

Documentation of a web based source code library fo r WAM

Reference: MyWave- D1.1

Project N°: FP7-SPACE-2011-
284455

Work programme topic: SPA.2011.1.5.03 – R&D to enhance
future GMES applications in the Marine and Atmosphere areas

Start Date of project : 01.01-
2012

Duration : 36 Months

WP leader: Peter Janssen Issue: WP1 – Task 1.4

Contributors : Arno Behrens (HZG)

MyWave version scope : version 0

Approval Date : 30 June 2013 Approver: Øyvind Sætra (NMI)

Dissemination level: PU

Documentation of a web-based source code
library for WAM

Ref : MyWave - D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 2/ 79

DOCUMENT

 VERIFICATION AND DISTRIBUTION LIST

 Name Work Package Date

Checked By: Joanna Staneva (HZG) 1 24 June 2013

Distribution

Documentation of a web-based source code
library for WAM

Ref : MyWave - D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 3/ 79

CHANGE RECORD

Issue Date § Description of Change Author Checked By

0.1 2013/6/20 all First draft of document

Arno Behrens

Joanna Staneva

1.0 all Document finalization

Documentation of a web-based source code
library for WAM

Ref : MyWave - D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 4/ 79

TABLE OF CONTENTS

I Introduction 11

II Distributed version control system GIT 12

II.1 The WAM repository on the GitHub server .. 13

II.2 Access to the WAM repository via http-protocol .. 13

II.3 Access to the WAM repository via ssh-protocol .. 14

II.4 Working with Git ... 15

III WAM Manual 18

III.1 WAM Cycle 4.5.4 Updates and Extensions .. 18

III.1.1 Source Function Integration ... 18

III.1.2 Time Stepping .. 19

III.1.3 Sea Ice ... 19

III.1.4 Output of Integrated Parameters ... 19

III.1.5 Output of Spectra ... 19

III.1.6 Multiple Nests in Coarse Grid .. 20

III.1.7 Input of Boundary Spectra in a Fine Grid Model Run .. 20

III.1.8 Angular Directions ... 20

III.1.9 Blocking ... 20

III.1.10 PRESET Program .. 20

III.1.11 Depth Induced Wave Breaking .. 20

III.1.12 In-stationary Current and Water Depth .. 20

III.1.13 Output of Radiation Stress, wave force and Stokes Drift ... 21

III.1.14 Namelist Formatted Control Parameters ... 21

III.1.15 Input of coordinates, grid increments and internal representation. 21

III.1.16 Reduced Gaussian Grid ... 21

III.2 WAM Cycle 4.5.4 Source Code .. 21

III.3 The Model System .. 22

III.3.1 Pre-processing Program .. 23

III.3.2 Processing Program .. 23

III.3.3 Post-processing Programs .. 23

III.4 Communication between the Sub Systems .. 24

III.5 Compile Order for Modules ... 26

III.5.1 Pre-processing program PREPROC ... 26

III.5.2 Processing program CHIEF ... 26

III.5.3 Post-Processing program PRINT_GRID_FILE .. 27

III.5.4 Post-Processing program PRINT_TIME .. 27

III.5.5 Post-Processing program PRINT_SPECTRA_FILE.. 27

III.5.6 Post-Processing program PRINT_RADIATION_FILE ... 27

III.6 Model Flow Diagrams ... 28

IV Summary and Outlook 31

V References 32

VI Annex A – User Input : 33

VI.1 Introduction ... 33

VI.2 Concept of user input ... 33

Documentation of a web-based source code
library for WAM

Ref : MyWave - D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 5/ 79

VI.3 PREPROC Control Parameters ... 33

VI.4 Main WAM model Control Parameters ... 35

VI.5 Post-processing Control Parameters ... 39

VII Annex B – Data Input............................... ... 41

VII.1 Introduction .. 41

VII.2 Basic Model Grid and Depth Data ... 41

VII.2.1 Concept of Basic Model Grid ... 41

VII.2.2 Control Parameters .. 42

VII.2.3 Topographic Data Input ... 42

VII.3 Wind Data .. 42

VII.3.1 Concept of Wind Input ... 42

VII.3.2 Wind Control Parameters .. 43

VII.3.3 Wind Data Input ... 43

VII.4 Sea Ice Data .. 43

VII.4.1 Concept of Sea Ice Input ... 44

VII.4.2 Sea Ice Control Parameters .. 44

VII.4.3 Sea Ice Data Input ... 44

VII.5 Depth Data .. 45

VII.5.1 Concept of Depth Data Input ... 45

VII.5.2 Depth Control Parameters ... 45

VII.5.3 Depth Data Input .. 45

VII.6 Current Data .. 46

VII.6.1 Concept of Current Input ... 46

VII.6.2 Current Control Parameters ... 46

VII.6.3 Current Data Input ... 47

VII.7 Transfer Subroutines ... 47

VII.7.1 SET_TOPOGRAPHY Subroutine .. 47

VII.7.2 SET_WIND_HEADER Subroutine ... 48

VII.7.3 SET_WIND_FIELD Subroutine .. 49

VII.7.4 SET_ICE_HEADER Subroutine .. 50

VII.7.5 SET_ICE Subroutine ... 50

VII.7.6 SET_TOPO_HEADER Subroutine .. 51

VII.7.7 SET_TOPO_FIELD Subroutine ... 52

VII.7.8 SET_CURRENT_HEADER Subroutine ... 52

VII.7.9 SET_CURRENT_FIELD Subroutine.. 53

VIII Annex C – Nest Organisation and Interpolation of Sp ectra 55

VIII.1 Introduction ... 55

VIII.2 Concept of Nesting ... 55

VIII.3 Nest Set-up in PREPROC Program ... 55

VIII.3.1 Coarse Grid .. 55

VIII.3.2 Fine grid ... 57

VIII.4 Nest Execution in WAM .. 57

VIII.4.1 Coarse Grid .. 58

VIII.4.2 Fine Grid ... 58

VIII.5 Interpolation of Spectra .. 58

VIII.6 Boundary File ... 59

VIII.6.1 Standard Boundary File Format ... 60

IX Annex D – Model Time Steps 61

IX.1 Introduction ... 61

Documentation of a web-based source code
library for WAM

Ref : MyWave - D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 6/ 79

IX.2 Time Steps ... 61

X Annex E – Wave output 63

X.1 Introduction .. 63

X.2 Concept of Spectra and Spectral Parameter .. 63

X.2.1 Spectra ... 63

X.2.2 Integrated Wave Parameter ... 64

X.2.3 Wind Sea and Swell ... 65

X.3 Algorithmic Implementation ... 66

X.3.1 Spectral Domain .. 66

X.3.2 Transformation from Intrinsic to Absolute Frequencies ... 66

X.3.3 The Output Energy Density Spectral Domain .. 67

X.3.4 Computation of Output Integrated Parameter ... 67

X.3.5 Computation of Output Wind Sea and Swell Parameters and Spectra 68

X.4 Output Files ... 68

X.4.1 Integrated Parameter Output File .. 68

X.4.2 Spectra Output File .. 70

XI Annex F – Radiation Stress, Wave Force and Stokes D rift output 72

XI.1 Introduction ... 72

XI.2 Definitions ... 72

XI.2.1 Radiation Stress Tensor .. 72

XI.2.2 Wave Force per Surface Unit .. 72

XI.2.3 Stokes Drift .. 73

XI.3 Computations ... 73

XI.3.1 Radiation Stress Tensor Elements .. 73

XI.3.2 Wave Force per Surface Unit .. 73

XI.3.3 Stokes Drift .. 74

XI.4 Output File .. 74

XII Annex G – Reduced Grid 76

XII.1 Introduction .. 76

XII.2 Definition of the Reduced Grid .. 76

XII.3 Gradients ... 77

XII.4 Reduced Grid Output... 78

XII.5 Example ... 78

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 7/ 79

LIST OF FIGURES

Figure 1: Layout of a distributed version control system ... 12

Figure 2: Start screen for the WAM repository on the GitHub server.. 13

Figure 3: Registration screen for GitHub ... 14

Figure 4: Login screen for registered contributors .. 14

Figure 5: Instruction how to generate a public ssh-key ... 15

Figure 6: Contents of the WAM repository on the GitHub server .. 16

Figure 7: SWAMP case - distribution of wind (left) and significant wave height after two days (right) . 16

Figure 8: Git management in line command mode ... 17

Figure 9: Example for working with the graphical tool Gitk ... 17

Figure 10: Input and output files for PREPROC .. 25

Figure 11: Input and output files for CHIEF ... 25

Figure 12: Input and output files for the post-processing programs .. 25

Figure 13: Flow diagram of main program PREPROC ... 28

Figure 14: Flow diagram of main program CHIEF... 28

Figure 15: Flow diagram of subroutine INITMDL of main program CHIEF ... 29

Figure 16: Flow diagram of subroutine WAMODEL of main program CHIEF 30

Figure 17: Flow diagram of the main post-processing program .. 31

Figure 18: Nest layout ... 56

LIST OF TABLES

Table 1: WAM source code modules .. 22

Table 2: PREPROC_NAMELIST ... 34

Table 3: WAM_NAMELIST (part1) .. 35

Table 4: WAM_NAMELIST (part 2) ... 36

Table 5: WAM_NAMELIST (part 3) ... 37

Table 6: WAM_NAMELIST (part 4) ... 38

Table 7: PRINT_NAMELIST .. 40

Table 8: Coarse grid output table for the set-up shown in Fig. 18 generated by PREPROC 56

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 8/ 79

Table 9: Fine grid input table for the set-up shown in Fig. 18 generated by PREPROC 57

Table 10: Model time steps ... 61

Table 11: Integrated output parameter .. 69

Table 12: Spectra output types ... 71

Table 13: Radiation stress output parameter .. 75

Table 14: Land-sea mask for a regular grid .. 78

Table 15: Land-sea mask for the reduced grid of the same area as in Table 14.................................. 79

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 9/ 79

GLOSSARY AND ABREVIATIONS

DVCS Distributed Version Control System
http hypertext transfer protocol
MPI Message Passing Interface
ssh secure shell
SWAMP Sea Wave Modeling Project
WAM Wave Model

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 10/ 79

APPLICABLE AND REFERENCE DOCUMENTS

 Applicable Documents

 Ref Title Date / Issue

DA 1 MyWave-A1 MyWave: Annex I – “Description of Work September 2011

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 11/ 79

I INTRODUCTION

The third-generation wave model WAM (Wave Model) has been used successfully for more than 20
years at numerous institutes worldwide for wave forecasting and hindcasting. In contrast to first and
second generation models it solves the wave transport equation explicitly without any presumptions on
the shape of the wave spectrum and represents the physics of the wave evolution for the full set of
degrees of freedom of a two-dimensional wave spectrum.

Since in the meantime the source code of the old standard version WAM Cycle 4 (described in Komen
et al. 1994 and Guenther et al. 1992) doesn’t meet modern standards in software design anymore, a
new improved source code has been developed in standard Fortran95, including MPI (Message
Passing Interface) for parallelization purposes. A big advantage of the new state-of-the-art MyWave
version WAM Cycle 4.5.4 is its high-grade modular composition which allows an easy replacement of
individual parts of the code.

During the lifespan of MyWave all new software developments (e.g. improved source functions) will be
transferred to HZG, corresponding updates inserted into the new version of the wave model and
tested in the SWAMP test bed (The SWAMP Group, 1985). To make sure that all wave model
developments of the MyWave project will be available for all participants, the software package is
maintained in a web-based source code library which can be accessed by all registered users. For the
MyWave project the free and open source Distributed Version Control System (DVCS) Git has been
chosen. The Git system handles everything from small to very large projects with speed and efficiency
and has important advantages compared with other modern systems. The corresponding GIT
repository for WAM has been installed on the GitHub server: https://github.com/. During the lifespan of
MyWave the WAM repository is a private one and will be changed to a public one afterwards. The
present documentation includes an introduction into the Git system, a description of the WAM
repository on the GitHub server, how to access the wave model as a contributor, to work with Git and
furthermore a detailed manual for all the updates and extensions of the MyWave WAM Cycle 4.5.4
itself.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 12/ 79

II DISTRIBUTED VERSION CONTROL SYSTEM GIT

For the MyWave project the distributed version control system Git is used because it has a lot of
advantages compared with centralized systems. In those there is only one “master” repository, which
every developer feeds their changes into. Every action must be synchronized with this central
repository. And because it usually resides on a central server, each action has to pass through the
network  -  leaving a developer unable to work if they happen to have no network connection. In
Distributed Version Control Systems (DVCS), each developer has their own fully-fledged repository on
the local computer. In most set-ups there’s an additional central repository on a server that’s used for
sharing. However, this is not a requirement; every developer can perform all important actions in their
local repository: committing changes, viewing differences between revisions, switching branches, etc.

Figure 1: Layout of a distributed version control system

One of Git’s main advantages is its distributed nature. It doesn’t matter whether a complex set-up with
multiple remote repositories is used or just one central server to share code (working “Subversion
style”) would be available. A DVCS can be used independently of any one person’s workflow. Being
able to work offline is an important advantage of DVCS for many developers. One can work without
constraints, even if being not connected to the network.

Speed is another important factor, and the differences between Git and other DVCS here are evident.
In almost any situation, Git is faster than other modern systems, such as Mercurial and Bazaar. One of
the reasons for Git’s remarkable speed is that it was written in C. Another reason is that it was
designed to work with the Linux kernel and therefore has to perform well even under huge amounts of
data.

Another convenience: every local Git repository can serve as a full-fledged back-up, because it
contains the project’s complete history. And considering that almost every action in Git only adds data,
losing data is pretty hard to do.

The biggest advantages, however, lie in Git’s feature set: in how it deals with code and in its tools and
workflows.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 13/ 79

II.1 The WAM repository on the GitHub server

A complete set-up for one of the SWAMP cases, including the source code, makefiles for different
computer systems, user input, batch jobs and output listings (to compare with) is available in a
corresponding repository for the new WAM Cycle 4.5.4 on the GitHub server under the address :
http://mywave.github.io/WAM/ . Figure 2 shows the start screen for the WAM repository on the GitHub
server.

Figure 2: Start screen for the WAM repository on the GitHub server

II.2 Access to the WAM repository via http-protocol

Until the end of the MyWave project, the WAM repository is restricted to the project partners. It is not
yet possible for the general user to fetch the repository - only MyWave participants who are registered
can do that. Therefore all MyWave members who want to work with the wave model have to create an
own account on the GitHub server with a certain arbitrary user name and password as shown in figure
3. Once performed, those will be added to the contributor list of the WAM repository by the account
owner. All registered contributors have an access to the WAM repository and can download the code
to their local machine for example by clicking on the download-tar-button shown in figure 2 on the top
right side. If that is done the following page will appear (figure 4) and the individual contributor can log
in with his/her username and password and download the complete repository as a tar-file via http-
protocol to a local computer.

 Download s

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 14/ 79

Figure 3: Registration screen for GitHub

Figure 4: Login screen for registered contributors

II.3 Access to the WAM repository via ssh-protocol

Another possibility to fetch the WAM repository is an access via ssh-protocol. In that case the public
ssh-key of a local remote computer is required, usually available in the home directory of the
corresponding computer in the directory .ssh (file : id_rsa.pub). That key has to be added to the key
list of registered computers by the account owner. In case that there is no ssh-key available on the
local computer, figure 5 gives the information how to generate it. As soon as the corresponding ssh-
key has been inserted into the official list of keys, it is possible to clone the complete WAM repository

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 15/ 79

via ssh-protocol to a local remote computer with the following command (assumed the Git software is
available on that computer) :

git clone ssh://git@github.com/mywave/WAM.git myWAM

Figure 5: Instruction how to generate a public ssh-key

II.4 Working with Git

An overview of the contents of the WAM repository in mywave/WAM on the GitHub server is given in
figure 6. This webpage will arise by pressing the button ‘View On GitHub’ (figure 2) and after signing in
with a valid username and password on the intermediate page (figure 4). It shows the working
environment for the WAM repository directly on the server together with the list of the available
directories which includes the WAM Cycle 4.5.4 source code in ‘src’, makefiles for different computer
systems (IBM, NEC and SUN) to generate the binaries, the constant user input files in ‘const’,
example batch jobs for a sun cluster in ‘jobs’, output listings to compare with in ‘dayfiles’ to make sure
that a remote implementation on a local computer system has been done successfully. The model set-
up included in the WAM repository has been prepared for one of the SWAMP cases which will be the
test bed for MyWave. Waves are generated in a rectangular basin driven by a constant wind of 18.5
m/s to the north as shown in figure 7 on the left side. The picture on the right side gives the distribution
of the significant wave height after two days simulation time.

After cloning the WAM repository to a local computer the full history with all previous versions and
descriptions of it is available and can be used to work on. Detailed descriptions of all possibilities of
the Git system are included in the book ‘Pro Git’ (Chacon, 2009) which is available online in the net
under : http://git-scm.com/book .

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 16/ 79

Figure 6: Contents of the WAM repository on the GitHub server

Figure 7: SWAMP case - distribution of wind (left) and significant wave height after two days (right)

To work with Git on a local computer is easy, usually two solutions are offered by the system. The first
possibility is to manage the corresponding Git repository in the line command mode as given in an
example in figure 8 that includes a Git command to generate a list of the source code modules
combined with some information about the size of the individual modules. That list will be shown
together with some general information of the WAM Git repository. Furthermore there is usually a
graphical tool available called ‘Gitk’ which offers a very convenient method to manage the
corresponding Git repository. Figure 9 includes an example of Gitk – in this case the last changes
made in the WAM source code of the current master branch.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 17/ 79

Figure 8: Git management in line command mode

Figure 9: Example for working with the graphical tool Gitk

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 18/ 79

III WAM MANUAL

Within the last twenty years the WAM Cycle 4 wave prediction model has become a standard tool for
operational wave predictions as well as for research and engineering applications. The model is widely
distributed and used by more than 150 institutions. The availability of high-speed computers and the
increasing demands for wave prediction products have led to this large user community of the model
code. The quality of the wave analysis and forecasts are continuously improving, mainly due to a
much better quality of the forcing wind fields. Only minor changes have been introduced into the
model itself. This is a clear indication, that the approach taken twenty years ago by the WAM group
has been very successful.

The model code developed in 1991 does not include any progress made in physics, numerics, and
computer technology. On the other hand the code distribution has created a large user community
with a wide range of applications for the model. Therefore it is an on-going task to take into account
the progress made as well as the special demands of the wide user community of the model.

The new designed WAM Cycle 4.5.4 used in the MyWave project is an update of the WAM Cycle 4
wave model, which is described in Komen et al. 1994 and Guenther et al. 1992. Since the following
chapters include descriptions of all the updates and extensions that have been made to improve the
old WAM Cycle 4, the former manual (Günther et al., 1992) has been added to the WAM repository on
the Github server. It explains the basic theory and the underlying equations.The basic physics and
numerics are kept in the new release. The source function integration scheme made by Hersbach and
Janssen, 1999, and the model up-dates (Bidlot, et al., 2005) are incorporated. The other main
improvements introduced in WAM Cycle 4.5.4 are technical improvements, which take into account
the new possibilities of Fortran 95. On request from the user community a number of additional
options are added in the model. These changes are documented in Chapter III.1.

III.1 WAM Cycle 4.5.4 Updates and Extensions

III.1.1 Source Function Integration

The new method is semi implicit and based on the developments at ECMWF (Janssen, personal
communication). It is

Fn +1 = Fn +
∆tS

1−∆tG

Where S = S(un+1,Fn) is the source function computed with the spectrum at time n and the wind
speed at n+1. G = G(un+1,Fn)

The wave model dissipation source function has been reformulated in terms of a mean steepness
parameter and a mean frequency that gives more emphasis on the high-frequency part of the
spectrum and results in a more realistic interaction between wind sea and swell. This has allowed the
relaxation of the prognostic frequency range over which the model equations are integrated. A few
other small adjustments were also necessary to take advantage of the increased dynamic range of the
model (Bidlot, et al., 2005).

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 19/ 79

III.1.2 Time Stepping

The main restriction for high-resolution applications of WAM Cycle 4 was, that time steps have to be a
multiple of one minute. Therefore the time variables are extended by seconds. In addition the century
is included. The new format is:

CHARACTER (LEN=14) ‘YYYYMMDDHHMMSS’

The model now allows that the propagation time step is longer than the source function time step,
which may speed up the computations for very high spatial resolution. The following restrictions for
time steps must still be fulfilled:

 All time steps must have integer ratios with the restart time step,
 Source and propagation time step must have integer ratios with the wind input time step,
 Output times must be integer multiples of the propagation time step.

See Annex A and D for details.

III.1.3 Sea Ice

If a file with a sea ice map is provided to the model, the wave spectra at all grid points marked as ice
will be set to zero after a propagation has been done. Ice field can be changed during a model run.

See Annex A and B for details.

III.1.4 Output of Integrated Parameters

The user can select the following integrated parameters to be processed and stored as gridded fields
in the output file:

Wind speed U10, wind direction, friction velocity, drag coefficient, normalised wave stress, significant
wave height, peak period, mean period, Tm1 period, Tm2 period, mean direction and mean spread.
The wave parameters can be requested for the full wave spectrum, the wind sea spectrum and/or the
swell spectrum.

See Annex A and D for details.

III.1.5 Output of Spectra

Output of spectra is possible at specified output sites. These sites are now defined in the WAM_User
file of CHIEF instead of in the Preproc_User file. The full spectrum, the wind sea and/or the swell
spectrum can be written to one output file and/or printed in the WAM_Prot file. The header of each
spectrum contains all integrated parameters computed from the spectrum.

See Annex A and D for details.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 20/ 79

III.1.6 Multiple Nests in Coarse Grid

A coarse grid run can generate output files for more than one nest.

See Annex A and C for details.

III.1.7 Input of Boundary Spectra in a Fine Grid Model Run

Time interpolation of boundary input spectra into a fine grid run is included in the SUBROUTINE
BOUNDARY_INPUT (in WAM_BOUNDARY_MODULE) of the main program CHIEF. Therefore the
old main program BOUINT is removed from the WAM system. (Carretero, personal communication).
The user can control the output time step of boundary values.

See Annex A and C for details.

III.1.8 Angular Directions

The spectral directions are turned by half of a direction increment to avoid directions parallel to the
grid axis. This results in a better propagation performance.

III.1.9 Blocking

The option for a blocked grid computation is removed.

III.1.10 PRESET Program

The PRESET program has been removed from the WAM software. The coldstart options are moved
into the main Program CHIEF.

III.1.11 Depth Induced Wave Breaking

Optional depth induced wave breaking (Battjes & Janssen, 1978) has been included as an additional
source function. The code has been taken from the Promise version of WAM.

III.1.12 In-stationary Current and Water Depth

Optionally the currents and /or the water depth can be changed during a model run. This includes that
sea points can become dry.

See Annex A and B for details.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 21/ 79

III.1.13 Output of Radiation Stress, wave force and Stokes Drift

Optional radiation stresses are computed during a model run and saved into a separate file or printed
into the WAM_Prot file.

See Annex A and F for details.

III.1.14 Namelist Formatted Control Parameters

Namelists can be used for all main programs instead of the formatted user files to define the control
parameters.

See Annex A for details.

III.1.15 Input of coordinates, grid increments and internal representation.

The use of high spatial resolution grids was limited in the old WAM versions, because all coordinates
where defined as real values in degrees. Therefore the internal representation of coordinates has
been change to integer values in 100*seconds. This enables the program to handle grids with a
minimum resolution of 0.02 seconds, which corresponds to about 1m.

III.1.16 Reduced Gaussian Grid

An option to generate a reduced Gaussian grid was introduced.

See Annex G for details.

III.2 WAM Cycle 4.5.4 Source Code

The whole program system is coded in standard FORTRAN 90.

The main features used are:

• ‘Free format’ code,
• Modules instead of common blocks,
• Dynamical allocation of arrays,
• Application of new intrinsic functions,
• IMPLICIT none,
• INTERFACE blocks,
• USE module, ONLY.

This implies, that one executable can be applied for all applications (parameter statements for array
dimensions have not to be changed anymore). The use of ‘IMPLICIT NONE’, ‘INTERFACE’ and ‘USE
module, ONLY’ was introduced to make the code more robust and to prevent coding error.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 22/ 79

Table 1: WAM source code modules

Module used by Purpose

preproc_module PREPROC Stores variables and routines special to PREPROC
preproc_user_module PREPROC Default setting and user input of PREPROC control

parameters
wam_boundary_module CHIEF Input and output of nest boundary values
wam_coldstart_module CHIEF Generates cold start
wam_coordinate_module all programs Processes model coordinates
wam_current_module CHIEF Stores and processes currents
wam_file_module all programs Stores definition of input, output, and file names and units
wam_fre_dir_module PREPROC, CHIEF Stores frequency-direction data and routines for processing
wam_general_module all programs Basic subroutines and functions
wam_grid_module PREPROC, CHIEF Stores model grid
wam_ice_module CHIEF Stores and processes ice fields
wam_initial_module CHIEF Routines and variables to initialise the model
wam_interface_module CHIEF Routines to process spectra
wam_model_module CHIEF Run-time model data (spectra, wind, currents, depth)
wam_nest_module PREPROC, CHIEF Stores nest information and routines to generate them
wam_output_module CHIEF Performs output of integrated parameters and spectra
wam_output_set_up_module CHIEF

Stores scaling information, parameter names, output
options, and output sites

wam_print_module post processing Stores variables and routines used by the post-processing
programs

wam_print_user_module post processing Default setting and user input of post-processing control
parameters

wam_propagation_module CHIEF Propagation computation
wam_radiation_module CHIEF

Stores routines to compute and to write and radiation
stresses

wam_restart_module CHIEF Generates hot start and saves restart files
wam_source_module CHIEF Source function computation
wam_timopt_module all programs Store model times and options
wam_topo_module CHIEF Stores and processes water depth fields
wam_user_module CHIEF Default setting and user input of CHIEF control

parameters
wam_wind_module CHIEF Stores and processes winds

Remark:

Some modules are interacting. Therefore some compilers require a specific order for the compilation
(see Chapter III.5). All modules must anyhow be compiled before the other program units.

III.3 The Model System

The model system consists of three major program parts:

1. Pre-processing program
2. Processing program
3. Post-processing programs

The WAM model is designed to run as a module of a more general system (atmosphere/waves or
currents/waves) or as a stand-alone program.

See Annex A to F for details of user control parameters and user input files.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 23/ 79

III.3.1 Pre-processing Program

PREPROC generates time independent information for the wave model. Starting from a regional or
global topographic data set, the model grid is created in the form required for the model. The
frequency and angular arrays are generated.

A number of model constants are pre-computed and stored together with the model grid, frequency,
and angular information in the output file.

If nested grids are generated, the information for the output, input and interpolation of boundary
spectra are pre-computed.

A topographic data file has to be provided by the user. If a fine grid run is requested, the PREPROG
output file from the coarse grid is necessary, too.

III.3.2 Processing Program

CHIEF is the shell program of the stand-alone version of the wave model calling the subroutine
version of the wave model. All time dependent variables and user-defined parameters are fixed, the
wind fields are transformed into the model formats, and the transport equation is integrated over a
chosen period. The initial spectra are generated in case of a cold start.

The program uses the output file of PREPROC as set-up file. A wind input file and optional ice file
and/or current file and/or water depth file and/or boundary value files have to be provided by the user.

The user can select a number of model options and parameters. The following model options are
implemented:

• Cartesian or spherical propagation,
• Deep or shallow water,
• Without or with depth or with depth and current refraction,
• Depth induced breaking,
• Nested grids,
• Time interpolation of winds, currents, water depth, and ice fields or no time interpolation,
• Model output at regular intervals or by list,
• Printer and/or file output of individually selected parameters,
• Output variables,
• Output sites for spectra,
• Cold or hot start.

The model results (if selected) are saved in three files, one for integrated parameters (MAP…), one for
spectra (OUT…) at specified sites and one for radiation stresses (RAD…).

III.3.3 Post-processing Programs

Four post-processing programs are provided:

1. PRINT_GRID_FILE: Prints the maps of integrated parameters,
2. PRINT_TIME: Prints time series of integrated parameters at selected sites,
3. PRINT_SPECTRA_FILE: Prints time series of spectra at selected output sites,
4. PRINT_RADIATION_FILE: Prints the maps of radiation stress parameters.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 24/ 79

The programs are set up for the model result files. Controlled by the user input the results are printed.
Plot software is not included in the standard set of programs.

III.4 Communication between the Sub Systems

The program system uses 6 different types of files:

• User input files, which are needed by each program to control the execution.
• Protocol output files, which are generated by each program.
• Input data files, which have to be provided by the user.
• A Set-up file, which is generated by PREPROC and used by CHIEF.
• Result files, which are generated by CHIEF and used by the post-processing programs.
• Restart files, which are generated and used by CHIEF.

Figures 10, 11 and 12 show an overview about the input and output files used by the different main
programs.

The file names for the user input and protocol output files are defined in the modules and cannot
be changed from outside the program. The files have to be in the directory where the program is
executed. The user input files have a fixed format or are namelists. Examples are provided with the
code. See Annex A for details.

Input data files are:

• Topographic data for PREPROC,
• Wind data for CHIEF,
• Current data for CHIEF (optional),
• Depth data for CHIEF (optional),
• Ice data for CHIEF (optional).

These files are dynamically assigned by OPEN. The file names must be defined in the user input files.
The full path names have to be provided if the data are not in the directory where the program is
executed. See Annex B for details.

Set-up file is generated by PREPROC. It contains the model constants and the general grid
information. This file is dynamically assigned by OPEN. The file names are pre-defined in the user
modules, but can be changed in the user input files. The full path names have to be provided if the
data are not in the directory where the program is executed. The set-up file is unformatted.

Result files are the model output files generated by CHIEF. Different files store the integrated data,
the spectra and the radiation stress output. If the nesting option is on the model generates boundary
value files for a follow-up fine grid or reads in boundary spectra from existing files. All these files are
dynamically assigned by OPEN. The file names are built from in the user modules pre-defined file
identifier, which can be changed in the user input files, extended by the date of the last output stored
in the file. The full path names have to be provided if the data are not stored in the directory where the
program is executed. Details of the file name convention are given in Subroutine OPEN_FILE, which
is located in the WAM_GENERAL_MODULE. All result files are unformatted. Restart files follow the
same rules as result files.

Fortran read and write units inside the programs are integer variables following the convention IUxx,
where xx is the unit number, e.g. xx = 01, xx = 11. The default units and standard filenames are
defined in the user modules and can be changed in the user input files.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 25/ 79

Figure 10: Input and output files for PREPROC

Figure 11: Input and output files for CHIEF

Figure 12: Input and output files for the post-processing programs

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 26/ 79

III.5 Compile Order for Modules

The modules provided with the model code are interdependent. Therefore the modules and programs
have to be compiled in the following order:

III.5.1 Pre-processing program PREPROC

WAM_SOURCE/Module/WAM_FILE_MODULE.f90
WAM_SOURCE/Module/WAM_COORDINATE_MODULE.f90
WAM_SOURCE/Module/WAM_GENERAL_MODULE.f90
WAM_SOURCE/Module/WAM_FRE_DIR_MODULE.f90
WAM_SOURCE/Module/WAM_GRID_MODULE.f90
WAM_SOURCE/Module/WAM_NEST_MODULE.f90
WAM_SOURCE/Module/PREPROC_MODULE.f90
WAM_SOURCE/Module/PREPROC_USER_MODULE.f90
WAM_SOURCE/Preproc/PREPROC.f90
WAM_SOURCE/Preproc/READ_TOPOGRAPHY.f90
WAM_SOURCE/Preproc/READ_PREPROC_USER.f90

III.5.2 Processing program CHIEF

WAM_SOURCE/Module/WAM_FILE_MODULE.f90
WAM_SOURCE/Module/WAM_COORDINATE_MODULE.f90
WAM_SOURCE/Module/WAM_GENERAL_MODULE.f90
WAM_SOURCE/Module/WAM_TIMOPT_MODULE.f90
WAM_SOURCE/Module/WAM_FRE_DIR_MODULE.f90
WAM_SOURCE/Module/WAM_MODEL_MODULE.f90
WAM_SOURCE/Module/WAM_INTERFACE_MODULE.f90
WAM_SOURCE/Module/WAM_GRID_MODULE.f90
WAM_SOURCE/Module/WAM_TOPO_MODULE.f90
WAM_SOURCE/Module/WAM_CURRENT_MODULE.f90
WAM_SOURCE/Module/WAM_ICE_MODULE.f90
WAM_SOURCE/Module/WAM_OUTPUT_SET_UP_MODULE.f90
WAM_SOURCE/Module/WAM_WIND_MODULE.f90
WAM_SOURCE/Module/WAM_NEST_MODULE.f90
WAM_SOURCE/Module/WAM_BOUNDARY_MODULE.f90
WAM_SOURCE/Module/WAM_SOURCE_MODULE.f90
WAM_SOURCE/Module/WAM_OUTPUT_MODULE.f90
WAM_SOURCE/Module/WAM_PROPAGATION_MODULE.f90
WAM_SOURCE/Module/WAM_RADIATION_MODULE.f90
WAM_SOURCE/Module/WAM_COLDSTART_MODULE.f90
WAM_SOURCE/Module/WAM_RESTART_MODULE.f90
WAM_SOURCE/Module/WAM_INITIAL_MODULE.f90
WAM_SOURCE/Module/WAM_USER_MODULE.f90
WAM_SOURCE/Chief/CHIEF.f90
WAM_SOURCE/Chief/WAVEMDL.f90
WAM_SOURCE/Chief/INITMDL.f90
WAM_SOURCE/Chief/WAMODEL.f90
WAM_SOURCE/Chief/PRINT_WAM_STATUS.f90
WAM_SOURCE/Chief/READ_WAM_USER.f90
WAM_SOURCE/Chief/READ_WIND_INPUT.f90
WAM_SOURCE/Chief/READ_TOPO_INPUT.f90
WAM_SOURCE/Chief/READ_CURRENT_INPUT.f90
WAM_SOURCE/Chief/READ_BOUNDARY_INPUT.f90
WAM_SOURCE/Chief/READ_ICE_INPUT.f90

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 27/ 79

III.5.3 Post-Processing program PRINT_GRID_FILE

WAM_SOURCE/Module/WAM_FILE_MODULE.f90
WAM_SOURCE/Module/WAM_COORDINATE_MODULE.f90
WAM_SOURCE/Module/WAM_GENERAL_MODULE.f90
WAM_SOURCE/Module/WAM_PRINT_MODULE.f90
WAM_SOURCE/Module/WAM_PRINT_USER_MODULE.f90
WAM_SOURCE/Module/WAM_OUTPUT_SET_UP_MODULE.f90
WAM_SOURCE/Module/WAM_PRINT_MODULE.f90
WAM_SOURCE/Print/PRINT_GRID_FILE.f90
WAM_SOURCE/Print/READ_GRID_FILE.f90
WAM_SOURCE/Print/READ_GRID_USER.f90

III.5.4 Post-Processing program PRINT_TIME

WAM_SOURCE/Module/WAM_FILE_MODULE.f90
WAM_SOURCE/Module/WAM_COORDINATE_MODULE.f90
WAM_SOURCE/Module/WAM_GENERAL_MODULE.f90
WAM_SOURCE/Module/WAM_TIMOPT_MODULE.f90
WAM_SOURCE/Module/WAM_PRINT_MODULE.f90
WAM_SOURCE/Module/WAM_PRINT_USER_MODULE.f90
WAM_SOURCE/Print/PRINT_TIME.f90
WAM_SOURCE/Print/READ_GRID_FILE.f90
WAM_SOURCE/Print/READ_TIME_USER.f90

III.5.5 Post-Processing program PRINT_SPECTRA_FILE

WAM_SOURCE/Module/WAM_FILE_MODULE.f90
WAM_SOURCE/Module/WAM_COORDINATE_MODULE.f90
WAM_SOURCE/Module/WAM_GENERAL_MODULE.f90
WAM_SOURCE/Module/WAM_PRINT_MODULE.f90
WAM_SOURCE/Module/WAM_PRINT_USER_MODULE.f90
WAM_SOURCE/Print/PRINT_SPECTRA_FILE.f90
WAM_SOURCE/Print/READ_SPECTRA_FILE.f90
WAM_SOURCE/Print/READ_SPECTRA_USER.f90

III.5.6 Post-Processing program PRINT_RADIATION_FILE

WAM_SOURCE/Module/WAM_FILE_MODULE.f90
WAM_SOURCE/Module/WAM_COORDINATE_MODULE.f90
WAM_SOURCE/Module/WAM_GENERAL_MODULE.f90
WAM_SOURCE/Module/WAM_PRINT_MODULE.f90
WAM_SOURCE/Module/WAM_PRINT_USER_MODULE.f90
WAM_SOURCE/Module/WAM_OUTPUT_SET_UP_MODULE.f90
WAM_SOURCE/Print/PRINT_RADIATION_FILE.f90
WAM_SOURCE/Print/READ_RADIATION_FILE.f90
WAM_SOURCE/Print/READ_RADIATION_USER.f90

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 28/ 79

III.6 Model Flow Diagrams

Figure 13: Flow diagram of main program PREPROC

Figure 14: Flow diagram of main program CHIEF

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 29/ 79

Figure 15: Flow diagram of subroutine INITMDL of main program CHIEF

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 30/ 79

Figure 16: Flow diagram of subroutine WAMODEL of main program CHIEF

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 31/ 79

Figure 17: Flow diagram of the main post-processing program

IV SUMMARY AND OUTLOOK

According to the specification agreed upon in the work package description of the MyWave project,
all the work for task 1.4 of WP1 has been done successfully. The web-based source code library for
the MyWave version WAM Cycle 4.5.4 is available in the web in due time on the Github server
(http://mywave.github.io/WAM/) and can be accessed by all registered MyWave contributors. The
WAM repository includes a complete set-up for one of the SWAMP cases and can be downloaded to
an arbitrary local computer to work with it. New developments achieved during MyWave can be
individually inserted into a local WAM repository, but the master repository on the Github server
should be changed by the account owner only to avoid confusion and to make sure that only fully
tested and checked branches will be included in the master WAM repository. During the lifespan of
MyWave the WAM repository will remain private, but afterwards the new developed MyWave version
will be accessible for the general user in a public repository including all the new developments
achieved during the MyWave project.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 32/ 79

V REFERENCES

Battjes, J.A., Janssen, J.P.F.M., 1978. Energy loss and set-up due to breaking of random waves. In:
Proceedings of the 16th Conference on Coastal Engineering, ASCE, Hamburg, Germany, vol. 1, pp.
569–587

Chacon, S., 2009: Pro Git, Apress, ISBN-13 : 978-1430218333

Günther, H., S. Hasselmann, P.A.E.M. Janssen, 1992: The WAM Model Cycle 4.0. User Manual.
Technical Report No. 4, Deutsches Klimarechenzentrum, Hamburg, Germany. 102 pages.

Hersbach, H. and P.A.E.M. Janssen, 1999: Improvements of the short fetch behavior in the WAM
model. J. Atmos. Oceanic Techn., 16, 884-892.

Komen, G.J., L.Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P.A.E.M. Janssen, 1994:
Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge, UK, 560 pages.

Bidlot, J., P. Janssen and S. Abdalla, 2005: A revised formulation for ocean wave dissipation in
CY29R1. MEMORANDUM RESEARCH DEPARTMENT of ECMWF, April 7, 2005 File:
R60.9/JB/0516

SWAMP group, 1985: Ocean wave modeling, Plenum Press, New York and London

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 33/ 79

VI ANNEX A – USER INPUT :

VI.1 Introduction

This Annex describes the input parameters, which have to be defined to control the
different options and settings in the WAM-Model programs.

VI.2 Concept of user input

All control parameters, which can or must be defined by the user, are combined in NAME-LISTs.
NAMELISTs are defined for PREPROC, the main WAM model CHIEF, and the post-processing
programs. The list is read either from a file or from standard input. Alternatively formatted text files can
be used as input for the most important control parameters.

The programs will look for a file. If the file exists, it will first try to read the NAMELIST, if this fails a
formatted reading is used for the formatted text file. If a file does not exist, the NAMELIST must be in
the standard input.

Examples of the NAMELISTs and formatted text files are provided with the code.

VI.3 PREPROC Control Parameters

The code for the PREPROC program is in PREPROC_USER_MODULE and in
READ_PREPROC_USER.

The program tries to open a file with the name

‘Preproc_User’.

If the file exists it will try to read the PREPROC_NAMELIST. If the reading was not successful, the
program will read the same file in a formatted style as required by the program
READ_PREPROC_USER. If the file does not exist the PREPROC_NAMELIST is read from standard
input.

Default values for the control parameter are defined in subroutine
CLEAR_PREPROC_USER_MODULE in the PREPROC_USER_MODULE.

The NAMELIST variables are listed in Tab. 2. The user has to define the variables marked by “-user-“
to assure a successful PREPROC run for a grid set-up without nesting and depth corrections.

The model grid axes are defined by the parameters marked by “-user-3 “. If none of the parameters is
given the axis definitions will be taken from the header included in the topography input file. Only 3 out

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 34/ 79

of 4 parameters have to be defined. E.g. for the longitudes possible combinations are: (NX, XDELLO,
AMOWEP) or (NX, AMOWEP, AMOEAP) or (XDELLO, AMOWEP, AMOEAP).

The water depth can be changed in up to 80 areas. The boundaries of areas must be defined by the
parameter arrays XOUTS, XOUTN, XOUTW, XOUTE and the new depth in NOUTD. If the water depth
in more than 80 areas has to be changed, the parameter NOUT in the PREPROC_USER_MODULE
must be updated.

For a coarse grid set-up the up to 20 nest areas can be defined. The first elements of the arrays
AMOSOC, AMONOC, AMOWEC and AMOEAC must be filled with the nest boundary coordinates. In
addition a name can be defined for each nest area. If more than 20 nest areas have to be defined, the
parameter N_NEST in the PREPROC_USER_MODULE must be increased.

All coordinates and grid increments are CHARACTER (LEN=13) variables. The input can be either in
REAL degrees, formatted as F13.8, or formatted as ‘sDDD:MM:SS.SS’,

where

s is the sign of the coordinate (+ for East and North or – for West and South),
DDD are the degrees,
MM are the minutes and
SS.SS are the seconds of the coordinate (smallest value allowed is 00.02).

For a fine grid set-up the parameter PREPROC_C_INPUT_FILE_NAME must be defined with the
coarse grid PREPROC output file name. If a file name is not given or the file does not exist a fine grid
is not set-up.

Table 2: PREPROC_NAMELIST
1C(l) = CHARACTER (LEN=l); R = REAL; I = INTEGER; L = LOGICAL,
 R(n) and I(n) arrays of dimension n, C(l, n) are CHARACTER arrays of (LEN=l) and dimension n
2 –user- = parameter must be defined by user; -999 = undefined.
3 see text for explanation.

Variable name Type 1 Default 2 Description
HEADER C(80) ‘blank’ Name of the processed grid
ITEST I 0 Test output level

Frequency direction grid
KL I 24 No. of wave directions
ML I 25 No. of wave frequencies
FR1 R 0.04177248 First frequency

Basic model grid
REDUCED_GRID L .FALSE. If .TRUE. a reduced Gaussian grid is set-up;

otherwise a regular spherical grid is generated
NX I -user- 3 No. of latitudes in grid
NX I -user- 3 No. of latitudes in grid
NY I -user- 3 No. of longitudes in grid
XDELLA C(13) -user- 3 Latitude increment
XDELLO C(13) -user- 3 Longitude increment
AMOSOP C(13) -user- 3 Most southern latitude of grid
AMONOP C(13) -user- 3 Most northern latitude of grid
AMOWEP C(13) -user- 3 Most western longitude of grid
AMOEAP C(13) -user- 3 Most eastern longitude of grid
LAND R 0 Depth greater than LAND are sea points (maybe d ry sea

points)
Depth correction areas in basic model grid

XOUTS C(13,80) ‘blank’ Most southern latitudes of g rid correction areas
XOUTN C(13,80) ‘blank’ Most northern latitudes of g rid correction areas
XOUTW C(13,80) ‘blank’ Most western longitudes of g rid correction areas
XOUTE C(13,80) ‘blank’ Most eastern longitudes of g rid correction areas
NOUTD R(80) -999. Depth in grid correction areas

Nest areas in a coarse Grid
AMOSOC C(13,20) ‘blank’. Most southern latitudes of nest areas for a coarse

grid set-up
AMONOC C(13,20) ‘blank’ Most northern latitudes of nest areas for a coarse

grid set-up
AMOWEC C(13,20) ‘blank’ Most western longitudes of nest areas for a coarse

grid set-up
AMOEAC C(13,20) ‘blank’ Most eastern longitudes of nest areas for a coarse

grid set-up
NEST_NAME C(20,20) ‘blank’ Names given to the nests for a coarse grid set-up
nestcode I(20) 0 If == 1 then boundary values are w ritten in ASCII

otherwise output is binary

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 35/ 79

Fine grid set-up information from coarse grid preproc
PREPROC_C_INPUT_FILE_UNIT I 10 Logical unit number to read the coarse grid preproc

output file for a fine grid set-up
PREPROC_C_INPUT_FILE_NAME C(80) ‘blank’ Name of the coarse grid preproc output file for a

fine grid set-up
Depth data file for basic model grid

TOPO_INPUT_FILE_UNIT I 1 Logical unit number to rea d the depth data file.
TOPO_INPUT_FILE_NAME C(80) -user- Name of the depth data file.

Preproc output file
PREPROC_OUTPUT_FILE_UNIT I 7 Logical unit number to write the preproc output file.
PREPROC_OUTPUT_FILE_NAME C(80) Grid_info Name of th e preproc output file.

VI.4 Main WAM model Control Parameters

The code for the main WAM-model program is in WAM_USER_MODULE and READ_WAM_USER.

The program tries to open a file with the name

‘Chief_User’

If the file exists it will try to read the WAM_NAMELIST. If the reading was not successful, the program
will read the same file in a formatted style as required by the program READ_WAM_USER. If the file
does not exist the WAM_NAMELIST is read from standard input.

The NAMELIST variables are listed in Tab. 3-6. The user has to define the variables marked by “-user-
“ to assure a successful WAM run.

Default values for the control parameter are defined in subroutine CLEAR_WAM_USER_MODULE in
the WAM_USER_MODULE.

If more than 100 fixed output dates or more than 20 output sites should be processed, the parameters
NOUTT or MOUTP in the WAM_USER_MODULE must be increased.

All coordinates and grid increments are CHARACTER (LEN=13) variables. The input can be either in
REAL degrees, formatted as F13.8, or formatted as ‘sDDD:MM:SS.SS’,

where

s is the sign of the coordinate (+ for East and North or – for West and South),
DDD are the degrees,
MM are the minutes and
SS.SS are the seconds of the coordinate (smallest value allowed is 00.02).

Table 3: WAM_NAMELIST (part1)
1C(l) = CHARACTER (LEN=l); R = REAL; I = INTEGER; L = LOGICAL,
 R(n) and I(n) arrays of dimension n, C(l, n) are CHARACTER arrays of (LEN=l) and dimension n
2 –user- = parameter must be defined by user; -999 = undefined.

Variable name Type 1 Default 2 Description
START_DATE C(14) -user- Start date / time group of model run

(YYYYMMDDhhmmss)
END_DATE C(14) -user- End date / time group of model run (YY YYMMDDhhmmss)

Start option and cold start settings
COLDSTART L .TRUE. Model start option:

True = cold-start; false = hot-start.
IOPTI I 1 Cold-start option :

0: wind independent initial values. Jonswap
spectrum with cosine square angular spreading from
given parameters;
1: Jonswap spectrum with cosine square angular
spreading from Konswap fetch laws;
2: Jonswap spectrum with cosine square angular

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 36/ 79

spreading from Jonswap fetch laws. Energy from
given parameters, if wind speed is zero

ALPHA R 0.018 Phillips parameter of Jonwap spectra for co ld-start
FM R 0.200 Peak frequency of Jonwap spectra for cold-s tart
GAMMA R 3.000 Over shoot factor of Jonwap spectra for col d-start
SIGMA_A R 0.070 Left peak width of Jonwap spectra for cold- start
SIGMA_B R 0.090 Right peak width of Jonwap spectra for cold -start
THETAQ R 0. Mean wave direction of spreading function for cold-

start
FETCH R 30000. Fetch used for fetch laws for cold-start s pectra

[m]. If FETCH is not positive, then 0.5 of the
latitude increment is used

Model options
SPHERICAL_RUN L .TRUE. Propagation option:

True: model runs on spherical grid;
False: model runs on Cartesian grid

SHALLOW_RUN L .TRUE. Shallow water option:
True: model takes water depth into account;
False: deep water run

REFRACTION_D_RUN L .FALSE. Depth refraction option:
True: depth refraction terms are used;
False: depth refraction terms are ignored

REFRACTION_C_RUN L .FALSE. Current refraction optio n:
True: current refraction terms are used;
False: current refraction terms are ignored

WAVE_BREAKING_RUN L .FALSE. Depth induced wave brea king option:
True: source term is active;
False: source term is ignored

PHILLIPS_RUN L .FALSE. Phillips linear growth option:
True: source term is active;
False: source term is ignored

ITEST I 0 Test output level
Integration time steps

PROPAGATION_TIMESTEP I -user- Propagation integrati on time step
PROPAGATION_TIMESTEP_UNIT C(1) ‘S’ Unit of propagat ion time step

(M = minute, H = hour, S = second)
SOURCE_TIMESTEP I 0 Source function integration tim e step

<= 0: source function = propagation time step
SOURCE_TIMESTEP_UNIT I ‘S’ Unit of source function integration time step

(M = minute, H = hour, S = second)
Restart settings

RESTART_SAVE_TIMESTEP R 0 Time step to save restart
>0: restart files are saved in regular time steps
=0: restart file is saved at the end of the run
<0: restart file is not saved

RESTART_SAVE_TIMESTEP_UNIT C(1) ‘S’ Unit of time st ep to save restart files
(M = minute, H = hour, S = second)

RESTART_FILE_UNIT I 17 Logical file unit number to read and write restart
file

RESTART_FILE_NAME C(80) ‘BLS’ File identifier of re start file
The full file name is the identifier extended by a
date / time group.

…/ Part 2

Table 4: WAM_NAMELIST (part 2)
1C(l) = CHARACTER (LEN=l); R = REAL; I = INTEGER; L = LOGICAL,
 R(n) and I(n) arrays of dimension n, C(l, n) are CHARACTER arrays of (LEN=l) and dimension n

2 –user- = parameter must be defined by user; -999 = undefined.
Variable name Type 1 Default 2 Description

Coarse grid
COARSE_GRID_RUN L .FALSE. Coarse grid option:

True: boundary values are saved for a follow-up
fine grid run;
False: no output

COARSE_OUTPUT_TIMESTEP I 0 Time step to write bound ary spectra for a follow-up
fine grid run
> 0: output in regular given time steps;
<= 0: output every propagation time step

COARSE_OUTPUT_TIMESTEP_UNIT C(1) ‘S’ Unit of time s tep to write boundary spectra
(M = minute, H = hour, S = second)

COARSE_FILE_SAVE_TIMESTEP I 0 Time step to save coa rse grid output boundary files
> 0: save in regular given time steps;
<= 0: save every output file save time step

COARSE_FILE_SAVE_TIMESTEP_UNIT C(1) ‘S’ Unit of tim e step to save boundary files
(M = minute, H = hour, S = second)

COARSE_OUTPUT_FILE_UNIT I 70 Logical file unit numb er to write coarse grid
boundary output files.
If more than one nest is processed the units are
unit number + nest number-1

COARSE_OUTPUT_FILE_NAME C(80) ‘CBO’ File identifier of coarse grid boundary output
files.
The full file name is the identifier extended by a
date / time group.
If more than one nest is processed the second and
third character are replaced by the nest number.

Fine grid

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 37/ 79

FINE_GRID_RUN L .FALSE. Fine grid option:
True: boundary values from a previous coarse grid
run are used;
False: no influx of energy at grid boundaries

FINE_INPUT_FILE_UNIT I 2 Logical file unit number t o read coarse grid
boundary output files

FINE_INPUT_FILE_NAME C(80) ‘CBO’ File identifier of the coarse grid boundary output
files to be used for this fine grid run. The full
file name is the identifier extended by a date /
time group.

Wind input
WIND_INPUT_TIMESTEP I -user- Time step to use winds from the wind input file.

WIND_INPUT_TIMESTEP must be an integer multiple of
WIND_OUTPUT_TIMESTEP

WIND_INPUT_TIMESTEP_UNIT C(1) ‘S’ Unit of wind inpu t time step
(M = minute, H = hour, S = second)

WIND_OUTPUT_TIMESTEP I 0 Time step to pass winds to the wave integration.
<= 0: wind output time step = wind input time step
If (wind output time step < wind input time step)
winds are linearly interpolated in time.
Wind input time step must be a multiple integer of
wind output time step

WIND_OUTPUT_TIMESTEP_UNIT C(1) ‘S’ Unit of wind out put time step
(M = minute, H = hour, S = second)

WIND_INPUT_FILE_UNIT I 1 Logical file unit number o f wind data input.
WIND_INPUT_FILE_NAME C(80) -user- File name of wind data input file.

Depth data input
TOPO_INPUT_TIMESTEP I 0 Time step to use depth from the depth input file

<= 0: depth is stationary
TOPO_INPUT_TIMESTEP_UNIT C(1) ‘S’ Unit of depth inp ut time step

(M = minute, H = hour, S = second)
TOPO_OUTPUT_TIMESTEP I 0 Time step to pass depth da ta to the wave

integration.
<= 0: depth output time step = depth input time
step
If (depth output time step < depth input time step)
depth is linearly interpolated in time.
Depth input time step must be a multiple integer of
depth output time step

TOPO_OUTPUT_TIMESTEP_UNIT C(1) ‘S’ Unit of depth ou tput time step
(M = minute, H = hour, S = second)

TOPO_INPUT_FILE_UNIT I 8 Logical file unit number o f depth data input
TOPO_INPUT_FILE_NAME C(80) ‘blank’ File name of dep th data input file.

If the file does not exist, the depth data are used
from PREPROC or out of the restart file.

…/ Part 3

Table 5: WAM_NAMELIST (part 3)
1C(l) = CHARACTER (LEN=l); R = REAL; I = INTEGER; L = LOGICAL,
 R(n) and I(n) arrays of dimension n, C(l, n) are CHARACTER arrays of (LEN=l) and dimension n
2 –user- = parameter must be defined by user; -999 = undefined.

Variable name Type 1 Default 2 Description
Current data input

CURRENT_INPUT_TIMESTEP I 0 Time step to use current s from the current input
file
<= 0: currents are stationary

CURRENT_INPUT_TIMESTEP_UNIT C(1) ‘S’
Unit of current input time step
(M = minute, H = hour, S = second)

CURRENT_OUTPUT_TIMESTEP I 0 Time step to pass curre nt data to the wave
integration.
<= 0: current output time step = current input time
step
If (current output time step < current input time
step) currents are linearly interpolated in time.
Current input time step must be a multiple integer
of current output time step

CURRENT_OUTPUT_TIMESTEP_UNIT C(1) ‘S’ Unit of curre nt output time step
(M = minute, H = hour, S = second)

CURRENT_INPUT_FILE_UNIT I 9 Logical file unit numbe r of current data input
CURRENT_INPUT_FILE_NAME C(80) ‘blank’ File name of current data input file.

Only used if current refraction is active.
If the file does not exist and current refraction
is active, the current data are used out of the
restart file.

Ice data input
ICE_INPUT_TIMESTEP I 0 Time step to use ice from th e current input file

<= 0: ice is stationary
ICE_INPUT_TIMESTEP_UNIT C(1) ‘S’ Unit of ice input time step

(M = minute, H = hour, S = second)
ICE_INPUT_FILE_UNIT I 3 Logical file unit number of ice data input
ICE_INPUT_FILE_NAME C(80) ‘blank’ File name of ice data input file.

If file name is “blank” (default) ice is not used
in the model run.
If the file does not exist, model runs without ice.

Wave output
PARAMETER_OUTPUT_TIMESTEP I 1 Time step to write ou t integrated parameters

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 38/ 79

PARAMETER_OUTPUT_TIMESTEP_UNIT C(1) ‘H’ Unit of int egrated parameter output time step
(M = minute, H = hour, S = second)

PARAMETER_OUTPUT_FILE_UNIT I 20 Logical file unit n umber of integrated parameter
output

PARAMETER_OUTPUT_FILE_NAME C(80) ‘MAP’ File identif ier of integrated parameter output
files.
The full file name is the identifier extended by a
date / time group.

SPECTRA_OUTPUT_TIMESTEP I 1 Time step to write out spectra
SPECTRA_OUTPUT_TIMESTEP_UNIT C(1) ‘H’ Unit of spect ra output time step

(M = minute, H = hour, S = second)
SPECTRA_OUTPUT_FILE_UNIT I 25 Logical file unit num ber of spectra output
SPECTRA_OUTPUT_FILE_NAME C(80) ‘OUT’ File identifie r of spectra output files.

The full file name is the identifier extended by a
date / time group

OUTPUT_FILE_SAVE_TIMESTEP I 24 Time step to integra ted parameter and spectra
output files
> 0: save in regular given time steps;
<= 0: save at end of run

OUTPUT_FILE_SAVE_TIMESTEP_UNIT C(1) ‘H’ Unit of out put file save time step
(M = minute, H = hour, S = second)

COUTT C(14) ‘blank’ Up to 20 output date / time groups fo r integrated
parameters and spectra (YYYYMMDDhhmmss)
If any date is specified all given output time
steps for integrated parameters and spectra will be
ignored.

FFLAG_P L(32) .TRUE. File output flag for each integrated p arameter
type. (Annex E)

PFLAG_P L(32) .FALSE. Printer output flag for each integrat ed parameter
type. (Annex E)

FFLAG_S L(4) .TRUE. File output flag for each spectrum type . (Annex E)
PFLAG_S L(4) .FALSE. Printer output flag for each spectrum type. (Annex

E)
OUTLAT C(13,20

)
-999. Up to 20 latitudes to do spectra output.

If not specified spectra output is not done.
OUTLONG C(13,20

)
-999. Up to 20 longitudes to do spectra output.

If not specified spectra output is not done.
NAME C(20,20

)
‘ ‘ Optional name given to spectra output sites.

…/ Part 4

Table 6: WAM_NAMELIST (part 4)
1C(l) = CHARACTER (LEN=l); R = REAL; I = INTEGER; L = LOGICAL,
 R(n) and I(n) arrays of dimension n, C(l, n) are CHARACTER arrays of (LEN=l) and dimension n
2 –user- = parameter must be defined by user; -999 = undefined.

Variable name Type 1 Default 2 Description
Radiation stress output

RADIATION_OUTPUT_TIMESTEP I 0 Time step to write ou t radiation stresses
<= 0: output every propagation time step

RADIATION_OUTPUT_TIMESTEP_UNIT C(1) ‘S’ Unit of rad iation output time step
(M = minute, H = hour, S = second)

RADIATION_FILE_TIMESTEP I 0 Time step to radiation stress output files
> 0: save in regular given time steps;
<= 0: save every output file save time step

RADIATION_FILE_TIMESTEP_UNIT C(1) ‘S’ Unit of radia tion output file save time step
(M = minute, H = hour, S = second)

RADIATION_OUTPUT_FILE_UNIT I 30 Logical file unit n umber of radiation stress output
RADIATION_OUTPUT_FILE_NAME C(80) ‘RAD’ File identif ier of radiation stress output files.

The full file name is the identifier extended by a
date / time group

FFLAG_R L(8) :TRUE. File output flag for each radiation str ess
parameter (Annex F)

PFLAG_R L(8) .FALSE. Printer output flag for each radiation stress
parameter (Annex F)

Preproc output file
PREPROC_OUTPUT_FILE_UNIT I 7 Logical file unit numb er of preproc output
PREPROC_OUTPUT_FILE_NAME C(80) Grid_in

fo
Preproc output file name

Data assimilation
assimilation_flag I 0 1 for assimilation; otherwise no assimilation
influence_radius R 3.0 Radius of influence in degre e
observation_scatter R 0.5 Scatter of observation da ta
model_scatter R 0.5 Scatter of model data
assimilation_start_date C(14) ‘blank’ Start date / time group of assimilation

(YYYYMMDDhhmmss)
assimilation_end_date C(14) ‘blank’ End date / time group of assimilation

(YYYYMMDDhhmmss)
assimilation_time_step I 3 Assimilation time step
assimilation_time_step_UNIT C(1) ‘H’ Unit of assimi lation time step

(M = minute, H = hour, S = second)
observation_file_unit I 80 Logical file unit number of observation input.
observation_filename C(80) OBS File identifier of o bservation input files.

The full file name is the identifier extended by a
date / time group

first_guess_output_flag L .FALSE.
first_guess_ip_file_unit I 30 Logical file unit num ber of first guess integrated

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 39/ 79

parameter output
first_guess_ip_filename C(80) MAPFG File identifier of first guess integrated parameter

output files.
The full file name is the identifier extended by a
date / time group

first_guess_sp_file_unit I 35 Logical file unit num ber of first guess spectra
output

first_guess_sp_filename C(80) OUTFG File identifier of first guess spectra output
files.
The full file name is the identifier extended by a
date / time group

Special DWD options
spectral_code I -1 If 1 then ASCII output of 2d spe ctra; otherwise

binary output
hours_2d_spectra I -1 2d spectra output at all sea points for

‘hours_2d_spectra‘ hours
ready_file_flag L .FALSE. If .True. than the progra m waits for the next wind

field file
ready_file_directory C(128) 'wind' File name of rea dy file.
model_area C(3) 'GSM' DWD model area name

VI.5 Post-processing Control Parameters

The post-processing programs PRINT_GRID_FILE, PRINT_SPECTRA_FILE,
PRINT_RADIATION_FILE, and PRINT_TIME use the same NAMELIST. In the following xxx denotes
GRID, SPECTRA, RADIATION, or TIME.

The code for the input of the control parameter for the post-processing program is in
WAM_PRINT_USER_MODULE and the subroutines READ_xxx_USER.

Each program tries to open a file with the name

‘Xxx_User’

If the file exists it will try to read the PRINT_NAMELIST. If the reading was not successful, the
program will read the same file in a formatted style as required by the program READ_xxx_USER. If
the file does not exist the PRINT_NAMELIST is read from standard input.

The NAMELIST variables are listed in Tab. 7. The user has to define the variables marked by “-user-“
to assure a successful run.

Default values for the control parameter are defined in subroutine CLEAR_PRINT_USER_MODULE in
the WAM_PRINT_USER_MODULE.

If more than 20 output dates or sites should be processed, the parameters NOUTT or MOUTP in the
WAM_PRINT_USER_MODULE must be increased.

All coordinates are CHARACTER (LEN=13) variables. The input can be either in REAL degrees,
formatted as F13.8, or formatted as ‘sDDD:MM:SS.SS’,

where

s is the sign of the coordinate (+ for East and North or – for West and South),
DDD are the degrees,
MM are the minutes and

SS.SS are the seconds of the coordinate (smallest value allowed is 00.02).

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 40/ 79

Table 7: PRINT_NAMELIST
1C(l) = CHARACTER (LEN=l); R = REAL; I = INTEGER; L = LOGICAL,
 R(n) and I(n) arrays of dimension n, C(l, n) are CHARACTER arrays of (LEN=l) and dimension n

2 –user- = parameter must be defined by user; -999 = undefined.
Variable name Type 1 Default 2 Description

Output times specifications
START_DATE C(14) -user- Start date / time group of model run (YYYYMMDDhhmmss)
END_DATE C(14) -user- End date / time group of mode l run (YYYYMMDDhhmmss)
OUTPUT_TIMESTEP I 1 Time step to write output
OUTPUT_TIMESTEP_UNIT C(1) ‘H’ Unit of output time step

(M = minute, H = hour, S = second)
COUTT C(14,20) ‘blank’ Up to 20 output date / time groups (YYYYMMDDhhmmss)

If any date is specified an output time step is
ignored.

Data input files
INPUT_FILE_UNIT I 20 Logical file unit number of da ta input.
INPUT_FILE_NAME C(80) -user- File identifier of inp ut file.

The full file name is the identifier extended by a
date / time group

INPUT_FILE_DATE C(14) -user- Date / time group of f irst input file (YYYYMMDDhhmmss)
INPUT_FILE_TIMESTEP I 24 Time step of input files.
INPUT_FILE_TIMESTEP_UNIT C(1) ‘H’ Unit input file t ime step.

(M = minute, H = hour, S = second)
Output parameter or spectra type selection

CFLAG_P L(32) .TRUE. File output flag for each inte grated parameter type.
(Annex E)

CFLAG_S L(4) .TRUE. File output flag for each spect ra type. (Annex E)
CFLAG_R L(8) .TRUE. File output flag for each radia tion parameter type.

(Annex F)
Output sites for spectra or time series

OUTLAT C(13,20) ‘blank’ Up to 20 latitudes to do sp ectra or time series
output.
If not specified spectra or time series output is n ot
done.

OUTLONG C(13,20) ‘blank’ Up to 20 longitudes to do spectra or time series
output.
If not specified spectra or time series output is n ot
done.

NAME C(20,20) ‘blank’ Optional name given to spectr a or time series output
sites.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 41/ 79

VII ANNEX B – DATA INPUT

VII.1 Introduction

This annex describes input from various data files, which are necessary for or optional requested by
the WAM-Model.
Necessary data input files for a model run are:

• Depth data for the basic model grid for the PREPROC program,
• Wind data for the main WAM model program.

Optionally, controlled by the parameter settings in the WAM_User file, the main WAM program
requests:

• Sea ice data,
• Depth data,
• Current data,
• Boundary Spectra for a fine grid model run.

For each of these data inputs example programs are provided with the code, which are set-up to read
the data files that are included in the data folder. The user may modify the subroutines named
READ_xxxx_INPUT, where xxxx denotes the different data sets, for his own file formats.
The input data are transferred from the READ_xxxx_INPUT subroutines into modules by SET
subroutines, which are described at the end of this Annex.
Definitions, set-up requirements and algorithms are presented for all data sets in this annex, except
the boundary data, which are described in Annex C_Nest.

VII.2 Basic Model Grid and Depth Data

This chapter describes the set-up of the basic model grid for the WAM-Model as done by the
PREPROC program.

VII.2.1 Concept of Basic Model Grid

The basic model grid must be a regular latitude/longitude grid, which can have different increments in
latitude and longitude. The grid can be but need not East-West periodic. The grid can be defined in the
PREPROC_User file. If these definitions are not given in the PREPROC_User file, the program will
use the grid definition of the topographic data input file.
A file containing topographic data on a regular latitude/longitude grid must be assigned to the
PREPROC program. The file name has to be defined in the PREPROC_User file. The grid need not
be identical to the model grid, but must cover the model grid area. The input topographic data are
mapped to the basic model grid by using the nearest neighbour method.
Water depth is always positive. Non positive depth greater than a defined cut-up depth less than zero
can be included in the basic model grid as dry sea points, which may become wet sea points during
the model execution. All grid points with depth less than the defined cut-up depth or land points and
not used for further processing.
The depth data can be corrected in up to 20 areas in the basic model grid.
For special model tests a one-point grid can be set-up by the control parameters. This may be used to
study duration-limited cases. The model will skip the propagation of wave energy densities.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 42/ 79

VII.2.2 Control Parameters

The user must define the filename for a topographic data file. If the model grid is not identical to the
topographic in the topographic data file the grid axis have to be defined, too. Optionally up to 20
correction areas, where the water depth should be changed, and the minimum water depth to include
land points into the basic model grid can be defined.

See Annex A for details of the control parameters.

VII.2.3 Topographic Data Input

Topographic data are read by the subroutine READ_TOPOGRAPHY. The user may modify the code
for own input. The source provided with the code may serve as an example and is set-up to read the
topographic file that is included in the data folder.
The subroutine must fulfil the following tasks:

• Open the topographic file with FILE=TRIM(FILE08) and connect it to UNIT=IU08,
• Read the input grid definitions of the topographic field,
• Read the topographic data,
• Call the subroutine SET_TOPOGRAPHY to transfer the data into the PREPROC_MODULE.

To get excess to the subroutines and variables the following USE statements must be inserted:

USE PREPROC_MODULE, ONLY: SET_TOPOGRAPHY
USE WAM_FILE_MODULE, ONLY: IU06, IU08, FILE08

IU06 is the file unit to write messages into the ‘Preproc_Prot’ file,
IU08 is the file unit of the input topography file as defined in the ‘Preproc_User’ file,
FILE08 is the file name of the input topography file as defined in the ‘Preproc_User’ file.

VII.3 Wind Data

This chapter describes the WAM-Model wind data handling. Definitions and set-up requirements are
presented.

VII.3.1 Concept of Wind Input

Wind must be on a regular latitude/longitude grid, which need not be identical to the model grid but
must cover the model grid area. It can be provided as:

• Components or
• Speed and direction.

The data can be:

• Winds in 10 meters above sea surface (U10),
• Surface stresses (USTRESS), or
• Friction velocities (USTAR).

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 43/ 79

If the winds are not U10, they are converted to U10 for further processing.

Wind components are first bi-linear interpolated to the model grid. Optionally in a second step the wind
speed and wind direction is linearly interpolated in time.

VII.3.2 Wind Control Parameters

The user must define the filename and the wind input time step in the WAM_User file. Optionally the
wind output time step and the wind file unit can be defined.
The wind input time step is the time increment to use new wind fields from the input file.
The wind output time step is the time step to pass a new wind field to the WAM model. The output
time step must be equal to or an integer fraction of wind input time step. In the second case wind fields
are linearly interpolated in time. The wind output time step must be an integer multiple of the source
function integration time step.

See Annex A for details of the control parameters.

VII.3.3 Wind Data Input

Wind data are read by the subroutine READ_WIND_INPUT, which is called every
WIND_INPUT_TIMESTEP. The user may modify the code for his wind input. The source provided with
the code may serve as an example and is set-up to read the wind file that is included in the data
folder.
The subroutine must fulfil the following tasks:

• Open the wind file with FILE=TRIM(FILE01) and connect it to UNIT=IU01,
• Read the input grid definitions of the wind fields and transfer it to the WAM_WIND_MODULE

with subroutine SET_WIND_HEADER,
• Read the wind date and wind field and transfer it to the WAM_WIND_MODULE with

subroutine SET_WIND_FIELD,
• At each call to READ_WIND_INPUT exactly one date and wind field is read and transferred.

To get excess to the subroutines and variables the following USE statements must be inserted:

USE WAM_WIND_MODULE, ONLY: &
& SET_WIND_FIELD, & !! WIND INPUT INTO MOD ULE.
& SET_WIND_HEADER !! WIND INPUT HEADER I NTO MODULE.

USE WAM_FILE_MODULE, ONLY: IU06, IU01, FILE01

IU06 is the file unit to write messages into the ‘WAM_Prot’ file,
IU01 is the file unit of the input wind file as defined in the ‘WAM_User’ file,
FILE01 is the file name of the input wind file as defined in the ‘WAM_User’ file.

VII.4 Sea Ice Data

This chapter describes the WAM-Model sea ice handling. Definitions, set-up requirements and
algorithms are presented.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 44/ 79

VII.4.1 Concept of Sea Ice Input

The model can optionally be executed

• without ice fields,
• with an ice field constant for model run,
• with ice fields changed at regular time steps during the model run.

Ice maps must be on a regular latitude/longitude grid, which need not be identical to the model grid. It
can cover a smaller area than the model grid. The input ice fields are mapped to the model grid using
the value at the nearest neighbour in the ice input grid.
Wave spectra at all grid points marked as ice will be set to zero after a propagation step has been
done. In the gridded model output ice points are set to ‘-999’.

VII.4.2 Sea Ice Control Parameters

The user can define the filename and the ice input time step or use the default settings for ice
execution.
Sea ice is only taken into account, if a file name is given in the WAM_User file. If the file does not exist
a warning is printed and the run done without sea ice.
If the ice input time step is not positive, the model will use the first ice field in the file for the full model
run.
If the ice input time step is positive ice maps are up-dated during the model run every ice input time
step. The model checks before the wave propagation for a new ice map. A new ice map is read and
used, if the date of the actually applied ice field plus half of the ice input time step is before the end of
the propagation step. The model looks on the file for a new ice map with a date later or equal to the
end date of the propagation step.

See Annex A for details of the control parameters.

VII.4.3 Sea Ice Data Input

The subroutine READ_ICE_INPUT may be modified by the user for his ice input. The source provided
with the code may serve as an example and is set-up to read the ice file that is included in the data
folder.
The subroutine must fulfill the following tasks:

• Open the ice file with FILE=TRIM(FILE03) and connect it to UNIT=IU03,
• Read the input grid definitions of the ice map and transfer it to the WAM_ICE_MODULE with

subroutine SET_ICE_HEADER,
• Read the ice date and ice map and transfer it to the WAM_ICE_MODULE with subroutine

SET_ICE,
• At each call to READ_ICE_INPUT exactly one ice date and ice map is read and transferred.

To get excess to the subroutines and variables the following USE statements must be inserted:

USE WAM_ICE_MODULE, ONLY: &
& SET_ICE, & !! ICE INPUT INTO MODU LE.
& SET_ICE_HEADER !! ICE INPUT HEADER IN TO MODULE.

USE WAM_FILE_MODULE, ONLY: Iu06, IU03, FILE03

IU06 is the file unit to write messages into the ‘WAM_Prot’ file,
IU03 is the file unit of the input ice file as defined in the ‘WAM_User’ file,
FILE03 is the file name of the input ice file as defined in the ‘WAM_User’ file.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 45/ 79

VII.5 Depth Data

This chapter describes the WAM-Model depth data handling. Definitions and set-up requirements are
presented.

VII.5.1 Concept of Depth Data Input

The model can optionally be executed

• without depth fields (the basic depth field is used),
• with a depth field constant for model run,
• with depth fields changed at regular time steps during the model run.

Depth data must be on a regular latitude/longitude grid, which need not be identical to the model grid
but must cover the model grid area. They can be provided as:

• Total water depth or
• Surface elevations.

If the depth data are surface elevations, the total water depth used in the WAM-model is surface
elevation plus basic water depth as defined by the PREPROC program.
Water depths are first bi-linear interpolated to the model grid. Optionally in a second step the water
depths are linearly interpolated in time.

VII.5.2 Depth Control Parameters

The user must define the filename for depth input in the WAM_User file. Optionally the depth input and
output time step and the depth file unit can be defined.
Depth fields different from the basic model depth are only taken into account, if a file name is given in
the WAM_User file. If the file does not exist a warning is printed and the run done with the basic model
depth.
If the depth input time step is not positive, the model will use the first depth field in the file for the full
model run.
If the depth input time step is positive, the depth input time step is the time increment to use a new
depth field from the input file. The depth output time step is the time step to pass a new depth field to
the WAM model. The output time step must be equal to or an integer fraction of depth input time step.
In the second case depth fields are linearly interpolated in time. The depth output time step must be
an integer multiple of the propagation integration time step.

See Annex A for details of the control parameters.

VII.5.3 Depth Data Input

Depth data are read by the subroutine READ_TOPO_INPUT, which is called every depth input time
step. The user may modify the code for his depth input. The source provided with the code may serve
as an example and is set-up to read the depth file that is included in the data folder.
The subroutine must fulfil the following tasks:

• Open the depth file with FILE=TRIM(FILE08) and connect it to UNIT=IU08,

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 46/ 79

• Read the input grid definitions of the depth fields and transfer it to the
WAM_TOPO_MODULE with subroutine SET_TOPO_HEADER,

• Read the depth date and depth field and transfer it to the WAM_TOPO_MODULE with
subroutine SET_TOPO_FIELD,

• At each call to READ_TOPO_INPUT exactly one date and depth field is read and
transferred.

To get excess to the subroutines and variables the following USE statements must be inserted:

USE WAM_TOPO_MODULE, ONLY: &
& SET_TOPO_FIELD, & !! DEPTH TO MODULE.
& SET_TOPO_HEADER !! DEPTH HEADER TO MOD ULE.

USE WAM_FILE_MODULE, ONLY: IU06, IU08, FILE08

IU06 is the file unit to write messages into the ‘WAM_Prot’ file,
IU08 is the file unit of the input depth file as defined in the ‘WAM_User’ file,
FILE08 is the file name of the input depth file as defined in the ‘WAM_User’ file.

VII.6 Current Data

This annex describes the WAM-Model current data handling. Definitions and set-up requirements are
presented.

VII.6.1 Concept of Current Input

Current data must be on a regular latitude/longitude grid, which need not be identical to the model grid
but must cover the model grid area. They can be provided as:

• Components or
• Speed and direction.

Current components are first bi-linear interpolated to the model grid. Optionally in a second step the
current speed and current direction is linearly interpolated in time.

VII.6.2 Current Control Parameters

The user must define the filename for the current input in the WAM_User file. Optionally the current
input and output time step and the current file unit can be defined.
Currents are only taken into account, if a file name is given in the WAM_User file. If the file does not
exist a warning is printed and the run done without currents.
If the current input time step is not positive, the model will use the first current field in the file for the full
model run.
If the current input time step is positive, the current input time step is the time increment to use a new
current field from the input file. The current output time step is the time step to pass a new current field
to the WAM model. The output time step must be equal to or an integer fraction of current input time
step. In the second case current fields are linearly interpolated in time. The current output time step
must be an integer multiple of the propagation integration time step.

See Annex A for details of the control parameters.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 47/ 79

VII.6.3 Current Data Input

Current data are read by the subroutine READ_CURRENT_INPUT, which is called every
CURRENT_INPUT_TIMESTEP. The user may modify the code for his current input. The source
provided with the code may serve as an example and is set-up to read the current file that is included
in the data folder.

The subroutine must fulfil the following tasks:

• Open the current file with FILE=TRIM(FILE09) and connect it to UNIT=IU09,
• Read the input grid definitions of the current fields and transfer it to the

WAM_CURRENT_MODULE with subroutine SET_CURRENT_HEADER,
• Read the current date and current field and transfer it to the WAM_CURRENT_MODULE

with subroutine SET_CURRENT_FIELD,
• At each call to READ_CURRENT_INPUT exactly one date and current field is read and

transferred.

To get excess to the subroutines and variables the following USE statements must be inserted:

USE WAM_CURRENT_MODULE, ONLY: &
& SET_CURRENT_FIELD, & !! CURRENT INTO MOD ULE.
& SET_CURRENT_HEADER !! CURRENT HEADER I NTO MODULE.

USE WAM_FILE_MODULE, ONLY: IU06, IU09, FILE09

IU06 is the file unit to write messages into the ‘WAM_Prot’ file,
IU09 is the file unit of the input current file as defined in the ‘WAM_User’ file,
FILE09 is the file name of the input current file as defined in the ‘WAM_User’ file.

VII.7 Transfer Subroutines

VII.7.1 SET_TOPOGRAPHY Subroutine

Description

Transfers grid definitions and basic topographic input data to the PREPROC_MODULE.

Syntax

SET_TOPOGRAPHY (N_LON, N_LAT, D_LON, D_LAT, &
& SOUTH, NORTH, WEST, EAST, D_MAP)

Required Arguments

N_LON must be of type INTEGER and scalar. It is an INTENT(IN) argument. Its value is the

number of longitudes of the topographic data input grid.
N_LAT must be of type INTEGER and scalar. It is an INTENT(IN) argument. Its value is the

number of latitudes of the topographic data input grid.
D_LON must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an

INTENT(IN) argument. Its value is the longitude increment [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the topographic data input grid.

D_LAT must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the latitude increment [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the topographic data input grid.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 48/ 79

SOUTH must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the southern most latitude [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the topographic data input grid.

NORTH must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the northern most latitude [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the topographic data input grid.

WEST must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the western most longitude [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the topographic data input grid.

EAST must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the eastern most longitude [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the topographic data input grid.

D_-MAP must be of type INTEGER and an array of rank two. It is an INTENT(IN) argument. Its
values are the water depth (positive) and land elevations (negative) [m] of the topographic
data. The array must be arranged from WEST to EAST and from SOUTH to NORTH,
which is:

 (1, 1) <==> South-West corner
 (N_LON, 1) <==> South-East corner
 (1, N_LAT) <==> North-West corner
 (N_LON, N_LAT) <==> North-East corner

Remark:
All coordinates and increments must be of the same type.

VII.7.2 SET_WIND_HEADER Subroutine

Description

Defines the grid of the wind input in WAM_WIND_MODULE.

Syntax

SET_WIND_HEADER (WEST, SOUTH, EAST, NORTH, D_LON, D_LAT, &
& N_LON, N_LAT, CODE)

Required Arguments

WEST must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an

INTENT(IN) argument. Its value is the western most longitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the wind input grid.

SOUTH must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the southern most latitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the wind input grid.

Optional Arguments

EAST must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an

INTENT(IN) argument. Its value is the eastern most longitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the wind input grid.

NORTH must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the northern most latitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the wind input grid.

D_LON must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the longitude increment in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the wind input grid.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 49/ 79

D_LAT must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the latitude increment in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the wind input grid.

N_LON must be of type INTEGER and scalar. It is an INTENT(IN) argument. Its value is the
number of longitudes of the wind input grid.

N_LAT must be of type INTEGER and scalar. It is an INTENT(IN) argument. Its value is the
number of latitudes of the wind input grid.

CODE must be of type INTEGER and scalar. It is an INTENT(IN) argument. If present, its value is
1 for USTAR, 2 for USTRESS, 3 for U10. If not present input winds are U10.

Remarks:

From the optional arguments two parameters for each grid axis must be provided to assure a
complete grid definition. The routine checks the consistency and aborts in case of error.

All coordinates and increments must be of the same type.

VII.7.3 SET_WIND_FIELD Subroutine

Description

Transfers a date, a wind field and a wind code into the WAM_WIND_MODULE.

Syntax

SET_WIND_FIELD (CDT, U_MAP, V_MAP, CODE)

Required Arguments

CDT must be of type CHARACTER (LEN=14) and scalar. It is an INTENT(IN) argument. Its

value is the Date/time of the wind field.
U_MAP must be of type REAL and an array of rank two. It is an INTENT(IN) argument. Its values

are the u-components or, if CODE is present and equal to one, wind speeds [m/s]. The
array must be conformable with the wind grid definition (see subroutine
SET_WIND_HEADER). The array must be arranged from WEST to EAST and from
SOUTH to NORTH, which is:

 (1, 1) <==> South-West corner
 (N_LON, 1) <==> South-East corner
 (1, N_LAT) <==> North-West corner
 (N_LON, N_LAT) <==> North-East corner

V_MAP must be of type REAL and an array of rank two. It is an INTENT(IN) argument. Its values

are the v-components [m/s] or, if CODE is present and equal to one, wind directions [deg,
coming from]. The array must be organised in the same way as U_MAP.

Optional Arguments

CODE must be of type INTEGER and scalar. It is an INTENT(IN) argument. If present and equal

to one U_MAP contains wind speeds and V_MAP wind directions, otherwise arrays contain
wind components.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 50/ 79

VII.7.4 SET_ICE_HEADER Subroutine

Description

Defines the grid of the ice input map in WAM_ICE_MODULE.

Syntax

SET_ICE_HEADER (WEST, SOUTH, EAST, NORTH, D_LON, D_LAT, N_LON, N_LAT)

Required Arguments

WEST must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an

INTENT(IN) argument. Its value is the western most longitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the ice input grid.

SOUTH must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the southern most latitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the ice input grid.

Optional Arguments

EAST must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an

INTENT(IN) argument. Its value is the eastern most longitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the ice input grid.

NORTH must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the northern most latitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the ice input grid.

D_LON must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the longitude increment in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the ice input grid.

D_LAT must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the latitude increment in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the ice input grid.

N_LON must be of type INTEGER and scalar. It is an INTENT(IN) argument. Its value is the
number of longitudes of the ice input grid.

N_LAT must be of type INTEGER and scalar. It is an INTENT(IN) argument. Its value is the
number of latitudes of the ice input grid.

Remarks:

From the optional arguments a minimum of parameters for each grid axis must be provided to assure
a complete grid definition. The routine checks the consistency and aborts in case of error.

All coordinates and increments must be of the same type.

VII.7.5 SET_ICE Subroutine

Description

Transfers an ice date and an ice map into the WAM_ICE_MODULE and interpolates it to the model
grid.

Syntax

SUBROUTINE SET_ICE (CDT, GRID)

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 51/ 79

Required Arguments

CDT must be of type CHARACTER (LEN=14) and scalar. It is an INTENT(IN) argument. Its value

is the date/time of the ice field.
GRID must be of type INTEGER, REAL or CHARACTER (LEN=1) and an array of rank two. It is an

INTENT(IN) argument. The array must be conformable with the ice grid definition (see
subroutine SET_ICE_HEADER). The array must be arranged from WEST to EAST and from
SOUTH to NORTH, which is:

 (1, 1) <==> South-West corner
 (N_LON, 1) <==> South-East corner
 (1, N_LAT) <==> North-West corner
 (N_LON, N_LAT) <==> North-East corner

 A grid point (i, j) is covered with ice, if GRID (i, j) = 1, NINT(GRID(i,j)) = 1, or GRID(i,j)

==.TRUE., if GRID is of type INTEGER, REAL or CHARACTER, respectively.

VII.7.6 SET_TOPO_HEADER Subroutine

Description

Defines the grid of the depth input in WAM_TOPO_MODULE.

Syntax

SET_TOPO_HEADER (WEST, SOUTH, EAST, NORTH, D_LON, D_LAT, &
& N_LON, N_LAT, CODE)

Required Arguments

WEST must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an

INTENT(IN) argument. Its value is the western most longitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the depth input grid.

SOUTH must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the southern most latitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the depth input grid.

Optional Arguments

EAST must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an

INTENT(IN) argument. Its value is the eastern most longitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the depth input grid.

NORTH must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the northern most latitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the depth input grid.

D_LON must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the longitude increment in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the depth input grid.

D_LAT must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the latitude increment in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the depth input grid.

N_LON must be of type INTEGER and scalar. It is an INTENT(IN) argument. Its value is the
number of longitudes of the depth input grid.

N_LAT must be of type INTEGER and scalar. It is an INTENT(IN) argument. Its value is the
number of latitudes of the depth input grid.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 52/ 79

CODE must be of type INTEGER and scalar. It is an INTENT(IN) argument. If present and its
value is not equal to 1 input depth are surface elevations. If not present or its value is equal
to 1 input depth are total water depth.

Remarks:

From the optional arguments a minimum of parameters for each grid axis must be provided to assure
a complete grid definition. The routine checks the consistency and aborts in case of error.

All coordinates and increments must be of the same type.

VII.7.7 SET_TOPO_FIELD Subroutine

Description

Transfers a date and a depth field into the WAM_TOPO_MODULE.

Syntax

SET_TOPO_FIELD (CDT, D_MAP)

Required Arguments

CDT must be of type CHARACTER (LEN=14) and scalar. It is an INTENT(IN) argument. Its

value is the date/time of the depth field.
D_MAP must be of type REAL and an array of rank two. It is an INTENT(IN) argument. Its values

are the total water depth or surface elevations. The array must be conformable with the
depth grid definition (see subroutine SET_TOPO_HEADER). The array must be arranged
from WEST to EAST and from SOUTH to NORTH, which is:

 (1, 1) <==> South-West corner
 (N_LON, 1) <==> South-East corner
 (1, N_LAT) <==> North-West corner
 (N_LON, N_LAT) <==> North-East corner

VII.7.8 SET_CURRENT_HEADER Subroutine

Description

Defines the grid of the current input in WAM_CURRENT_MODULE.

Syntax

SET_CURRENT_HEADER (WEST, SOUTH, EAST, NORTH, D_LON, D_LAT, &
& N_LON, N_LAT, CODE)

Required Arguments

WEST must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an

INTENT(IN) argument. Its value is the western most longitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the current input grid.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 53/ 79

SOUTH must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the southern most latitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the current input grid.

Optional Arguments

EAST must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an

INTENT(IN) argument. Its value is the eastern most longitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the current input grid.

NORTH must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the northern most latitude in [deg], [s*100] or
‘sDDD:MM:SS.SS’] of the current input grid.

D_LON must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the longitude increment in [deg], [s*100] or
‘sDDD:MM:SS.SS’of the current input grid.

D_LAT must be of type REAL, INTEGER, or CHARACTER (LEN=13) and scalar. It is an
INTENT(IN) argument. Its value is the latitude increment in [deg], [s*100] or
‘sDDD:MM:SS.SS’ of the current input grid.

N_LON must be of type INTEGER and scalar. It is an INTENT(IN) argument. Its value is the
number of longitudes of the current input grid.

N_LAT must be of type INTEGER and scalar. It is an INTENT(IN) argument. Its value is the
number of latitudes of the current input grid.

CODE must be of type INTEGER and scalar. It is an INTENT(IN) argument. If present and equal
to one U_MAP contains current speeds and V_MAP current directions, otherwise arrays
contain current components.

Remarks:

From the optional arguments a minimum of parameters for each grid axis must be provided to assure
a complete grid definition. The routine checks the consistency and aborts in case of error.

All coordinates and increments must be of the same type.

VII.7.9 SET_CURRENT_FIELD Subroutine

Description

Transfers a date and a current field into the WAM_CURRENT_MODULE.

Syntax

SET_CURRENT_FIELD (CDT, U_MAP, V_MAP)

Required Arguments

CDT must be of type CHARACTER (LEN=14) and scalar. It is an INTENT(IN) argument. Its

value is the date/time of the current field.
U_MAP must be of type REAL and an array of rank two. It is an INTENT(IN) argument. Its values

are the u-components or, if CODE is present and equal to one, current speeds [m/s]. The
array must be conformable with the current grid definition (see subroutine
SET_CURRENT_HEADER). The array must be arranged from WEST to EAST and from
SOUTH to NORTH, which is:

 (1, 1) <==> South-West corner
 (N_LON, 1) <==> South-East corner

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 54/ 79

 (1, N_LAT) <==> North-West corner
 (N_LON, N_LAT) <==> North-East corner

V_MAP must be of type REAL and an array of rank two. It is an INTENT(IN argument. Its values

are the v-components [m/s] or, if CODE is present and equal to one, current directions
[deg, coming from]. The array must be organised in the same way as U_MAP.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 55/ 79

VIII ANNEX C – NEST ORGANISATION AND INTERPOLATION OF SPECTRA

VIII.1 Introduction

This annex describes the WAM-Model nesting strategy. Definitions, set-up requirements and
algorithms are presented.

VIII.2 Concept of Nesting

The model can optionally be executed as a

• coarse grid model
• fine grid model
• fine and coarse grid model.

A coarse grid model provides boundary spectra for a follow-up fine grid model, which is embedded as
a nest in the coarse grid. A nest is a sub-grid area of the coarse grid area that has a higher grid
resolution than the coarse grid. The fine grid model runs on the nest area and uses the boundary
spectra provided by the coarse grid model as boundary values. The fine grid model can be a coarse
grid model, if a follow-up nest is included in the fine grid model domain.

VIII.3 Nest Set-up in PREPROC Program

The PREPROC program does the organisation of nests. The user has to provide the latitudes and
longitudes for the nest boundary to the coarse grid PREPROC and assign the coarse grid PREPROC
output file to the fine grid PREPROC program. The necessary set-up routines are collected in
WAM_NEST_MODULE.

See Annex A for details of the control parameters.

VIII.3.1 Coarse Grid

A coarse grid model provides boundary spectra for a follow-up fine grid model, which is embedded as
a nest in the coarse grid. Therefore the user has to define the fine grid boundaries, which are the West
and East latitude and the South and North longitude of the nest, in the ‘Preproc_User’ of the coarse
grid.
The PREPROC program generates a table that stores all sea point numbers of the nearest sea points
along the nest boundaries. The grid points are stored from left to right starting at the lower left corner.
In addition to each sea-point number a latitude and longitude is stored in the table. On the West and
East boundary of the nest the stored latitude is the coarse grid latitude and the stored longitude is the
nearest fine grid longitude. On the South and North boundary of the nest the stored longitude is the
coarse grid longitude and the stored latitude is the nearest fine grid latitude. In case that the fine grid
corner points are coarse grid points the coarse grid latitudes and longitudes are stored. The maximum
shift of coarse grid points is less than half a coarse grid increment in latitude und longitude direction.
Land points are ignored.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 56/ 79

Figure 18 presents an example nest layout. The table generated by PREPROC in this case is given in
Table 8. Table 8 together with the fine grid corner point coordinates are stored in the PREPROC
output file and used by the WAM model to write the boundary spectra at the given sea points in the
order as given in the table. The fine grid PREPROC uses Table 8 to compute the boundary
interpolation table.

The coarse grid PREPROC can generate tables for up to 20 different nested fine grids.

Figure 18: Nest layout

Shown in black are the coarse grid lines and in red are the fine grid lines. The black and red numbers
placed to the top right of the grid point are the sea point numbers of the coarse grid and the fine grid,
respectively. L marks land points. The blue numbers (placed top-left) count the coarse grid boundary
output points and the green numbers count the fine grid input points.

Table 8: Coarse grid output table for the set-up shown in Fig. 18 generated by PREPROC

Table
index

Coarse grid
sea point
number

Assigned Latitude

Assigned Longitude

1 7 Southern fine grid latitude Western fine grid longitude

2 8 Southern fine grid latitude Coarse grid longitude at sea point 8

3 9 Southern fine grid latitude Eastern fine grid longitude

4 12 Coarse grid latitude at sea point 12 Western fine grid longitude

5 16 Northern fine grid latitude Western fine grid longitude

6 17 Northern fine grid latitude Coarse grid longitude at sea point 17

7 18 Northern fine grid latitude Eastern fine grid longitude

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 57/ 79

VIII.3.2 Fine grid

To set-up a fine grid, the coarse grid PREPROC output file has to be assigned to the fine grid
PREPROC in the ‘Preproc_User’ of the fine grid. If more than one coarse grid table is stored the
program will identify the table to be used by the stored nest corner points.
The fine grid points at the boundary input points will be numbered counting from left to right starting at
the lower left corner (see red numbers in Fig. 18). To each fine grid input point FP the coarse grid
table index CP1 of the nearest coarse grid point is assigned. If CP1 and FP have the same latitudes
and longitudes CP1 is assigned to FP. Otherwise a second coarse grid table index CP2 is searched,
which fulfils the conditions: FP, CP1 and CP2 must have the same latitude or longitude, FP must be
between CP1 and CP2 and both coarse grid points are closer than 1.5 coarse grid increments. Coarse
grid table indices that do not fulfil the conditions are set to zero.
The spectra at CP1 and CP2 are used for interpolation to FP. Table indices CP1 or CP2, which are
zero, are assigned to a spectrum containing zero energy. The interpolation weight stored in the table
is the distance of CP1 and FP normalised by the distance of CP1 and CP2. If CP1 is zero the
interpolation weight is set to zero. If CP2 is zero, then the distance between CP1 and CP2 is the
coarse grid increment. Table 9 displays the fine PREPROC table for the set-up of Fig. 18.

Table 9: Fine grid input table for the set-up shown in Fig. 18 generated by PREPROC

Fine grid boundary
input points

(green in Fig 1)

Fine grid sea point
numbers

(red in Fig. 1)

Coarse grid output
spectrum 1

(blue in Fig. 1)

Coarse grid output
spectrum 2

(blue in Fig. 1)

Interpolation weight

1 1 1 1 1.0000
2 2 1 2 0.2946
3 3 1 2 0.5892
4 4 1 2 0.8838
5 5 2 3 0.2325
6 6 2 3 0.6162
7 7 3 3 1.0000
8 8 1 4 0.6851
9 14 0 3 0.5016

10 15 4 5 0.2127
11 21 4 5 0.6063
12 27 5 5 1.0000
13 28 5 6 0.2946
14 29 5 6 0.5892
15 30 5 6 0.8838
16 31 6 7 0.2325
17 32 6 7 0.6162
18 33 7 7 1.0000

VIII.4 Nest Execution in WAM

The necessary set-up information to run the coarse or fine WAM model is given in the PREPROC
output files. In addition the user has to activate the nest execution and define the input or output files
in the ‘WAM_User’ input file. The necessary execution routines are collected in
WAM_BOUNDARY_MODULE and the set-up data are stored in WAM_NEST_MODULE.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 58/ 79

VIII.4.1 Coarse Grid

The user must activate the output of boundary values in the ‘WAM_User’ input file otherwise nests
defined in PREPROC are ignored.
Optionally the user can change the default values for the output time step, the files to save time step,
the file name, the file format and the unit number to which the file is assigned. See Annex A User Input
for details.
The coarse grid WAM writes the spectra at all sea points given in the coarse grid output table (e.g.
Tab. 8) at fixed increments to file. If more than one nest is defined different files for each nest are
used. The files are saved and new files are assigned at a given increment.
The output files are in binary or ascii format. The output file contains a file header followed by all
spectra in the order as given in the coarse grid output table at same output time. The spectra for the
next output time follow immediately.

VIII.4.2 Fine Grid

The user must activate the input of boundary values in the ‘WAM_User’ input otherwise nests defined
in PREPROC are ignored. The boundary input file name, which is the boundary output file name of the
coarse grid WAM, must be given, too.
Optionally the user can change the default value of the unit number to which the input file is assigned.
See Annex A User Input for details.
The fine grid WAM reads and stores the boundary spectra for two output times and interpolates the
spectra in time to the fine grid model time. The time interpolated spectra are interpolated in space to
the boundary input point using the information stored in the fine grid input table generated by fine grid
PREPROC (e.g. Tab. 9) and inserted in the model grid. The interpolation of spectra is described in the
next chapter.

VIII.5 Interpolation of Spectra

If F1(f,θ) and F2(f,θ) are spectra at time or location t1 and t2, the spectrum F(f,θ) at time (or location) t is
defined by interpolation in 3 steps.

1) The total energies E1, E2, mean frequencies <f1>, <f2> and the mean direction <θ1>, <θ2> for both

spectra are computed (see Annex) and linearly interpolated to E, <f> and <θ>

E = E1 + t − t1
t2 − t1

E2 − E1() (1)

〈 f 〉 = 〈 f1〉 + t − t1
t2 − t1

〈 f2〉 − 〈 f1〉() (2)

()〉〈−〉〈
−
−+〉〈=〉〈 12

12

1
1 θθθθ

tt

tt
 (3)

2) The spectra F1 and F2 are scaled to have the total energy E, stretched to have the mean

frequency <f> and rotated to have the mean direction <θ>. The resulting spectra G1 and G2 have
the same integrated parameters E, <f> and <θ>.

Gi(f ,θ) = E

E i

Fi(f
〈 f 〉

〈 f i〉
,θ + 〈θ〉 − 〈θi〉) for i =1,2 (4)

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 59/ 79

3) The energy densities of G1 and G2 at each frequency and direction are linearly interpolated to the

spectrum F(f,θ) at time t.

F f ,θ()= G1 f ,θ()+ t − t1
t2 − t1

G2 f ,θ()− G1 f ,θ()() (5)

VIII.6 Boundary File

The boundary file written by the coarse grid WAM and read by the fine grid WAM can be binary or
ascii formatted.
The boundary data are read by the subroutine READ_BOUNDARY_INPUT. The user may modify the
code for his input. The source provided with the code may serve as an example and is set-up to read
the boundary files that are produced by a standard WAM set-up. If boundary spectra from another
source are used, all the information has to be provided as in the standard set-up.

The subroutine must fulfil the following tasks:

• Open the boundary file with FILE=TRIM(FILE02) and connect it to UNIT=IU02,
• Read or define the header information,
• Check consistence with model set-up (recommended),
• Read all boundary spectra for one input time,
• At each call to READ_BOUNDARY_INPUT exactly one set of boundary spectra is read.

To get access to the variables the following USE statements must be inserted:

USE WAM_FILE_MODULE, ONLY: IU06, IU02, FILE02

IU06 is the file unit to write messages into the ‘Wam_Prot’ file,
IU02 is the file unit of the input boundary file as defined in the ‘WAM_User’ file,
FILE02 is the file indicator of the input boundary file as defined in the ‘WAM_User’ file.

USE WAM_FRE_DIR_MODULE, ONLY: KL, ML, CO, FR, TH

KL is the number of spectral directions as defined in the model set-up,
ML is the number of spectral frequencies as defined in the model set-up,
CO is the logarithmic frequency increment as defined in the model set-up,
FR(1:ML) are the model frequencies as defined in the model set-up,
TH(1:KL) are the model directions as defined in the model set-up.

USE WAM_NEST_MODULE, ONLY: NBINP

NBINP is the number of input spectra as defined in the nest set-up,

USE WAM_BOUNDARY_MODULE, ONLY: CDT_BI_FILE, XLON, X LAT, &
& IDEL_B_INP, IDEL_BI_ FILE, &
& CDATE2, EMEAN2, THQ2, & &
FMEAN2, F2

CDT_BI_FILE is the date of the presently used boundary file,
XLON(1:NBINP) are the longitudes of the boundary spectra,
XLAT(1:NBINP) are the latitudes of the boundary spectra,
IDEL_B_INP is time step of boundary input spectra,
IDEL_BI_FILE is time step of boundary input spectra file,

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 60/ 79

CDATE2 is date of boundary input spectra to be read,
EMEAN2(1:NBINP) are the total energies of the boundary spectra,
THQ2(1:NBINP) are the mean directions of the boundary spectra,
FMEAN2(1:NBINP) are the mean frequencies of the boundary spectra,
F2(1:KL,1:ML,1:NBINP) are the boundary spectra.

VIII.6.1 Standard Boundary File Format

All values are real numbers and written in binary or ascii (*) format.

1. Record (File Header):

XANG, XFRE, TH0, FR1, CO1, XBOU, XDELIN, XDELIF

where the values must fulfil the following relations:

NINT(XANG) = KL
NINT(XFRE) = ML
TH0 = TH(1)
FR1 = FR(1)
CO1 = CO
NINT(XBOU) = NBINP
NINT(XDELIN) = IDEL_B_INP
NINT(XDELIF) = IDEL_BI_FILE

2. Record (Header of first (IJ=1) boundary spectrum):
 XLON(IJ), XLAT(IJ), CDATE2, EMEAN2 (IJ), THQ2(IJ), FMEAN2(IJ)

3. Record (first (IJ=1) boundary spectrum at time CDATE2):

F2 (1:KL, 1:ML, IJ)

4. until (1 + 2*NBINP) record:
The 2. and 3. record is repeated for IJ = 2, NBINP for all spectra at time CDATE2.

Following records contain the boundary spectra at the next time starting with record 2.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 61/ 79

IX ANNEX D – MODEL TIME STEPS

IX.1 Introduction

This annex describes time steps in the WAM-Model. Definitions, possibilities and restrictions are
presented.

IX.2 Time Steps

The execution of the WAM-Model is controlled by a number of time steps, which are defined by the
user.
All time steps are integer values in seconds, which fix the minimum time step to one second.
The basic model time step is the propagation time step. All other time steps with the exception of the
source function time step must be an integer multiple of the propagation time step. It is strongly
recommended that the propagation and source function steps synchronize soon in time and that
output is only done at these times.
To assure a save restart all time steps must synchronize in time at the maximum of the propagation,
source function, wind input, depth input, and current input time step.
The model internally does a CFL-check to assure stable integration. If the CFL-criterion is not fulfilled
the model internally integrates the advection-refraction with a reduced time step.
The different time steps are cross-checked by the model. If possible the model will correct the steps
and warnings are printed in the protocol file otherwise the model will abort and an error message is
printed.
All model time steps are listed in the following table:

Table 10: Model time steps

Time step
Namelist Model

variable
Purpose Restriction

PROPAGATION_TIMESTEP IDELPRO Propagation integratio n
time step

Propagation time step must
fulfill CFL criterion.

Source function time step
should be less than 1200 s in
deep and 900 s in shallow water
applications.

SOURCE_TIMESTEP IDELT Source function
integration time step
<= 0: source function =
propagation time step

WIND_INPUT_TIMESTEP IDELWI Time step to use winds

from the wind input file.

Wind input time step must be a
multiple integer of wind output
time step.

Wind output time step must be a
multiple integer of source
function time step.

WIND_OUTPUT_TIMESTEP IDELWO Time step to pass winds
to the wave integration.
<= 0: wind output time
step = wind input time
step.
If (wind output time step
< wind input time step)
winds are linearly
interpolated in time.

TOPO_INPUT_TIMESTEP IDELTI Time step to use depth
from the depth input file
<= 0: depth is stationary

Depth input time step must be a
multiple integer of depth
output time step.

Depth output time step must be
a multiple integer of
propagation step, if non-
stationary depth is used.

TOPO_OUTPUT_TIMESTEP IDELTO Time step to pass depth
data to the wave
integration.
<= 0: depth output time
step = depth input time
step
If (depth output time
step < depth input time
step) depth is linearly
interpolated in time.

CURRENT_INPUT_TIMESTEP IDELCI Time step to use curr ents
from the current input

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 62/ 79

file
<= 0: currents are
stationary

Current input time step must be
a multiple integer of depth
output time step.

Current output time step must
be a multiple integer of
propagation time step, if non-
stationary currents are used.

CURRENT_OUTPUT_TIMESTEP IDELCO Time step to pass cu rrent
data to the wave
integration.
<= 0: current output time
step = current input time
step.
If (current output time
step < current input time
step) currents are
linearly interpolated in
time.

ICE_INPUT_TIMESTEP IDEL_ICE_I Time step to use ice from
the ice input file
<= 0: ice is stationary

none

PARAMETER_OUTPUT_TIMESTEP IDELINT Time step to writ e out

integrated parameters

Output time steps must be a
multiple integer of propagation
step.

File time step must be a
multiple integer of the larger
output step.

SPECTRA_OUTPUT_TIMESTEP IDELSPT Time step to write out
spectra

OUTPUT_FILE_SAVE_TIMESTEP IDEL_OUT Time step to int egrated
parameter and spectra
output files
> 0: save in regular
given time steps;
<= 0: save at end of run

RADIATION_OUTPUT_TIMESTEP IDEL_RAD_OUT Time step to write out
radiation stresses
= 0: output every
propagation time step
< 0: radiation stresses
are not processed.

Output time step must be a
multiple integer of propagation
step.

File time step must be a
multiple integer of output time
step.

RADIATION_FILE_TIMESTEP DELFIL Time step to radiati on
stress output files
> 0: save in regular
given time steps;
<= 0: save every output
file save time step

RESTART_SAVE_TIMESTEP IDEL_RES Time step to save re start

files
> 0: restart files are
saved in regular time
steps.
= 0: restart file is
saved at the end of run.
< 0: restart file is not
saved.

Restart time step must be a
multiple integer of propagation
or source time step, whichever
is larger.

COARSE_OUTPUT_TIMESTEP IDEL_B_OUT Time step to writ e

boundary spectra for a
follow-up fine grid run
> 0: output in regular
given time steps;
<= 0: output every
propagation time step

Output time step must be a
multiple integer of propagation
or source time step, whichever
is larger.

File step must be a multiple
integer of output time step.

COARSE_FILE_SAVE_TIMESTEP IDEL_BO_FILE Time step to save coarse
grid output boundary
files
> 0: save in regular
given time steps;
<= 0: save every output
file save time step

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 63/ 79

X ANNEX E – WAVE OUTPUT

X.1 Introduction

This annex describes the WAM-Model output parameters. Definitions and algorithms to compute the
model output from the energy density spectrum, which is the prognostic variable of the WAM-Model,
are presented.

X.2 Concept of Spectra and Spectral Parameter

X.2.1 Spectra

The surface variance spectrum is proportional to the wave energy density spectrum. Therefore the
term energy density spectrum is mostly used in the wave modelling community.
The equation solved is the mathematical description of physical conservation law of action density.
The energy density is computed at all grid points for all time steps. Neglecting in the following the
space and time dependence the energy density Fi(fi,θ) is represented in the model as function of
intrinsic frequency fi (dimension 1/s) and wave direction θ (dimension radiance). The dimension of the
energy density Fi (fi,θ) is m2/Hz/rad.
The intrinsic frequency and the absolute frequency f are connected via the Doppler term

ku−= iff ππ 22 (1)

where u is the current vector and k is the wave number. The modulus k of k is defined by the
dispersion relation

)tanh(2 kdgkfi == σπ (2)

where d denotes the water depth.

To get the 2-D output spectrum F (f,θ) based on the absolute frequency the transformation

f

f
fFfF i

ii ∂
∂θθ),(),(= (3)

is performed. If the model runs without currents, the intrinsic frequency fi and the absolute frequency f
are identical. Transformations of the spectrum are not necessary, and F(f,θ) = F(fi,θ).

The 2-D spectrum is reduced to the 1-D spectrum E(f) by integration over the directions.

() () θθ
π

dfFfE ∫=
2

0

, (4)

The wave spectrum E(f) is equivalent to wave spectra deduced from time series measurement, e.g. by
waverider buoys.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 64/ 79

The directional distribution R(f,θ) is defined by

R f ,θ()=
F2 f ,θ()

E f()
 (5)

With the definitions

Sθ f()= sinθF2 f ,θ()dθ
0

2π

∫

Cθ f()= cosθF2 f ,θ()dθ
0

2π

∫

 (6)

the mean direction per frequency (in radiance) is given as

θ f()= arctan
Sθ f()
Cθ f()








 (7)

and the directional spread per frequency (in radiance) as

s(f) = 2 − 2
Sθ 2

f()+ Cθ 2
f()

E f()
 (8)

X.2.2 Integrated Wave Parameter

In the following a number of integrated parameters, which are frequently used, are defined:

• Spectral moment of order i

()dffEfm i
i ∫= (9)

o Significant wave height [m]

 Hs = 4 m0
 (10)

• Mean wave period [s]

 Tmean = m−1

m0

 (11)

• Wave Tm1 period [s]

 TM 1 = m0

m1

 (12)

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 65/ 79

• Wave Tm2 period [s]

2

0
2 m

m
TM = (13)

• Wave Peak period [s]

() ()}{fE
1

0
p fEMaxwhere

f
T

f
p

p <
== (14)

Mean directional wave parameters are based on

()
()∫

∫
=

=

dffCC

dffSS

θθ

θθ (15)

• Mean direction [rad]

 θm = arctan
Sθ
Cθ








 (16)

• Mean directional spread [rad]

σm = 2 − 2
Sθ 2

+ Cθ 2

m0

 (17)

X.2.3 Wind Sea and Swell

A total wave spectrum can be separated in a windsea- (or sea-) and swell- spectrum. The sea
spectrum is the part of the total spectrum, which is under the influence of the local wind speed. The
remaining part of the total spectrum is called swell. The term “under the influence of the local wind
speed” means that the phase speed of the wave–components is less than the friction velocity
assigned to local wind speed component. If u10 denotes the wind speed and θwind the wind direction in
10m above sea surface, a spectral component F(f,θ) is defined as swell if

()windu
f

g θθη
π

−> cos2.1
2 * (18)

where the friction factor η = 28 and u* is the friction velocity corresponding to u10 .

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 66/ 79

X.3 Algorithmic Implementation

This section describes the technical aspects of the algorithmic implementation that are relevant to the
validation process. In particular, it addresses the differences between the algorithmic implementation
and the conceptual model.

X.3.1 Spectral Domain

The frequency axis f of the energy density spectra F(f,θ) is discretized by fl ,l =1,…,Mf , where the
minimum frequency f1 >0 and the following numbers increase logarithmically by 10%

fl = 1.1l −1 f1 (19)

The discrete frequency fl is the centre of the frequency interval ∆fl with the left and right boarder fa,l-1

and fa,l , respectively, where

()
()

()1,

1,

1210,

5.0

11,...,= if 5.0

5.0

−

+

−+=

−+=
−−=

ffff MMMMa

fllla

a

ffff

Mlfff

ffff

 (20)

The direction axis θ is discretized by θµ ,µ =1,…,Mθ. The axis has to cover the full circle in equidistant
steps ∆θ and is therefore completely defined by the number of directions Mθ. It is

θµ

θ

µθµθ

πθ

M

M

1,...,=
2

1

/2

∆






 −=

=∆
 (21)

The discrete direction θµ is the centre of the interval [θµ-0.5∆θ , θµ+0.5∆θ].

X.3.2 Transformation from Intrinsic to Absolute Frequencies

The complete model output is based on absolute frequencies. In case currents are used in the model,
spectra are transformed from intrinsic to absolute frequencies based on equ. (3), before any integrated
parameters are computed or spectra output is done.

Step 1:
For each discrete intrinsic model frequency f the absolute frequency fa is computed from the
dispersion relation equ. (2) (frequency and directional indices are not show in the following).

Step 2:
The spectral energy densities at the absolute frequencies are computed as

Fa (fa ,θ) = F(f ,θ)
∆f

∆fa

 if fa > 0

Fa (− fa ,θ +1800) = F(f ,θ)
∆f

∆fa

 if fa < 0
 (22)

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 67/ 79

where the frequency intervals are defined as in equ. (20).

Step 3:
The energy densities of spectra at the absolute frequencies fa as defined in step 2 are redistributed to
the discrete model frequency.

X.3.3 The Output Energy Density Spectral Domain

The model output are 2-D frequency – direction surface variance spectra F(fj, θµ) in the absolute
frequency coordinates as defined in E.3.2.
A discrete output frequency axis fj ,j =1,…,Mf and the discrete direction axis is equal to the axis used in
the computations of the energy density spectra cf. equ. (19-21).

X.3.4 Computation of Output Integrated Parameter

The integrated parameters are computed from the absolute spectra F(fj, θµ). For the computations,
based on the definitions equ. (4) - (17), all integrals are replaced by summations, e.g. the 1-D
frequency spectrum (cf. equ. (4)) is computed as

() ()∑
=

∆=
θ

µ
µ θθ

M

jj fFfE
1

, (23)

In addition a tail correction Ti is added to the moments i = -1,0,1,and 2 to account for the frequency
cut-off at fMf. It is assumed that the energy densities for frequencies greater than fMf are proportional f-n,
where n = 5 is fixed in the WAM-Model.

With these assumptions the tail function is given as

t(f) = af −n
 (24)

where a is a constant.

Because fMf is the cut-up frequency and E(fMf) the energy density at the cut-up frequency, the tail
function must fulfil

t(fM f
) = E fM f() (25)

which defines a as

a = fM f

n E fM f() (26)

For the i-moment the tail contribution is defined by

Ti = a f i f −n

f M f

∞

∫ df (27)

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 68/ 79

 Ti =
E(fM f

) fM f

i+1

n - i -1
 (28)

With this correction the moment of order i is computed as

()∑
=

∆+=
fM

j
jj

i
jii ffEfTm

1

 (29)

X.3.5 Computation of Output Wind Sea and Swell Parameters and Spectra

Windsea and Swell integrated parameters are computed in the same way as described in E3.1-E3.3,
but before doing the calculation, the frequency-direction domain is restricted.

For the windsea integration the sub- domain is used, that fulfils equ. 18 and for the swell integration
the sub- domain is used, that does not fulfill equ. 18.

X.4 Output Files

This chapter describes the wave output files of the WAM model.
Controlled by the setting of the parameters in the WAM_User file the model generates separate wave
output files for integrated parameters and/or wave spectra. Output can be written into the formatted
WAM_Prot file and/or into automatically assigned binary files. The filenames of the binary files consist
of a file identifier extended by a date / time group. These files are opened at fixed time increments or
one file is used for the full model run.
Output is written in fixed time increments or at special output times as defined in the WAM_User file.
The date / time group included in the file name is the date /time of the last output stored in the file.
See Annex A for details of the control parameters.

X.4.1 Integrated Parameter Output File

All output parameters available in the model, which can be selected for output in the WAM_User file,
are given in Table 11. The parameter fields are gridded and a missing value indicator is written at land
point. For the formatted output into the WAM_Prot file the parameters are scaled to integer values.
The integrated parameter output files can be read by the subroutine READ_GRID_FILE and further
processed by the programs PRINT_GRID_FILE, which prints formatted parameter fields, and
PRINT_TIME, which prints time series at selected grid points.
The file format is:

1. Record (Header):

CDTINTT, DNX, DNY, AMOWEP, AMOSOP, AMOEAP, AMONOP, cstart

where

CDTINTT is the date of output field (YYYYMMDDhhmmss)
NINT(DNX) = NX is the number of grid points in West-East direction
NINT(DNY) = NY is the number of grid points in North-South direction
AMOWEP is the most western latitude of grid
AMOSOP is the most southern longitude of grid

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 69/ 79

AMOEAP is the most eastern latitude of grid
AMONOP is the most northern longitude of grid
cstart is the start date of model run (YYYYMMDDhhmmss)

2. Record (Data flag array):

PFLAG_P(1:32)

where

PFLAG_P(I) is true, if parameter field I (see Tab. 11) is included in the file.

3. and following records (one record for each parameter, where PFLAG_P(I)=.TRUE.):

GRID(1:NX,1:NY)

where
 GRID is the gridded field of parameter I. The array is arranged from WEST to EAST and from

NORTH to SOUTH, which is:
 (1, 1) <==> North-West corner
 (N_LON, 1) <==> North-East corner
 (1, N_LAT) <==> South-West corner
 (N_LON, N_LAT) <==> South-East corner

Following records contain the output data at the next time starting with record 1.

Table 11: Integrated output parameter

Parameter No. Parameter Dimension

1 Wind speed U10 m/s
2 Wind direction Degree from North (towards)
3 Friction velocity m/s
4 Drag coefficient
5 Water depth m
6 Current speed m/s
7 Current direction Degree from North (towards)
8 Dummy
9 Significant wave height m

10 Wave peak period s
11 Wave mean period s
12 Wave Tm1 period s
13 Wave Tm2 period s
14 Wave direction Degree from North (towards)
15 Directional spread Degree
16 Normalized wave stress %
17 Sea significant wave height m
18 Sea peak period s
19 Sea mean period s
20 Sea Tm1 period s
21 Sea Tm2 period s
22 Sea direction Degree from North (towards)
23 Sea directional spread Degree
24 Dummy
25 Swell significant wave height m
26 Swell peak period s
27 Swell mean period s
28 Swell Tm1 period s
29 Swell Tm2 period s
30 Swell direction Degree from North (towards)
31 Swell directional spread Degree
32 Dummy

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 70/ 79

X.4.2 Spectra Output File

All output spectra types available in the model, which can be selected for output in the WAM_User file,
are given in Table 12. The spectra are written at selected sea points, which are defined in the
WAM_User file. Spectra are written to binary output files and/or into the formatted WAM_Prot file.
The spectra output files can be read by the subroutine READ_SPECTRA_FILE and further processed
by the program PRINT_SPECTRA_FILE, which prints formatted spectra.
The files format is:

1. Record (Header):

SPEC_LON, SPEC_LAT, SPEC_DATE, XANG, XFRE, TH1, FR1 , CO

where

SPEC_LON is the longitude of the spectra
SPEC_LAT is the latitude of the spectra
SPEC_DATE is the date of the spectra (YYYYMMDDhhmmss)
NINT(XANG) = KL is the number of spectral directions
NINT(XFRE) = ML is the number of spectra frequencies
TH1 is the first spectral direction
FR1 is the first spectral frequency
CO is the logarithmic frequency increment

2. Record (Data flag array):

PFLAG_S(1:4)

where

PFLAG_S(I) is true, if spectra type I (see Tab. 12) is included in the file.

3. Record (Environment parameter):

U10, UDIR, US, DEPTH, CSPEED, CDIR

where

U10 is the wind speed u10
UDIR is the wind direction in degree from North (towards)
US is the friction velocity
DEPTH is the water depth
CSPEED is the current speed
CDIR is the current direction in degree from North (towards)

4. Record (wave parameters for the first spectrum type I where PFLAG_S(I)=.TRUE.):

HS, PPER, MPER, TM1, TM2, MDIR, SPRE

where

HS is the significant wave height
PPER is the peak period
MPER is the mean period
TM1 is the Tm1 period
TM2 is the Tm2 period
MDIR is the wave direction in degree from North (towards)
SPRE is the directional spread in degree

5. Record (wave spectrum for the first spectrum type I where PFLAG_S(I)=.TRUE.):

SPEC(1:KL,1:ML)

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 71/ 79

Records 5 and 6 are repeated for the other spectra types I, if PFLAG_S(I)=.TRUE.

The following records contain the output spectra at the same time but at the next output sites always
starting with record 1.

After that the record sequence is repeated for the next output time.

Table 12: Spectra output types

Spectra type No. Spectra type Dimension

1 Wave spectrum m*m/(Hz*rad)
2 Sea spectrum m*m/(Hz*rad)
3 Swell spectrum m*m/(Hz*rad)
4 Dummy

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 72/ 79

XI ANNEX F – RADIATION STRESS, WAVE FORCE AND STOKE S DRIFT
OUTPUT

XI.1 Introduction

This annex describes the WAM-Model radiation stress, wave force and stokes drift computation and
output. Definitions and algorithms to compute the output from the energy density spectrum, which is
the prognostic variable of the WAM-Model, are presented.

XI.2 Definitions

XI.2.1 Radiation Stress Tensor

The radiation stress tensor S = Sij is defined as

Sij = ρw g
cg

c

kik j

k 2 +
cg

c
− 1

2









 δij











0

∞

∫
0

2π

∫ F f ,θ() df dθ (1)

where

F(f,θ) is the energy density spectrum at intrinsic frequency f and direction θ , cg the group velocity, c
the phase velocity, g the acceleration of gravity, ρw the water density. The wave number components
ki, kj and the wave number modulus k are functions of frequency and direction. The indices i and j
denote the components in x (West-East) and y (South-North) direction, respectively. The terms ki/k
and kj/k are given as sinθ and cosθ, respectively.

XI.2.2 Wave Force per Surface Unit

The wave force per surface unit vector ττττ = (τx, τy) used is defined as

τ x = − 1
ρw

∂ Sxx

∂x
+

∂ Sxy

∂y









 (2)

τ y = − 1
ρw

∂ Syx

∂x
+

∂ Syy

∂y









 (3)

where Sij are the radiation stress tensor elements.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 73/ 79

XI.2.3 Stokes Drift

From a directional wave spectrum F(f,θ), where , f denotes the intrinsic frequency and θ the wave
direction, the Stokes drift vector us = (u, v) is defined as:

us = 4π
g

fkF f ,θ()dfdθ
0

∞

∫
0

2π

∫ (4)

where g denotes acceleration of gravity and k the wave number vector.

XI.3 Computations

This section describes the technical aspects of the algorithmic implementation that are relevant to the
validation process. In particular, it addresses the differences between the algorithmic implementation
and the conceptual model.

XI.3.1 Radiation Stress Tensor Elements

The discrete frequencies fl (l=1,…, Ml) and direction θµ (µ=1,…, Mµ) axis are given in Annex E section
E3.1. The radiation stress tensor elements at each sea point are computed based on equ. (1). The
integral is replaced by summations.

()
() ()

()
() () l

M

l

M

l l

lg
w

l

M

l

M

l l

lg
wxx

ffF
fc

fc
g

ffF
fc

fc
gS

l

l

∆∆







−+

∆∆=

∑∑

∑∑

==

==

µ
µ

µ

µ
µ

µµ

θθρ

θθθρ

θ

θ

11

1

2

1

,
2

1

,sin

 (5)

()
() ()

()
() () l

M

l

M

l l

lg
w

l

M

l

M

l l

lg
wyy

ffF
fc

fc
g

ffF
fc

fc
gS

l

l

∆∆







−+

∆∆=

∑∑

∑∑

==

==

µ
µ

µ

µ
µ

µµ

θθρ

θθθρ

θ

θ

11

1

2

1

,
2

1

,cos

 (6)

()
() () l

M

l

M

l l

lg
wyxxy ffF

fc

fc
gSS

l

∆∆== ∑∑
==

µ
µ

µµµ θθθθρ
θ

11

,cossin (7)

XI.3.2 Wave Force per Surface Unit

The wave force per surface unit vector elements are computed from equ. (2) and (3) at each sea
point. The gradients in the equations are computed as centred finite differences. If one of the
neighbour grid points is a land, sea or dry point, first order finite differences are used. (In case of a
nested fine grid all boundary input points are treated as land points.) If both neighbours do not exist,
the radiation stress vector elements are set to undefined.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 74/ 79

XI.3.3 Stokes Drift

The discrete frequencies fl (l=1,…, Ml) and direction θµ (µ=1,…, Mµ) axis are given in Annex E section
E3.1. The Stokes drift vector elements at each sea point are computed based on equ. (4). The integral
is replaced by summations.

us = 4π
g

f lk f l()F f l ,θµ()∆f l∆θµ
µ=1

M µ

∑
l=1

M l

∑ (8)

In addition a tail correction T3 is added to the third moments to account for the frequency cut-off at fMf.
It is assumed that the energy densities for frequencies greater than fMf are proportional f-n, where n = 5
is fixed in the WAM-Model (cf. Annex E section E3.4).

XI.4 Output File

Controlled by the setting of the parameters in the WAM_User file the model generates output of these
parameters. Output can be written into the formatted WAM_Prot file and/or into automatically assigned
binary files. The filenames of the binary files consist of a file identifier extended by a date / time group.
These files are opened at fixed time increments or one file is used for the full model run.
Output is written in fixed time increments as defined in the WAM_User file. The date / time group
included in the file name is the date /time of the last output stored in the file.
All output parameters available in the model, which can be selected for output in the WAM_User file,
are given in Table 13. The parameter fields are gridded and a missing value indicator is written at
land, ice and dry points. For the formatted output into the WAM_Prot file the parameters are scaled to
integer values.
See Annex A for details of the control parameters.
The binary output files can be read by the subroutine READ_RADIATION_FILE and further processed
by the programs PRINT_RADIATION_FILE, which prints formatted parameter fields.

The file format is:

1. Record (Header):

CDTINTT, DNX, DNY, AMOWEP, AMOSOP, AMOEAP, AMONOP

where

CDTINTT is the date of output field (YYYYMMDDhhmmss)
NINT(DNX) = NX is the number of grid points in West-East direction
NINT(DNY) = NY is the number of grid points in North-South direction
AMOWEP is the most western latitude of grid
AMOSOP is the most southern longitude of grid
AMOEAP is the most eastern latitude of grid
AMONOP is the most northern longitude of grid

2. Record (Data flag array):

PFLAG_R(1:8)

where

PFLAG_R(I) is true, if parameter field I (see Tab. 13) is included in the file.

3. and following records (one record for each parameter, where PFLAG_R(I)=.TRUE.):

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 75/ 79

GRID(1:NX,1:NY)

where
 GRID is the gridded field of parameter I. The array is arranged from WEST to EAST and from

NORTH to SOUTH, which is:
 (1, 1) <==> North-West corner
 (N_LON, 1) <==> North-East corner
 (1, N_LAT) <==> South-West corner
 (N_LON, N_LAT) <==> South-East corner

Following records contain the output data at the next output time starting with record 1.

Table 13: Radiation stress output parameter

Parameter No. Parameter Dimension

1 Radiation Stress Tensor Sxx kg/s2

2 Radiation Stress Tensor Syy kg /s2
3 Radiation Stress Tensor Sxy kg /s2
4 Dummy
5 x- comp. Wave Force per Surface Unit N/m2
6 y- comp. Wave Force per Surface Unit N/m2
7 x- comp. Stokes Drift m/s2
8 y- comp. Stokes Drift m/s2

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 76/ 79

XII ANNEX G – REDUCED GRID

XII.1 Introduction

This annex describes the WAM-Model reduced grid set-up. Definitions and algorithms to compute the
set-up and consequences for the calculation spatial gradients are presented.

XII.2 Definition of the Reduced Grid

Due to the convergence of longitudes the distance in metres between longitudes is reduced towards
the poles. This results in an unbalanced grid resolution and requires a strong reduction of the
propagation time step to avoid numerical instability. This can be overcome by reducing the number of
grid points on high latitudes.

A regular grid is defined by

(x0, y0) the west-south corner coordinate (in degrees),
(dx, dy) the increments in west-east and in south-north direction(in degrees),
(Nx, Ny) the number of latitudes and longitudes,
(xNx, yNy) the east-north corner coordinate (in degrees)

and the definition must fulfil the relations:

xNx = x0 + (Nx −1)dx

yNy = y0 + (Ny −1)dy

 (1)

and the coordinates (xi, yk) of all grid point are defined as:

x i = x0 + (i −1)dx i =1,...,Nx

yk = y0 + (k −1)dy k =1,...,Ny

 (2)

The regular grid is converted into a reduced grid as follows:

If l is the latitude, where

cos(y l) = Max
k=1

Ny

cos(yk){ } (3)

reduced number of grid points Nx(k) for each latitude k is defined in three steps:

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 77/ 79

Nx k()= NINT Ny

cos(yk)
cos(y l)











if Nx k() is an odd number : Nx k()= Nx k()+1

Nx k()= Minimum Nx,Nx k()[]
 (4)

where NINT denotes the nearest integer number.

The longitude increments of the reduced grid for each latitude dx(k) are consequently define as

dx (k) = xNx − x0

Nx k()−1
 if the grid is non - periodic in longitude

dx (k) = xNx + dx − x0

Nx k()
 if the grid is periodic in longitude (5)

Finally the coordinates (xi, yk) of all grid point of the reduced grid are defined as:

x i = x0 + (i −1)dx k() i =1,...,Nx k()
yk = y0 + (k −1)dy k =1,...,Ny

 (6)

With these definitions follows that

• Nx(l) = Nx ,
• The number of grid points on reduced latitudes is even,
• The grid boundaries are kept the same as in the full grid.
• The longitude increment dx(k) = dx for all latitudes, where Nx(k) = Nx

Remark:
To use the same code for a reduced and a regular grid. The values dx(k) and Nx(k) are defined for the
regular grid too and fixed to the constants dx and Nx , respectively.

XII.3 Gradients

Spatial gradients have to be computed for the spectral components, depth und current data.
In the model this is controlled by index arrays, which store the sea point number of the four neighbour
grid point in West, East, South and North direction.

East –West gradients
The indices of the neighbour points are calculated in the same way as in the full grid. In the
computation of the gradients the reduced grid latitude increment dx(k) is used.

North –South gradients
The north and south neighbour grid points are selected as nearest to the longitude of the actual grid
point. The increment used is the constant latitude increment dy.

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 78/ 79

XII.4 Reduced Grid Output

All print and file output of the main program CHIEF is on the reduced grid. The values dx(k) and Nx(k)
are stored in the file output. The post-processing programs PRINT_GRID_FILE and
PRINT_RADIATION_FILE have been extended by an option to interpolate the reduced values to the
regular grid. The method of the nearest neighbour is applied to each latitude.

XII.5 Example

The following tables show the land-sea mask for a regular grid (Table 14, left column) and the
corresponding reduced grid (Table 15, left column). ‘L’ marks land- and S sea points. Both grids cover
the area from 1000W to 290E and from 720S to 810N. The latitude increment is 30 for both grids. The
longitude increment for the regular grid is 30, and therefore in the reduced grid is 30 close to the
equator. For each latitude the number of longitude grid points (NLON = Nx(k)) and the longitude
increment (DELTA_LON = dx(k)) are given in the right columns of the Tables. In this example the
reduced grid includes 1088 sea points, compared to 1516 in the regular grid. The propagation time
step in the main program Chief can be increased by a factor of ~ 4. The computational load
(neglecting the source functions) is reduced by a factor of ~ 6.

Table 14: Land-sea mask for a regular grid

 12345678901234567890123456789012345678901234
2SSSSLSLLLLLLLLLLLLLLLLLLLLLLLLSSSSSSSSSSSSSS
1SLLLLLLLLLLLLLLLLLLLLLLLLLLLSSSSSSSSSLLLLSSS
0LLLLLLLSSSSSSSLLLLLLLLLLLLLLSSSSSSSSSSSSSSSS
9LLSSSLLLLSSSSSSSLLLLLLLLLLLSSSSSSSSSSSSSSSSS
8LLLLSSSSLLLSSSSLLLLLLLLLLLSSSSSSSSSSSSSSLLLL
7LLLLLLSSLLLLLSSLLLLLLLSSSSSSSSSSSSSSSLLLLLLL
6LLLSSLSSSLLLSSSSSLLLSSSSSSSSSSSSSSSSLLLLSLLL
5LLSSSSSLLLSSSSSSSSLSSSSSSSSSSSSSSSSLLLLSSLLL
4LLLSSSSSLLLLLSSSSSSSSSSSSSSSSSSLLSSSSLLSSLLL
3LLLLLLSLLLLLLLSSSSSSSSSSSSSSSSLLLLSSSSSSLLLL
2LLLLLLLLLLLLLLLSSSSSSSSSSSSSSSSSLLLLLLLLLLLL
1LLLLLLLLLLLLSSLLSSSSSSSSSSSSSSSSLLLLLLLLLLLL
0LLLLLLLLLLLLLSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLS
9LLLLLLLLLLSSSSSSSSSSSSSSSSSSSSLLLLSSLLSLLLSS
8LLLLLLLLLSSSSSSSSSSSSSSSSSSSSSLLLLSSLSSSLSLL
7LLLLLLLLSSSSSSSSSSSSSSSSSSSSSSSLSSLLLSSSSSSL
6LLLLLLLSSSSSSSSSSSSSSSSSSSSSSSSLLLLLLSSSSSSS
5LLLLSLSSSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLSLLLL
4LSSSSSLSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLL
3LSSSSSSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLLL
2LSSSSSSLSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLLL
1LSLLSSSSSLSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLLL
0SSLLLLSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLLL
9SSSSLLSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLLL
8SSSSSLSSLSLLLSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLL
7SSSSSSSSLLLLLLSSSSSSSSSSSSSSSSLLLLSLLLLLLLLL
6SSSSSSSSLLLLLLLLSSSSSSSSSSSSSSSSSSSSSLLLLLLL
5SSSSSSSLLLLLLLLLLSSSSSSSSSSSSSSSSSSSLLLLLLLL
4SSSSSSLLLLLLLLLLLLLSSSSSSSSSSSSSSSSSSLLLLLLL
3SSSSSSLLLLLLLLLLLLLLLLSSSSSSSSSSSSSSSLLLLLLL
2SSSSSSSLLLLLLLLLLLLLLLSSSSSSSSSSSSSSSSLLLLLL
1SSSSSSSLLLLLLLLLLLLLLSSSSSSSSSSSSSSSSSLLLLLL
0SSSSSSSSLLLLLLLLLLLLSSSSSSSSSSSSSSSSSSLLLLLL
9SSSSSSSSSLLLLLLLLLLLSSSSSSSSSSSSSSSSSLLLLLLL
8SSSSSSSSSSLLLLLLLLLLSSSSSSSSSSSSSSSSSSLLLLLL
7SSSSSSSSSSLLLLLLLLSSSSSSSSSSSSSSSSSSSSLLLLLL
6SSSSSSSSSSLLLLLLLSSSSSSSSSSSSSSSSSSSSSLLLLLL
5SSSSSSSSSSLLLLLLLSSSSSSSSSSSSSSSSSSSSSSLLLLL
4SSSSSSSSSLLLLLLLSSSSSSSSSSSSSSSSSSSSSSSLLLLS
3SSSSSSSSSLLLLLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
2SSSSSSSSSLLLLLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
1SSSSSSSSSLLLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
0SSSSSSSSLLLLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
9SSSSSSSSLLLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
8SSSSSSSSSLLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
7SSSSSSSSSSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
6SS
5SS
4SS
3SSSSSSSSSSSSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
2SS
1SSSSSSSSSLLLLLSSSSSSSSSSSSSSSSSSLLLLLLLLLLLL
 12345678901234567890123456789012345678901234

NO.	LATITUDE	NLON	DELTA_LON
 52 | +081:00:00.00 | 50 | +003:00:00.00 |
 51 | +078:00:00.00 | 50 | +003:00:00.00 |
 50 | +075:00:00.00 | 50 | +003:00:00.00 |
 49 | +072:00:00.00 | 50 | +003:00:00.00 |
 48 | +069:00:00.00 | 50 | +003:00:00.00 |
 47 | +066:00:00.00 | 50 | +003:00:00.00 |
 46 | +063:00:00.00 | 50 | +003:00:00.00 |
 45 | +060:00:00.00 | 50 | +003:00:00.00 |
 44 | +057:00:00.00 | 50 | +003:00:00.00 |
 43 | +054:00:00.00 | 50 | +003:00:00.00 |
 42 | +051:00:00.00 | 50 | +003:00:00.00 |
 41 | +048:00:00.00 | 50 | +003:00:00.00 |
 40 | +045:00:00.00 | 50 | +003:00:00.00 |
 39 | +042:00:00.00 | 50 | +003:00:00.00 |
 38 | +039:00:00.00 | 50 | +003:00:00.00 |
 37 | +036:00:00.00 | 50 | +003:00:00.00 |
 36 | +033:00:00.00 | 50 | +003:00:00.00 |
 35 | +030:00:00.00 | 50 | +003:00:00.00 |
 34 | +027:00:00.00 | 50 | +003:00:00.00 |
 33 | +024:00:00.00 | 50 | +003:00:00.00 |
 32 | +021:00:00.00 | 50 | +003:00:00.00 |
 31 | +018:00:00.00 | 50 | +003:00:00.00 |
 30 | +015:00:00.00 | 50 | +003:00:00.00 |
 29 | +012:00:00.00 | 50 | +003:00:00.00 |
 28 | +009:00:00.00 | 50 | +003:00:00.00 |
 27 | +006:00:00.00 | 50 | +003:00:00.00 |
 26 | +003:00:00.00 | 50 | +003:00:00.00 |
 25 | +000:00:00.00 | 50 | +003:00:00.00 |
 24 | -003:00:00.00 | 50 | +003:00:00.00 |
 23 | -006:00:00.00 | 50 | +003:00:00.00 |
 22 | -009:00:00.00 | 50 | +003:00:00.00 |
 21 | -012:00:00.00 | 50 | +003:00:00.00 |
 20 | -015:00:00.00 | 50 | +003:00:00.00 |
 19 | -018:00:00.00 | 50 | +003:00:00.00 |
 18 | -021:00:00.00 | 50 | +003:00:00.00 |
 17 | -024:00:00.00 | 50 | +003:00:00.00 |
 16 | -027:00:00.00 | 50 | +003:00:00.00 |
 15 | -030:00:00.00 | 50 | +003:00:00.00 |
 14 | -033:00:00.00 | 50 | +003:00:00.00 |
 13 | -036:00:00.00 | 50 | +003:00:00.00 |
 12 | -039:00:00.00 | 50 | +003:00:00.00 |
 11 | -042:00:00.00 | 50 | +003:00:00.00 |
 10 | -045:00:00.00 | 50 | +003:00:00.00 |
 9 | -048:00:00.00 | 50 | +003:00:00.00 |
 8 | -051:00:00.00 | 50 | +003:00:00.00 |
 7 | -054:00:00.00 | 50 | +003:00:00.00 |
 6 | -057:00:00.00 | 50 | +003:00:00.00 |
 5 | -060:00:00.00 | 50 | +003:00:00.00 |
 4 | -063:00:00.00 | 50 | +003:00:00.00 |
 3 | -066:00:00.00 | 50 | +003:00:00.00 |
 2 | -069:00:00.00 | 50 | +003:00:00.00 |
 1 | -072:00:00.00 | 50 | +003:00:00.00 |

Documentation of a web-based source code
library for WAM

Ref : MyWave—D1.1

Date : 20 June 2013

Issue : WP1 – Task 1.4

 © My Wave – Public Page 79/ 79

Table 15: Land-sea mask for the reduced grid of the same area as in Table 14

 12345678901234567890123456789012345678901234
2SLLLLSSS
1SLLLLLSSLS
0LLSSLLLSSSSS
9LSLSSLLLLSSSSS
8LLSLSSLLLSSSSSLL
7LLLSLLLLLSSSSSSLLL
6LLLSLLSSLSSSSSSSLLLL
5LSSSLSSSSLSSSSSSSLLLLL
4LLSSLLLSSSSSSSSSSLSSLSLL
3LLLLSLLLLSSSSSSSSSLLSSSSLL
2LLLLLLLLLSSSSSSSSSSSLLLLLLLL
1LLLLLLLLSLLSSSSSSSSSSSLLLLLLLL
0LLLLLLLLLLSSSSSSSSSSSSSSLLLLLLLS
9LLLLLLLLSSSSSSSSSSSSSSSSLLLSSLLLLS
8LLLLLLLSSSSSSSSSSSSSSSSSLLSSSSSLLL
7LLLLLLLSSSSSSSSSSSSSSSSSSSSSLLSSSSSL
6LLLLLLSSSSSSSSSSSSSSSSSSSSSLLLLLSSSSSS
5LLLLLLSSSSSSSSSSSSSSSSSSSSLLLLLLLLSLLL
4LSSSSSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLL
3LSSSSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLL
2LSSSSSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLL
1LSLLSSSSSLSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLL
0SSLLLLSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLLL
9SSSSLLSSSSSSSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLLL
8SSSSSLSSLSLLLSSSSSSSSSSSSSSSSLLLLLLLLLLLLLLL
7SSSSSSSSLLLLLLSSSSSSSSSSSSSSSSLLLLSLLLLLLLLL
6SSSSSSSSLLLLLLLLSSSSSSSSSSSSSSSSSSSSSLLLLLLL
5SSSSSSSLLLLLLLLLLSSSSSSSSSSSSSSSSSSSLLLLLLLL
4SSSSSSLLLLLLLLLLLLLSSSSSSSSSSSSSSSSSSLLLLLLL
3SSSSSSLLLLLLLLLLLLLLLLSSSSSSSSSSSSSSSLLLLLLL
2SSSSSSSLLLLLLLLLLLLLLLSSSSSSSSSSSSSSSSLLLLLL
1SSSSSSSLLLLLLLLLLLLLLSSSSSSSSSSSSSSSSSLLLLLL
0SSSSSSSSLLLLLLLLLLLLSSSSSSSSSSSSSSSSSSLLLLLL
9SSSSSSSSSLLLLLLLLLLLSSSSSSSSSSSSSSSSLLLLLL
8SSSSSSSSSSLLLLLLLLLSSSSSSSSSSSSSSSSSLLLLLL
7SSSSSSSSSLLLLLLLLSSSSSSSSSSSSSSSSSSLLLLL
6SSSSSSSSSLLLLLLLSSSSSSSSSSSSSSSSSSSLLLLL
5SSSSSSSSSLLLLLLSSSSSSSSSSSSSSSSSSSLLLL
4SSSSSSSSLLLLLLSSSSSSSSSSSSSSSSSSSSLLLS
3SSSSSSSSLLLLSSSSSSSSSSSSSSSSSSSSSSSS
2SSSSSSSLLLLSSSSSSSSSSSSSSSSSSSSSSS
1SSSSSSSLLLSSSSSSSSSSSSSSSSSSSSSSSS
0SSSSSSLLLSSSSSSSSSSSSSSSSSSSSSSS
9SSSSSSLLSSSSSSSSSSSSSSSSSSSSSS
8SSSSSSLSSSSSSSSSSSSSSSSSSSSS
7SSSSSSLSSSSSSSSSSSSSSSSSSS
6SSSSSSSSSSSSSSSSSSSSSSSS
5SSSSSSSSSSSSSSSSSSSSSS
4SSSSSSSSSSSSSSSSSSSS
3SSSSSLSSSSSSSSSSSS
2SSSSLSSSSSSSSSSS
1SSSLLSSSSSLLLL
12345678901234567890123456789012345678901234

NO.	LATITUDE	NLON	DELTA_LON
 52 | +081:00:00.00 | 8 | +021:00:00.00 |
 51 | +078:00:00.00 | 10 | +016:20:00.00 |
 50 | +075:00:00.00 | 14 | +011:18:27.69 |
 49 | +072:00:00.00 | 16 | +009:48:00.00 |
 48 | +069:00:00.00 | 18 | +008:38:49.41 |
 47 | +066:00:00.00 | 20 | +007:44:12.63 |
 46 | +063:00:00.00 | 24 | +006:23:28.70 |
 45 | +060:00:00.00 | 26 | +005:52:48.00 |
 44 | +057:00:00.00 | 28 | +005:26:40.00 |
 43 | +054:00:00.00 | 30 | +005:04:08.28 |
 42 | +051:00:00.00 | 32 | +004:44:30.97 |
 41 | +048:00:00.00 | 34 | +004:27:16.36 |
 40 | +045:00:00.00 | 36 | +004:12:00.00 |
 39 | +042:00:00.00 | 38 | +003:58:22.70 |
 38 | +039:00:00.00 | 40 | +003:46:09.23 |
 37 | +036:00:00.00 | 40 | +003:46:09.23 |
 36 | +033:00:00.00 | 42 | +003:35:07.32 |
 35 | +030:00:00.00 | 44 | +003:25:06.98 |
 34 | +027:00:00.00 | 46 | +003:16:00.00 |
 33 | +024:00:00.00 | 46 | +003:16:00.00 |
 32 | +021:00:00.00 | 48 | +003:07:39.58 |
 31 | +018:00:00.00 | 48 | +003:07:39.58 |
 30 | +015:00:00.00 | 48 | +003:07:39.58 |
 29 | +012:00:00.00 | 50 | +003:00:00.00 |
 28 | +009:00:00.00 | 50 | +003:00:00.00 |
 27 | +006:00:00.00 | 50 | +003:00:00.00 |
 26 | +003:00:00.00 | 50 | +003:00:00.00 |
 25 | +000:00:00.00 | 50 | +003:00:00.00 |
 24 | -003:00:00.00 | 50 | +003:00:00.00 |
 23 | -006:00:00.00 | 50 | +003:00:00.00 |
 22 | -009:00:00.00 | 50 | +003:00:00.00 |
 21 | -012:00:00.00 | 50 | +003:00:00.00 |
 20 | -015:00:00.00 | 48 | +003:07:39.58 |
 19 | -018:00:00.00 | 48 | +003:07:39.58 |
 18 | -021:00:00.00 | 48 | +003:07:39.58 |
 17 | -024:00:00.00 | 46 | +003:16:00.00 |
 16 | -027:00:00.00 | 46 | +003:16:00.00 |
 15 | -030:00:00.00 | 44 | +003:25:06.98 |
 14 | -033:00:00.00 | 42 | +003:35:07.32 |
 13 | -036:00:00.00 | 40 | +003:46:09.23 |
 12 | -039:00:00.00 | 40 | +003:46:09.23 |
 11 | -042:00:00.00 | 38 | +003:58:22.70 |
 10 | -045:00:00.00 | 36 | +004:12:00.00 |
 9 | -048:00:00.00 | 34 | +004:27:16.36 |
 8 | -051:00:00.00 | 32 | +004:44:30.97 |
 7 | -054:00:00.00 | 30 | +005:04:08.28 |
 6 | -057:00:00.00 | 28 | +005:26:40.00 |
 5 | -060:00:00.00 | 26 | +005:52:48.00 |
 4 | -063:00:00.00 | 24 | +006:23:28.70 |
 3 | -066:00:00.00 | 20 | +007:44:12.63 |
 2 | -069:00:00.00 | 18 | +008:38:49.41 |
 1 | -072:00:00.00 | 16 | +009:48:00.00 |

