a 

standard-deviation setting of 0.1m in the ensemble Kalman filter. The Observations 
are generated with the same model, but with very different boundary conditions and 
wind forcing. Again, the magnitude of the differences is much larger than expected in 
reality, but this is only intended to see how the ensemble Kalman filter behaves for 
extreme over prediction or under prediction of wind forcing. 

The true and first-guess wind-fields are uniform in space and have a Gaussian shape 
in time. The peak value is 25m/s from the north, but the timing of the first-guess is 
completely off (3 days difference). Note that realistic forecast errors of 10-meter wind 
have an RMSE of around 2m/s, while the peak errors for the wind-forcing here are 
25m/s. 
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We start by looking at the model results when using the coarser model. As can be 
seen in Figure III.11 to Figure III.13, although the differences between the observed 
and analysis winds can still be large (Figure III.13), the analysis wave heights (Figure 
III.11) and periods (Figure III.12) are quite close to the observations. 

 

Figure III.11 Time series of 2D twin experiment significant wave height at the five 
North Sea observation stations. 
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Figure III.12 Time series of the 2D twin experiment mean wave period at the five 
North Sea observation stations. 
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Figure III.13 Time series of the 2D twin experiment wind speed at the five North Sea 
observation stations. 

III.3.3.1 Asynchronous filtering 

We now present the results of an experiment analysing the impact of asynchronous 
filtering. Analysis intervals of 1, 3 and 6 hours were used. In Figure III.14 one can 
clearly see the larger steps that occur for larger analysis intervals. Larger intervals 
have a negative impact on the accuracy, but also require less computation time, 
because the number of model initializations is reduced by a factor of 3 or 6 compared 
to the 1 hour analysis interval. The asynchronous EnKF still retains a large part of its 
positive impact for 3 and even for 6 hour analysis intervals. 
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Figure III.14 Time series of the 2D twin experiment with asynchronous filtering 
significant wave height at the Euro platform. 

III.3.3.2 Parallel computing 

Next we performed some performance tests on the Lisa cluster of SARA 
(https://www.surfsara.nl/nl/systems/lisa/description). The nodes used had Intel Xeon 
L5520 processors with clock-speed 2.26GHz and 8 cores per node. The first set of 
experiments were for the coarse model with 0.5° resolution and 27x21 cells, so the 
model state will contain 27x21x32x36=163,184 values. 

The table below shows the results for a simulation of one week. Clearly using more 
nodes for the computation speeds up the simulation until the communication 
overhead reduces and eventually halts further improvement. In these computations 
the measurement update is performed sequentially, thus according to Amdahl's law 
this sequential part will become dominant. By increasing the time interval between 
updates from 1 to 3 and 6 hours the sequential part is roughly reduced by a factor 3 
and 6. 

https://www.surfsara.nl/nl/systems/lisa/description
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#Nodes #Cores Timing 1hr [min] Timing 3hr [min] Timing 6hr [min] 

1+1 16 586 254 201 

2+1 24 298 178 106 

4+1 40 187 89 59 

8+1 72 133 61 38 

16+1 136 101 46 27 

32+1 264 106 37 21 

64+1 520 117 42 25 

Table III.2 Wall clock times [min] for asynchronous EnKF with coarse 0.5° resolution 
model. 

The speed increase by parallel computing allows us to increase the size of the model 
and still run with realistic computation times. To test the impact of a larger model the 
runs of the previous experiment were repeated with models of 0.25° and 0.125° 
resolution instead of 0.5°. By increasing the model size we expect that both 
computation time and communication time scale nearly linear with the grid size. In 
the table below one can also see that the measurement update requires much 
internal memory, since storage of the ensemble of 64 model states grows to 5.0Gb 
for the 0.125° x 0.125° resolution. Apparently the present implementation keeps 
multiple copies during computation of the update, since the total memory use during 
this step was nearly 20Gb. This will be a severe limitation for further increasing the 
model resolution. 

resolution Number of grid cells State dimension Size of ensemble 

0.5° x 0.5° 27x21x32x36 653,184 0.3Gb 

0.25° x 0.25°  52x42x32x36 2,612,736 1.2Gb 

0.125° x 0.125°  104x84x32x36 10,450,944 5.0Gb 

Table III.3 Model sizes. 

As expected the computation times grow nearly linear with the number of grid cells in 
the model. At the same time the communication time and the update step also grow 
linearly, so the speed up is not affected much. For further speed up the 
communication and scalar part of the computation must be improved. 
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#Nodes #Cores Timing 0.5° (min) Timing 0.25° (min) Timing 0.125° (min) 

1+1 16 254 733  

2+1 24 178 404 1246 

4+1 40 89 221 667 

8+1 72 61 164 523 

16+1 136 46 122 484 

32+1 264 37 125 476 

64+1 520 42 135  

Table III.4 Wall clock times for asynchronous EnKF with 3 hour updates. 

III.3.4 Conclusions 

When the chosen control variables are those with the true associated uncertainties 
then the assimilation of the wave observations using EnKF in a simplified North Sea 
SWAN models can be quite successful. 

The black-box wrapper of OpenDA works fine in combination with the SWAN model 
and parallel computing. Experiments show that the combined effect of using OpenMP 
for SWAN on one node, parallel model runs managed by OpenDA and asynchronous 
filtering together amount an accumulated time-saving that allows one to use much 
larger models than without these options. All these options are already provided by 
OpenDA and SWAN, so no additional programming effort was needed, just a 
modification of the configuration files. 

We were able to let the resolution of a simple SWAN model of the North Sea grow to 
1/8°x1/8° or 104 x84 cells. Although this is not enough for the new operational model, 
it is already higher than the previous generation operational model and enough to 
perform experiments for further tuning of the configuration. Moreover, the 
experiments have pointed towards a number of possible further improvements: 

 The main barrier for a further increase of the model resolution is the memory 
use of the OpenDA program on node 0. Although one may be able to reduce 
the memory use by a small factor, it is clear that only storage of the ensemble 
of states will quickly fill available memory when the model resolution is 
increased further. 

 The communication between the models in the ensemble and the 
measurement update is significant and was implemented with a network disc 
in the experiments reported here. Future developments should explore the use 
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of faster communication methods that make better use of the available 
hardware. 

 The measurement update now still forms a considerable sequential part of the 
computation. A parallel implementation of this part of the code can help the 
speed up for larger number of processors considerably. 

 The restart-files are now in ASCII format. Replacing them with a binary format, 
such as netCDF may increase the speed at which these files are read and 
written. 

 Finally, also changes to the EnKF algorithm or configuration can deliver a 
further speed-up of the computations. Mostly these aspects and improvements 
of the parallel computation can be developed simultaneously and can be used 
in combination. 

In summary, the twin and scaling experiments described in this report have been 
very useful both to deliver a configuration that can be used for further developments 
of the data assimilation and they have pointed towards a number of issues that can 
be improved further. 

III.4 Assimilation using Neural Networks 

The quality of the existing HF wave radar data for the German Bight is still insufficient 
to make use of in a real assimilation experiment. Therefore, the above described NN 
assimilation method is tested using synthetic HF radar wave data.  

In the first experiment, the 'measurement' data are taken from a WAM output for the 
German Bight for July 2013. These data have neither been used for testing nor for 
training of the NN. Additional data to apply the algorithm (wind data) and to validate it 
(boundary data) are also taken from this run (the 'truth' run). 

As a second step, the model run is repeated without any boundary values, i.e. no 

waves entering the German Bight ( 0sH  ). This second run served as 'first guess'. 

The 'measured' values of the wave parameters ( sH ,Tm1 and thq) within the HF radar 

area (n ~ 1,000 grid points) together with the wind data have been given as an input 
to the inverse NN.  As an output an ensemble of boundary values p for each point in 
time n is being produced. Feeding these values into the forward NN and comparing 
the output with the 'measurements' gives n error values (one for each of the n grid 
points). The error is calculated as relative error between 'measured' and forward NN 
emulated significant wave height. The error distribution in a typical situation is 
demonstrated in Figure III.15. The 'best' boundary values are calculated as the mean 
of the 50 with the smallest error. The chosen 'best' boundary values together with the 
'truth' for the whole assimilation period is shown in Figure III.16. A comparison of first 
guess and (NN approximated) assimilation error for significant wave height and mean 
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wave period in the HF radar region for the German Bight (region 'known to' NN) is 
demonstrated in Figure III.17 

 

Figure III.15 Error in NN derived sH  (after consecutive applying invNN and forwNN) 

compared with 'measured' values. 

 

Figure III.16 Boundary values taken from a model run (top) and as emulated by the 
inverse WAM NN for the time period of the assimilation experiment. 
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Figure III.17 Comparison of first guess and (NN approximated) assimilation error for 
significant wave height and mean wave period in the HF radar region (region 'known 
to' NN). 

From the first assimilation experiments we can conclude that: 

(i) As expected from the first twin experiment, the first guess error is small in shallow 
water regions close to the coast where wave state is dominated by local wind. (ii) For 
the values emulated with the forward NN the opposite is true (see section forward 
NN) (iii) it can be supposed that running WAM with the NN derived boundary values 
will give better results in the shallow areas and by definition the impact of the 
assimilation affects the whole German Bight region (iv) in summary, the novel 
assimilation scheme based on NN gives very promising results. 
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IV FINAL REMARKS 

In the framework of the MyWave project we have applied innovative data assimilation 
techniques with the aim of improving nearshore North Sea wave forecasts. The 
considered approaches were a) 3D-VAR assimilation of coastal scatterometer winds 
in HARMONIE; b) EnKF assimilation of wave observation in SWAN and c) NN 
assimilation of wave observation in WAM. As reported, the results of the first trials 
using mainly synthetic data have led to promising results. In accordance with the 
project planning, we shall now move on to applying these techniques for assimilation 
of real wind and wave data considering a number of relevant North Sea storms. 

 

  


